Anne Cutler

Publications

Displaying 1 - 14 of 14
  • Cutler, A., & Koster, M. (2000). Stress and lexical activation in Dutch. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 1 (pp. 593-596). Beijing: China Military Friendship Publish.

    Abstract

    Dutch listeners were slower to make judgements about the semantic relatedness between a spoken target word (e.g. atLEET, 'athlete') and a previously presented visual prime word (e.g. SPORT 'sport') when the spoken word was mis-stressed. The adverse effect of mis-stressing confirms the role of stress information in lexical recognition in Dutch. However, although the erroneous stress pattern was always initially compatible with a competing word (e.g. ATlas, 'atlas'), mis-stressed words did not produced high false alarm rates in unrelated pairs (e.g. SPORT - atLAS). This suggests that stress information did not completely rule out segmentally matching but suprasegmentally mismatching words, a finding consistent with spoken-word recognition models involving multiple activation and inter-word competition.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2000). The development of word recognition: The use of the possible-word constraint by 12-month-olds. In L. Gleitman, & A. Joshi (Eds.), Proceedings of CogSci 2000 (pp. 1034). London: Erlbaum.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Otake, T., & Cutler, A. (2000). A set of Japanese word cohorts rated for relative familiarity. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 766-769). Beijing: China Military Friendship Publish.

    Abstract

    A database is presented of relative familiarity ratings for 24 sets of Japanese words, each set comprising words overlapping in the initial portions. These ratings are useful for the generation of material sets for research in the recognition of spoken words.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.

Share this page