Anne Cutler

Publications

Displaying 1 - 11 of 11
  • Cutler, A., & Norris, D. (2016). Bottoms up! How top-down pitfalls ensnare speech perception researchers too. Commentary on C. Firestone & B. Scholl: Cognition does not affect perception: Evaluating the evidence for 'top-down' effects. Behavioral and Brain Sciences, e236. doi:10.1017/S0140525X15002745.

    Abstract

    Not only can the pitfalls that Firestone & Scholl (F&S) identify be generalised across multiple studies within the field of visual perception, but also they have general application outside the field wherever perceptual and cognitive processing are compared. We call attention to the widespread susceptibility of research on the perception of speech to versions of the same pitfalls.
  • Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition and Neuroscience, 31(1), 4-18. doi:10.1080/23273798.2015.1081703.

    Abstract

    Speech perception involves prediction, but how is that prediction implemented? In cognitive models prediction has often been taken to imply that there is feedback of activation from lexical to pre-lexical processes as implemented in interactive-activation models (IAMs). We show that simple activation feedback does not actually improve speech recognition. However, other forms of feedback can be beneficial. In particular, feedback can enable the listener to adapt to changing input, and can potentially help the listener to recognise unusual input, or recognise speech in the presence of competing sounds. The common feature of these helpful forms of feedback is that they are all ways of optimising the performance of speech recognition using Bayesian inference. That is, listeners make predictions about speech because speech recognition is optimal in the sense captured in Bayesian models.
  • Broersma, M., & Cutler, A. (2008). Phantom word activation in L2. System, 36(1), 22-34. doi:10.1016/j.system.2007.11.003.

    Abstract

    L2 listening can involve the phantom activation of words which are not actually in the input. All spoken-word recognition involves multiple concurrent activation of word candidates, with selection of the correct words achieved by a process of competition between them. L2 listening involves more such activation than L1 listening, and we report two studies illustrating this. First, in a lexical decision study, L2 listeners accepted (but L1 listeners did not accept) spoken non-words such as groof or flide as real English words. Second, a priming study demonstrated that the same spoken non-words made recognition of the real words groove, flight easier for L2 (but not L1) listeners, suggesting that, for the L2 listeners only, these real words had been activated by the spoken non-word input. We propose that further understanding of the activation and competition process in L2 lexical processing could lead to new understanding of L2 listening difficulty.
  • Cutler, A., Garcia Lecumberri, M. L., & Cooke, M. (2008). Consonant identification in noise by native and non-native listeners: Effects of local context. Journal of the Acoustical Society of America, 124(2), 1264-1268. doi:10.1121/1.2946707.

    Abstract

    Speech recognition in noise is harder in second (L2) than first languages (L1). This could be because noise disrupts speech processing more in L2 than L1, or because L1 listeners recover better though disruption is equivalent. Two similar prior studies produced discrepant results: Equivalent noise effects for L1 and L2 (Dutch) listeners, versus larger effects for L2 (Spanish) than L1. To explain this, the latter experiment was presented to listeners from the former population. Larger noise effects on consonant identification emerged for L2 (Dutch) than L1 listeners, suggesting that task factors rather than L2 population differences underlie the results discrepancy.
  • Cutler, A. (2008). The abstract representations in speech processing. Quarterly Journal of Experimental Psychology, 61(11), 1601-1619. doi:10.1080/13803390802218542.

    Abstract

    Speech processing by human listeners derives meaning from acoustic input via intermediate steps involving abstract representations of what has been heard. Recent results from several lines of research are here brought together to shed light on the nature and role of these representations. In spoken-word recognition, representations of phonological form and of conceptual content are dissociable. This follows from the independence of patterns of priming for a word's form and its meaning. The nature of the phonological-form representations is determined not only by acoustic-phonetic input but also by other sources of information, including metalinguistic knowledge. This follows from evidence that listeners can store two forms as different without showing any evidence of being able to detect the difference in question when they listen to speech. The lexical representations are in turn separate from prelexical representations, which are also abstract in nature. This follows from evidence that perceptual learning about speaker-specific phoneme realization, induced on the basis of a few words, generalizes across the whole lexicon to inform the recognition of all words containing the same phoneme. The efficiency of human speech processing has its basis in the rapid execution of operations over abstract representations.
  • Goudbeek, M., Cutler, A., & Smits, R. (2008). Supervised and unsupervised learning of multidimensionally varying nonnative speech categories. Speech Communication, 50(2), 109-125. doi:10.1016/j.specom.2007.07.003.

    Abstract

    The acquisition of novel phonetic categories is hypothesized to be affected by the distributional properties of the input, the relation of the new categories to the native phonology, and the availability of supervision (feedback). These factors were examined in four experiments in which listeners were presented with novel categories based on vowels of Dutch. Distribution was varied such that the categorization depended on the single dimension duration, the single dimension frequency, or both dimensions at once. Listeners were clearly sensitive to the distributional information, but unidimensional contrasts proved easier to learn than multidimensional. The native phonology was varied by comparing Spanish versus American English listeners. Spanish listeners found categorization by frequency easier than categorization by duration, but this was not true of American listeners, whose native vowel system makes more use of duration-based distinctions. Finally, feedback was either available or not; this comparison showed supervised learning to be significantly superior to unsupervised learning.
  • Kim, J., Davis, C., & Cutler, A. (2008). Perceptual tests of rhythmic similarity: II. Syllable rhythm. Language and Speech, 51(4), 343-359. doi:10.1177/0023830908099069.

    Abstract

    To segment continuous speech into its component words, listeners make use of language rhythm; because rhythm differs across languages, so do the segmentation procedures which listeners use. For each of stress-, syllable-and mora-based rhythmic structure, perceptual experiments have led to the discovery of corresponding segmentation procedures. In the case of mora-based rhythm, similar segmentation has been demonstrated in the otherwise unrelated languages Japanese and Telugu; segmentation based on syllable rhythm, however, has been previously demonstrated only for European languages from the Romance family. We here report two target detection experiments in which Korean listeners, presented with speech in Korean and in French, displayed patterns of segmentation like those previously observed in analogous experiments with French listeners. The Korean listeners' accuracy in detecting word-initial target fragments in either language was significantly higher when the fragments corresponded exactly to a syllable in the input than when the fragments were smaller or larger than a syllable. We conclude that Korean and French listeners can call on similar procedures for segmenting speech, and we further propose that perceptual tests of speech segmentation provide a valuable accompaniment to acoustic analyses for establishing languages' rhythmic class membership.
  • Cutler, A., Van Ooijen, B., Norris, D., & Sanchez-Casas, R. (1996). Speeded detection of vowels: A cross-linguistic study. Perception and Psychophysics, 58, 807-822. Retrieved from http://www.psychonomic.org/search/view.cgi?id=430.

    Abstract

    In four experiments, listeners’ response times to detect vowel targets in spoken input were measured. The first three experiments were conducted in English. In two, one using real words and the other, nonwords, detection accuracy was low, targets in initial syllables were detected more slowly than targets in final syllables, and both response time and missed-response rate were inversely correlated with vowel duration. In a third experiment, the speech context for some subjects included all English vowels, while for others, only five relatively distinct vowels occurred. This manipulation had essentially no effect, and the same response pattern was again observed. A fourth experiment, conducted in Spanish, replicated the results in the first three experiments, except that miss rate was here unrelated to vowel duration. We propose that listeners’ responses to vowel targets in naturally spoken input are effectively cautious, reflecting realistic appreciation of vowel variability in natural context.
  • Otake, T., Yoneyama, K., Cutler, A., & van der Lugt, A. (1996). The representation of Japanese moraic nasals. Journal of the Acoustical Society of America, 100, 3831-3842. doi:10.1121/1.417239.

    Abstract

    Nasal consonants in syllabic coda position in Japanese assimilate to the place of articulation of a following consonant. The resulting forms may be perceived as different realizations of a single underlying unit, and indeed the kana orthographies represent them with a single character. In the present study, Japanese listeners' response time to detect nasal consonants was measured. Nasals in coda position, i.e., moraic nasals, were detected faster and more accurately than nonmoraic nasals, as reported in previous studies. The place of articulation with which moraic nasals were realized affected neither response time nor accuracy. Non-native subjects who knew no Japanese, given the same materials with the same instructions, simply failed to respond to moraic nasals which were realized bilabially. When the nasals were cross-spliced across place of articulation contexts the Japanese listeners still showed no significant place of articulation effects, although responses were faster and more accurate to unspliced than to cross-spliced nasals. When asked to detect the phoneme following the (cross-spliced) moraic nasal, Japanese listeners showed effects of mismatch between nasal and context, but non-native listeners did not. Together, these results suggest that Japanese listeners are capable of very rapid abstraction from phonetic realization to a unitary representation of moraic nasals; but they can also use the phonetic realization of a moraic nasal effectively to obtain anticipatory information about following phonemes.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1983). A language-specific comprehension strategy [Letters to Nature]. Nature, 304, 159-160. doi:10.1038/304159a0.

    Abstract

    Infants acquire whatever language is spoken in the environment into which they are born. The mental capability of the newborn child is not biased in any way towards the acquisition of one human language rather than another. Because psychologists who attempt to model the process of language comprehension are interested in the structure of the human mind, rather than in the properties of individual languages, strategies which they incorporate in their models are presumed to be universal, not language-specific. In other words, strategies of comprehension are presumed to be characteristic of the human language processing system, rather than, say, the French, English, or Igbo language processing systems. We report here, however, on a comprehension strategy which appears to be used by native speakers of French but not by native speakers of English.
  • Levelt, W. J. M., & Cutler, A. (1983). Prosodic marking in speech repair. Journal of semantics, 2, 205-217. doi:10.1093/semant/2.2.205.

    Abstract

    Spontaneous self-corrections in speech pose a communication problem; the speaker must make clear to the listener not only that the original Utterance was faulty, but where it was faulty and how the fault is to be corrected. Prosodic marking of corrections - making the prosody of the repair noticeably different from that of the original utterance - offers a resource which the speaker can exploit to provide the listener with such information. A corpus of more than 400 spontaneous speech repairs was analysed, and the prosodic characteristics compared with the syntactic and semantic characteristics of each repair. Prosodic marking showed no relationship at all with the syntactic characteristics of repairs. Instead, marking was associated with certain semantic factors: repairs were marked when the original utterance had been actually erroneous, rather than simply less appropriate than the repair; and repairs tended to be marked more often when the set of items encompassing the error and the repair was small rather than when it was large. These findings lend further weight to the characterization of accent as essentially semantic in function.

Share this page