Anne Cutler †

Publications

Displaying 1 - 54 of 54
  • Akker, E., & Cutler, A. (2003). Prosodic cues to semantic structure in native and nonnative listening. Bilingualism: Language and Cognition, 6(2), 81-96. doi:10.1017/S1366728903001056.

    Abstract

    Listeners efficiently exploit sentence prosody to direct attention to words bearing sentence accent. This effect has been explained as a search for focus, furthering rapid apprehension of semantic structure. A first experiment supported this explanation: English listeners detected phoneme targets in sentences more rapidly when the target-bearing words were in accented position or in focussed position, but the two effects interacted, consistent with the claim that the effects serve a common cause. In a second experiment a similar asymmetry was observed with Dutch listeners and Dutch sentences. In a third and a fourth experiment, proficient Dutch users of English heard English sentences; here, however, the two effects did not interact. The results suggest that less efficient mapping of prosody to semantics may be one way in which nonnative listening fails to equal native listening.
  • Blumstein, S., & Cutler, A. (2003). Speech perception: Phonetic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 151-154). Oxford: Oxford University Press.
  • Cutler, A., & Butterfield, S. (2003). Rhythmic cues to speech segmentation: Evidence from juncture misperception. In J. Field (Ed.), Psycholinguistics: A resource book for students. (pp. 185-189). London: Routledge.
  • Cutler, A., Murty, L., & Otake, T. (2003). Rhythmic similarity effects in non-native listening? In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 329-332). Adelaide: Causal Productions.

    Abstract

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. This language-specificity affects listening to non- native speech, if native procedures are applied even though inefficient for the non-native language. However, speakers of two languages with similar rhythmic interpretation should segment their own and the other language similarly. This was observed to date only for related languages (English-Dutch; French-Spanish). We now report experiments in which Japanese listeners heard Telugu, a Dravidian language unrelated to Japanese, and Telugu listeners heard Japanese. In both cases detection of target sequences in speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. These results suggest that Telugu and Japanese listeners use similar procedures in segmenting speech, and support the idea that languages fall into rhythmic classes, with aspects of phonological structure affecting listeners' speech segmentation.
  • Cutler, A. (2003). The perception of speech: Psycholinguistic aspects. In W. Frawley (Ed.), International encyclopaedia of linguistics (pp. 154-157). Oxford: Oxford University Press.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2003). Lexical viability constraints on speech segmentation by infants. Cognitive Psychology, 46(1), 65-97. doi:10.1016/S0010-0285(02)00507-8.

    Abstract

    The Possible Word Constraint limits the number of lexical candidates considered in speech recognition by stipulating that input should be parsed into a string of lexically viable chunks. For instance, an isolated single consonant is not a feasible word candidate. Any segmentation containing such a chunk is disfavored. Five experiments using the head-turn preference procedure investigated whether, like adults, 12-month-olds observe this constraint in word recognition. In Experiments 1 and 2, infants were familiarized with target words (e.g., rush), then tested on lists of nonsense items containing these words in “possible” (e.g., “niprush” [nip + rush]) or “impossible” positions (e.g., “prush” [p + rush]). The infants listened significantly longer to targets in “possible” versus “impossible” contexts when targets occurred at the end of nonsense items (rush in “prush”), but not when they occurred at the beginning (tan in “tance”). In Experiments 3 and 4, 12-month-olds were similarly familiarized with target words, but test items were real words in sentential contexts (win in “wind” versus “window”). The infants listened significantly longer to words in the “possible” condition regardless of target location. Experiment 5 with targets at the beginning of isolated real words (e.g., win in “wind”) replicated Experiment 2 in showing no evidence of viability effects in beginning position. Taken together, the findings suggest that, in situations in which 12-month-olds are required to rely on their word segmentation abilities, they give evidence of observing lexical viability constraints in the way that they parse fluent speech.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., Cutler, A., & Norris, D. (2003). Flow of information in the spoken word recognition system. Speech Communication, 41(1), 257-270. doi:10.1016/S0167-6393(02)00108-5.

    Abstract

    Spoken word recognition consists of two major component processes. First, at the prelexical stage, an abstract description of the utterance is generated from the information in the speech signal. Second, at the lexical stage, this description is used to activate all the words stored in the mental lexicon which match the input. These multiple candidate words then compete with each other. We review evidence which suggests that positive (match) and negative (mismatch) information of both a segmental and a suprasegmental nature is used to constrain this activation and competition process. We then ask whether, in addition to the necessary influence of the prelexical stage on the lexical stage, there is also feedback from the lexicon to the prelexical level. In two phonetic categorization experiments, Dutch listeners were asked to label both syllable-initial and syllable-final ambiguous fricatives (e.g., sounds ranging from [f] to [s]) in the word–nonword series maf–mas, and the nonword–word series jaf–jas. They tended to label the sounds in a lexically consistent manner (i.e., consistent with the word endpoints of the series). These lexical effects became smaller in listeners’ slower responses, even when the listeners were put under pressure to respond as fast as possible. Our results challenge models of spoken word recognition in which feedback modulates the prelexical analysis of the component sounds of a word whenever that word is heard
  • Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2), 204-238. doi:10.1016/S0010-0285(03)00006-9.

    Abstract

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g., [WI tlo?], from witlof, chicory) and unambiguous [s]-final words (e.g., naaldbos, pine forest). Another group heard the reverse (e.g., ambiguous [na:ldbo?], unambiguous witlof). Listeners who had heard [?] in [f]-final words were subsequently more likely to categorize ambiguous sounds on an [f]–[s] continuum as [f] than those who heard [?] in [s]-final words. Control conditions ruled out alternative explanations based on selective adaptation and contrast. Lexical information can thus be used to train categorization of speech. This use of lexical information differs from the on-line lexical feedback embodied in interactive models of speech perception. In contrast to on-line feedback, lexical feedback for learning is of benefit to spoken word recognition (e.g., in adapting to a newly encountered dialect).
  • Otake, T., & Cutler, A. (2003). Evidence against "units of perception". In S. Shohov (Ed.), Advances in psychology research (pp. 57-82). Hauppauge, NY: Nova Science.
  • Shi, R., Werker, J., & Cutler, A. (2003). Function words in early speech perception. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 3009-3012).

    Abstract

    Three experiments examined whether infants recognise functors in phrases, and whether their representations of functors are phonetically well specified. Eight- and 13- month-old English infants heard monosyllabic lexical words preceded by real functors (e.g., the, his) versus nonsense functors (e.g., kuh); the latter were minimally modified segmentally (but not prosodically) from real functors. Lexical words were constant across conditions; thus recognition of functors would appear as longer listening time to sequences with real functors. Eightmonth- olds' listening times to sequences with real versus nonsense functors did not significantly differ, suggesting that they did not recognise real functors, or functor representations lacked phonetic specification. However, 13-month-olds listened significantly longer to sequences with real functors. Thus, somewhere between 8 and 13 months of age infants learn familiar functors and represent them with segmental detail. We propose that accumulated frequency of functors in input in general passes a critical threshold during this time.
  • Smits, R., Warner, N., McQueen, J. M., & Cutler, A. (2003). Unfolding of phonetic information over time: A database of Dutch diphone perception. Journal of the Acoustical Society of America, 113(1), 563-574. doi:10.1121/1.1525287.

    Abstract

    We present the results of a large-scale study on speech perception, assessing the number and type of perceptual hypotheses which listeners entertain about possible phoneme sequences in their language. Dutch listeners were asked to identify gated fragments of all 1179 diphones of Dutch, providing a total of 488 520 phoneme categorizations. The results manifest orderly uptake of acoustic information in the signal. Differences across phonemes in the rate at which fully correct recognition was achieved arose as a result of whether or not potential confusions could occur with other phonemes of the language ~long with short vowels, affricates with their initial components, etc.!. These data can be used to improve models of how acoustic phonetic information is mapped onto the mental lexicon during speech comprehension.
  • Spinelli, E., McQueen, J. M., & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233-254. doi:10.1016/S0749-596X(02)00513-2.
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Clifton, Jr., C., Cutler, A., McQueen, J. M., & Van Ooijen, B. (1999). The processing of inflected forms. [Commentary on H. Clahsen: Lexical entries and rules of language.]. Behavioral and Brain Sciences, 22, 1018-1019.

    Abstract

    Clashen proposes two distinct processing routes, for regularly and irregularly inflected forms, respectively, and thus is apparently making a psychological claim. We argue his position, which embodies a strictly linguistic perspective, does not constitute a psychological processing model.
  • Cutler, A., & Clifton, Jr., C. (1999). Comprehending spoken language: A blueprint of the listener. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 123-166). Oxford University Press.
  • Cutler, A. (1999). Foreword. In Slips of the Ear: Errors in the perception of Casual Conversation (pp. xiii-xv). New York City, NY, USA: Academic Press.
  • Cutler, A. (1999). Prosodische Struktur und Worterkennung bei gesprochener Sprache. In A. D. Friedrici (Ed.), Enzyklopädie der Psychologie: Sprachrezeption (pp. 49-83). Göttingen: Hogrefe.
  • Cutler, A. (1999). Prosody and intonation, processing issues. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 682-683). Cambridge, MA: MIT Press.
  • Cutler, A., & Norris, D. (1999). Sharpening Ockham’s razor (Commentary on W.J.M. Levelt, A. Roelofs & A.S. Meyer: A theory of lexical access in speech production). Behavioral and Brain Sciences, 22, 40-41.

    Abstract

    Language production and comprehension are intimately interrelated; and models of production and comprehension should, we argue, be constrained by common architectural guidelines. Levelt et al.'s target article adopts as guiding principle Ockham's razor: the best model of production is the simplest one. We recommend adoption of the same principle in comprehension, with consequent simplification of some well-known types of models.
  • Cutler, A. (1999). Spoken-word recognition. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 796-798). Cambridge, MA: MIT Press.
  • Cutler, A., & Otake, T. (1999). Pitch accent in spoken-word recognition in Japanese. Journal of the Acoustical Society of America, 105, 1877-1888.

    Abstract

    Three experiments addressed the question of whether pitch-accent information may be exploited in the process of recognizing spoken words in Tokyo Japanese. In a two-choice classification task, listeners judged from which of two words, differing in accentual structure, isolated syllables had been extracted ~e.g., ka from baka HL or gaka LH!; most judgments were correct, and listeners’ decisions were correlated with the fundamental frequency characteristics of the syllables. In a gating experiment, listeners heard initial fragments of words and guessed what the words were; their guesses overwhelmingly had the same initial accent structure as the gated word even when only the beginning CV of the stimulus ~e.g., na- from nagasa HLL or nagashi LHH! was presented. In addition, listeners were more confident in guesses with the same initial accent structure as the stimulus than in guesses with different accent. In a lexical decision experiment, responses to spoken words ~e.g., ame HL! were speeded by previous presentation of the same word ~e.g., ame HL! but not by previous presentation of a word differing only in accent ~e.g., ame LH!. Together these findings provide strong evidence that accentual information constrains the activation and selection of candidates for spoken-word recognition.
  • Cutler, A., Van Ooijen, B., & Norris, D. (1999). Vowels, consonants, and lexical activation. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 3 (pp. 2053-2056). Berkeley: University of California.

    Abstract

    Two lexical decision studies examined the effects of single-phoneme mismatches on lexical activation in spoken-word recognition. One study was carried out in English, and involved spoken primes and visually presented lexical decision targets. The other study was carried out in Dutch, and primes and targets were both presented auditorily. Facilitation was found only for spoken targets preceded immediately by spoken primes; no facilitation occurred when targets were presented visually, or when intervening input occurred between prime and target. The effects of vowel mismatches and consonant mismatches were equivalent.
  • McQueen, J. M., Norris, D., & Cutler, A. (1999). Lexical influence in phonetic decision-making: Evidence from subcategorical mismatches. Journal of Experimental Psychology: Human Perception and Performance, 25, 1363-1389. doi:10.1037/0096-1523.25.5.1363.

    Abstract

    In 5 experiments, listeners heard words and nonwords, some cross-spliced so that they contained acoustic-phonetic mismatches. Performance was worse on mismatching than on matching items. Words cross-spliced with words and words cross-spliced with nonwords produced parallel results. However, in lexical decision and 1 of 3 phonetic decision experiments, performance on nonwords cross-spliced with words was poorer than on nonwords cross-spliced with nonwords. A gating study confirmed that there were misleading coarticulatory cues in the cross-spliced items; a sixth experiment showed that the earlier results were not due to interitem differences in the strength of these cues. Three models of phonetic decision making (the Race model, the TRACE model, and a postlexical model) did not explain the data. A new bottom-up model is outlined that accounts for the findings in terms of lexical involvement at a dedicated decision-making stage.
  • Otake, T., & Cutler, A. (1999). Perception of suprasegmental structure in a nonnative dialect. Journal of Phonetics, 27, 229-253. doi:10.1006/jpho.1999.0095.

    Abstract

    Two experiments examined the processing of Tokyo Japanese pitchaccent distinctions by native speakers of Japanese from two accentlessvariety areas. In both experiments, listeners were presented with Tokyo Japanese speech materials used in an earlier study with Tokyo Japanese listeners, who clearly exploited the pitch-accent information in spokenword recognition. In the "rst experiment, listeners judged from which of two words, di!ering in accentual structure, isolated syllables had been extracted. Both new groups were, overall, as successful at this task as Tokyo Japanese speakers had been, but their response patterns differed from those of the Tokyo Japanese, for instance in that a bias towards H judgments in the Tokyo Japanese responses was weakened in the present groups' responses. In a second experiment, listeners heard word fragments and guessed what the words were; in this task, the speakers from accentless areas again performed significantly above chance, but their responses showed less sensitivity to the information in the input, and greater bias towards vocabulary distribution frequencies, than had been observed with the Tokyo Japanese listeners. The results suggest that experience with a local accentless dialect affects the processing of accent for word recognition in Tokyo Japanese, even for listeners with extensive exposure to Tokyo Japanese.
  • Shattuck-Hufnagel, S., & Cutler, A. (1999). The prosody of speech error corrections revisited. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 2 (pp. 1483-1486). Berkely: University of California.

    Abstract

    A corpus of digitized speech errors is used to compare the prosody of correction patterns for word-level vs. sound-level errors. Results for both peak F0 and perceived prosodic markedness confirm that speakers are more likely to mark corrections of word-level errors than corrections of sound-level errors, and that errors ambiguous between word-level and soundlevel (such as boat for moat) show correction patterns like those for sound level errors. This finding increases the plausibility of the claim that word-sound-ambiguous errors arise at the same level of processing as sound errors that do not form words.
  • Van Donselaar, W., Kuijpers, C. T., & Cutler, A. (1999). Facilitatory effects of vowel epenthesis on word processing in Dutch. Journal of Memory and Language, 41, 59-77. doi:10.1006/jmla.1999.2635.

    Abstract

    We report a series of experiments examining the effects on word processing of insertion of an optional epenthetic vowel in word-final consonant clusters in Dutch. Such epenthesis turns film, for instance, into film. In a word-reversal task listeners treated words with and without epenthesis alike, as monosyllables, suggesting that the variant forms both activate the same canonical representation, that of a monosyllabic word without epenthesis. In both lexical decision and word spotting, response times to recognize words were significantly faster when epenthesis was present than when the word was presented in its canonical form without epenthesis. It is argued that addition of the epenthetic vowel makes the liquid consonants constituting the first member of a cluster more perceptible; a final phoneme-detection experiment confirmed that this was the case. These findings show that a transformed variant of a word, although it contacts the lexicon via the representation of the canonical form, can be more easily perceptible than that canonical form.
  • Cutler, A. (1994). How human speech recognition is affected by phonological diversity among languages. In R. Togneri (Ed.), Proceedings of the fifth Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 285-288). Canberra: Australian Speech Science and Technology Association.

    Abstract

    Listeners process spoken language in ways which are adapted to the phonological structure of their native language. As a consequence, non-native speakers do not listen to a language in the same way as native speakers; moreover, listeners may use their native language listening procedures inappropriately with foreign input. With sufficient experience, however, it may be possible to inhibit this latter (counter-productive) behavior.
  • Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.

    Abstract

    The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised.
  • Cutler, A., & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824-844. doi:10.1006/jmla.1994.1039.

    Abstract

    Japanese listeners detect speech sound targets which correspond precisely to a mora (a phonological unit which is the unit of rhythm in Japanese) more easily than targets which do not. English listeners detect medial vowel targets more slowly than consonants. Six phoneme detection experiments investigated these effects in both subject populations, presented with native- and foreign-language input. Japanese listeners produced faster and more accurate responses to moraic than to nonmoraic targets both in Japanese and, where possible, in English; English listeners responded differently. The detection disadvantage for medial vowels appeared with English listeners both in English and in Japanese; again, Japanese listeners responded differently. Some processing operations which listeners apply to speech input are language-specific; these language-specific procedures, appropriate for listening to input in the native language, may be applied to foreign-language input irrespective of whether they remain appropriate.
  • Cutler, A., & Young, D. (1994). Rhythmic structure of word blends in English. In Proceedings of the Third International Conference on Spoken Language Processing (pp. 1407-1410). Kobe: Acoustical Society of Japan.

    Abstract

    Word blends combine fragments from two words, either in speech errors or when a new word is created. Previous work has demonstrated that in Japanese, such blends preserve moraic structure; in English they do not. A similar effect of moraic structure is observed in perceptual research on segmentation of continuous speech in Japanese; English listeners, by contrast, exploit stress units in segmentation, suggesting that a general rhythmic constraint may underlie both findings. The present study examined whether mis parallel would also hold for word blends. In spontaneous English polysyllabic blends, the source words were significantly more likely to be split before a strong than before a weak (unstressed) syllable, i.e. to be split at a stress unit boundary. In an experiment in which listeners were asked to identify the source words of blends, significantly more correct detections resulted when splits had been made before strong syllables. Word blending, like speech segmentation, appears to be constrained by language rhythm.
  • Cutler, A. (1994). The perception of rhythm in language. Cognition, 50, 79-81. doi:10.1016/0010-0277(94)90021-3.
  • Cutler, A., McQueen, J. M., Baayen, R. H., & Drexler, H. (1994). Words within words in a real-speech corpus. In R. Togneri (Ed.), Proceedings of the 5th Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 362-367). Canberra: Australian Speech Science and Technology Association.

    Abstract

    In a 50,000-word corpus of spoken British English the occurrence of words embedded within other words is reported. Within-word embedding in this real speech sample is common, and analogous to the extent of embedding observed in the vocabulary. Imposition of a syllable boundary matching constraint reduces but by no means eliminates spurious embedding. Embedded words are most likely to overlap with the beginning of matrix words, and thus may pose serious problems for speech recognisers.
  • McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.

    Abstract

    Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure.
  • Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.

    Abstract

    This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data.
  • Botelho da Silva, T., & Cutler, A. (1993). Ill-formedness and transformability in Portuguese idioms. In C. Cacciari, & P. Tabossi (Eds.), Idioms: Processing, structure and interpretation (pp. 129-143). Hillsdale, NJ: Erlbaum.
  • Cutler, A. (1993). Language-specific processing: Does the evidence converge? In G. T. Altmann, & R. C. Shillcock (Eds.), Cognitive models of speech processing: The Sperlonga Meeting II (pp. 115-123). Hillsdale, NJ: Erlbaum.
  • Cutler, A. (1993). Phonological cues to open- and closed-class words in the processing of spoken sentences. Journal of Psycholinguistic Research, 22, 109-131.

    Abstract

    Evidence is presented that (a) the open and the closed word classes in English have different phonological characteristics, (b) the phonological dimension on which they differ is one to which listeners are highly sensitive, and (c) spoken open- and closed-class words produce different patterns of results in some auditory recognition tasks. What implications might link these findings? Two recent lines of evidence from disparate paradigms—the learning of an artificial language, and natural and experimentally induced misperception of juncture—are summarized, both of which suggest that listeners are sensitive to the phonological reflections of open- vs. closed-class word status. Although these correlates cannot be strictly necessary for efficient processing, if they are present listeners exploit them in making word class assignments. That such a use of phonological information is of value to listeners could be indirect evidence that open- vs. closed-class words undergo different processing operations. Parts of the research reported in this paper were carried out in collaboration with Sally Butterfield and David Carter, and supported by the Alvey Directorate (United Kingdom). Jonathan Stankler's master's research was supported by the Science and Engineering Research Council (United Kingdom). Thanks to all of the above, and to Merrill Garrett, Mike Kelly, James McQueen, and Dennis Norris for further assistance.
  • Cutler, A., Kearns, R., Norris, D., & Scott, D. R. (1993). Problems with click detection: Insights from cross-linguistic comparisons. Speech Communication, 13, 401-410. doi:10.1016/0167-6393(93)90038-M.

    Abstract

    Cross-linguistic comparisons may shed light on the levels of processing involved in the performance of psycholinguistic tasks. For instance, if the same pattern of results appears whether or not subjects understand the experimental materials, it may be concluded that the results do not reflect higher-level linguistic processing. In the present study, English and French listeners performed two tasks - click location and speeded click detection - with both English and French sentences, closely matched for syntactic and phonological structure. Clicks were located more accurately in open- than in closed-class words in both English and French; they were detected more rapidly in open- than in closed-class words in English, but not in French. The two listener groups produced the same pattern of responses, suggesting that higher-level linguistic processing was not involved in the listeners' responses. It is concluded that click detection tasks are primarily sensitive to low-level (e.g. acoustic) effects, and hence are not well suited to the investigation of linguistic processing.
  • Cutler, A. (1993). Segmentation problems, rhythmic solutions. Lingua, 92, 81-104. doi:10.1016/0024-3841(94)90338-7.

    Abstract

    The lexicon contains discrete entries, which must be located in speech input in order for speech to be understood; but the continuity of speech signals means that lexical access from spoken input involves a segmentation problem for listeners. The speech environment of prelinguistic infants may not provide special information to assist the infant listeners in solving this problem. Mature language users in possession of a lexicon might be thought to be able to avoid explicit segmentation of speech by relying on information from successful lexical access; however, evidence from adult perceptual studies indicates that listeners do use explicit segmentation procedures. These procedures differ across languages and seem to exploit language-specific rhythmic structure. Efficient as these procedures are, they may not have been developed in response to statistical properties of the input, because bilinguals, equally competent in two languages, apparently only possess one rhythmic segmentation procedure. The origin of rhythmic segmentation may therefore lie in the infant's exploitation of rhythm to solve the segmentation problem and gain a first toehold on lexical acquisition. Recent evidence from speech production and perception studies with prelinguistic infants supports the claim that infants are sensitive to rhythmic structure and its relationship to lexical segmentation.
  • Cutler, A. (1993). Segmenting speech in different languages. The Psychologist, 6(10), 453-455.
  • Cutler, A., & Mehler, J. (1993). The periodicity bias. Journal of Phonetics, 21, 101-108.
  • Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675-687. Retrieved from http://www.jstor.org/stable/1131210.

    Abstract

    One critical aspect of language acquisition is the development of a lexicon that associates sounds and meanings; but developing a lexicon first requires that the infant segment utterances into individual words. How might the infant begin this process? The present study was designed to examine the potential role that sensitivity to predominant stress patterns of words might play in lexical development. In English, by far the majority of words have stressed (strong) initial syllables. Experiment 1 of our study demonstrated that by 9 months of age American infants listen significantly longer to words with strong/weak stress patterns than to words with weak/strong stress patterns. However, Experiment 2 showed that no significant preferences for the predominant stress pattern appear with 6-month-old infants, which suggests that the preference develops as a result of increasing familiarity with the prosodic features of the native language. In a third experiment, 9-month-olds showed a preference for strong/weak patterns even when the speech input was low-pass filtered, which suggests that their preference is specifically for the prosodic structure of the words. Together the results suggest that attention to predominant stress patterns in the native language may form an important part of the infant's process of developing a lexicon.
  • Nix, A. J., Mehta, G., Dye, J., & Cutler, A. (1993). Phoneme detection as a tool for comparing perception of natural and synthetic speech. Computer Speech and Language, 7, 211-228. doi:10.1006/csla.1993.1011.

    Abstract

    On simple intelligibility measures, high-quality synthesiser output now scores almost as well as natural speech. Nevertheless, it is widely agreed that perception of synthetic speech is a harder task for listeners than perception of natural speech; in particular, it has been hypothesized that listeners have difficulty identifying phonemes in synthetic speech. If so, a simple measure of the speed with which a phoneme can be identified should prove a useful tool for comparing perception of synthetic and natural speech. The phoneme detection task was here used in three experiments comparing perception of natural and synthetic speech. In the first, response times to synthetic and natural targets were not significantly different, but in the second and third experiments response times to synthetic targets were significantly slower than to natural targets. A speed-accuracy tradeoff in the third experiment suggests that an important factor in this task is the response criterion adopted by subjects. It is concluded that the phoneme detection task is a useful tool for investigating phonetic processing of synthetic speech input, but subjects must be encouraged to adopt a response criterion which emphasizes rapid responding. When this is the case, significantly longer response times for synthetic targets can indicate a processing disadvantage for synthetic speech at an early level of phonetic analysis.
  • Otake, T., Hatano, G., Cutler, A., & Mehler, J. (1993). Mora or syllable? Speech segmentation in Japanese. Journal of Memory and Language, 32, 258-278. doi:10.1006/jmla.1993.1014.

    Abstract

    Four experiments examined segmentation of spoken Japanese words by native and non-native listeners. Previous studies suggested that language rhythm determines the segmentation unit most natural to native listeners: French has syllabic rhythm, and French listeners use the syllable in segmentation, while English has stress rhythm, and segmentation by English listeners is based on stress. The rhythm of Japanese is based on a subsyllabic unit, the mora. In the present experiments Japanese listeners′ response patterns were consistent with moraic segmentation; acoustic artifacts could not have determined the results since nonnative (English and French) listeners showed different response patterns with the same materials. Predictions of a syllabic hypothesis were disconfirmed in the Japanese listeners′ results; in contrast, French listeners showed a pattern of responses consistent with the syllabic hypothesis. The results provide further evidence that listeners′ segmentation of spoken words relies on procedures determined by the characteristic phonology of their native language.
  • Van Ooijen, B., Cutler, A., & Berinetto, P. M. (1993). Click detection in Italian and English. In Eurospeech 93: Vol. 1 (pp. 681-684). Berlin: ESCA.

    Abstract

    We report four experiments in which English and Italian monolinguals detected clicks in continous speech in their native language. Two of the experiments used an off-line location task, and two used an on-line reaction time task. Despite there being large differences between English and Italian with respect to rhythmic characteristics, very similar response patterns were found for the two language groups. It is concluded that the process of click detection operates independently from language-specific differences in perceptual processing at the sublexical level.
  • Young, D., Altmann, G. T., Cutler, A., & Norris, D. (1993). Metrical structure and the perception of time-compressed speech. In Eurospeech 93: Vol. 2 (pp. 771-774).

    Abstract

    In the absence of explicitly marked cues to word boundaries, listeners tend to segment spoken English at the onset of strong syllables. This may suggest that under difficult listening conditions, speech should be easier to recognize where strong syllables are word-initial. We report two experiments in which listeners were presented with sentences which had been time-compressed to make listening difficult. The first study contrasted sentences in which all content words began with strong syllables with sentences in which all content words began with weak syllables. The intelligibility of the two groups of sentences did not differ significantly. Apparent rhythmic effects in the results prompted a second experiment; however, no significant effects of systematic rhythmic manipulation were observed. In both experiments, the strongest predictor of intelligibility was the rated plausibility of the sentences. We conclude that listeners' recognition responses to time-compressed speech may be strongly subject to experiential bias; effects of rhythmic structure are most likely to show up also as bias effects.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1983). A language-specific comprehension strategy [Letters to Nature]. Nature, 304, 159-160. doi:10.1038/304159a0.

    Abstract

    Infants acquire whatever language is spoken in the environment into which they are born. The mental capability of the newborn child is not biased in any way towards the acquisition of one human language rather than another. Because psychologists who attempt to model the process of language comprehension are interested in the structure of the human mind, rather than in the properties of individual languages, strategies which they incorporate in their models are presumed to be universal, not language-specific. In other words, strategies of comprehension are presumed to be characteristic of the human language processing system, rather than, say, the French, English, or Igbo language processing systems. We report here, however, on a comprehension strategy which appears to be used by native speakers of French but not by native speakers of English.
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Levelt, W. J. M., & Cutler, A. (1983). Prosodic marking in speech repair. Journal of semantics, 2, 205-217. doi:10.1093/semant/2.2.205.

    Abstract

    Spontaneous self-corrections in speech pose a communication problem; the speaker must make clear to the listener not only that the original Utterance was faulty, but where it was faulty and how the fault is to be corrected. Prosodic marking of corrections - making the prosody of the repair noticeably different from that of the original utterance - offers a resource which the speaker can exploit to provide the listener with such information. A corpus of more than 400 spontaneous speech repairs was analysed, and the prosodic characteristics compared with the syntactic and semantic characteristics of each repair. Prosodic marking showed no relationship at all with the syntactic characteristics of repairs. Instead, marking was associated with certain semantic factors: repairs were marked when the original utterance had been actually erroneous, rather than simply less appropriate than the repair; and repairs tended to be marked more often when the set of items encompassing the error and the repair was small rather than when it was large. These findings lend further weight to the characterization of accent as essentially semantic in function.

Share this page