Anne Cutler †

Publications

Displaying 1 - 28 of 28
  • Choi, J., Broersma, M., & Cutler, A. (2018). Phonetic learning is not enhanced by sequential exposure to more than one language. Linguistic Research, 35(3), 567-581. doi:10.17250/khisli.35.3.201812.006.

    Abstract

    Several studies have documented that international adoptees, who in early years have
    experienced a change from a language used in their birth country to a new language
    in an adoptive country, benefit from the limited early exposure to the birth language
    when relearning that language’s sounds later in life. The adoptees’ relearning advantages
    have been argued to be conferred by lasting birth-language knowledge obtained from
    the early exposure. However, it is also plausible to assume that the advantages may
    arise from adoptees’ superior ability to learn language sounds in general, as a result
    of their unusual linguistic experience, i.e., exposure to multiple languages in sequence
    early in life. If this is the case, then the adoptees’ relearning benefits should generalize
    to previously unheard language sounds, rather than be limited to their birth-language
    sounds. In the present study, adult Korean adoptees in the Netherlands and matched
    Dutch-native controls were trained on identifying a Japanese length distinction to which
    they had never been exposed before. The adoptees and Dutch controls did not differ
    on any test carried out before, during, or after the training, indicating that observed
    adoptee advantages for birth-language relearning do not generalize to novel, previously
    unheard language sounds. The finding thus fails to support the suggestion that
    birth-language relearning advantages may arise from enhanced ability to learn language
    sounds in general conferred by early experience in multiple languages. Rather, our
    finding supports the original contention that such advantages involve memory traces
    obtained before adoption
  • Cutler, A., & Farrell, J. (2018). Listening in first and second language. In J. I. Liontas (Ed.), The TESOL encyclopedia of language teaching. New York: Wiley. doi:10.1002/9781118784235.eelt0583.

    Abstract

    Listeners' recognition of spoken language involves complex decoding processes: The continuous speech stream must be segmented into its component words, and words must be recognized despite great variability in their pronunciation (due to talker differences, or to influence of phonetic context, or to speech register) and despite competition from many spuriously present forms supported by the speech signal. L1 listeners deal more readily with all levels of this complexity than L2 listeners. Fortunately, the decoding processes necessary for competent L2 listening can be taught in the classroom. Evidence-based methodologies targeted at the development of efficient speech decoding include teaching of minimal pairs, of phonotactic constraints, and of reduction processes, as well as the use of dictation and L2 video captions.
  • Johnson, E. K., Bruggeman, L., & Cutler, A. (2018). Abstraction and the (misnamed) language familiarity effect. Cognitive Science, 42, 633-645. doi:10.1111/cogs.12520.

    Abstract

    Talkers are recognized more accurately if they are speaking the listeners’ native language rather than an unfamiliar language. This “language familiarity effect” has been shown not to depend upon comprehension and must instead involve language sound patterns. We further examine the level of sound-pattern processing involved, by comparing talker recognition in foreign languages versus two varieties of English, by (a) English speakers of one variety, (b) English speakers of the other variety, and (c) non-native listeners (more familiar with one of the varieties). All listener groups performed better with native than foreign speech, but no effect of language variety appeared: Native listeners discriminated talkers equally well in each, with the native variety never outdoing the other variety, and non-native listeners discriminated talkers equally poorly in each, irrespective of the variety's familiarity. The results suggest that this talker recognition effect rests not on simple familiarity, but on an abstract level of phonological processing
  • Kidd, E., Junge, C., Spokes, T., Morrison, L., & Cutler, A. (2018). Individual differences in infant speech segmentation: Achieving the lexical shift. Infancy, 23(6), 770-794. doi:10.1111/infa.12256.

    Abstract

    We report a large‐scale electrophysiological study of infant speech segmentation, in which over 100 English‐acquiring 9‐month‐olds were exposed to unfamiliar bisyllabic words embedded in sentences (e.g., He saw a wild eagle up there), after which their brain responses to either the just‐familiarized word (eagle) or a control word (coral) were recorded. When initial exposure occurs in continuous speech, as here, past studies have reported that even somewhat older infants do not reliably recognize target words, but that successful segmentation varies across children. Here, we both confirm and further uncover the nature of this variation. The segmentation response systematically varied across individuals and was related to their vocabulary development. About one‐third of the group showed a left‐frontally located relative negativity in response to familiar versus control targets, which has previously been described as a mature response. Another third showed a similarly located positive‐going reaction (a previously described immature response), and the remaining third formed an intermediate grouping that was primarily characterized by an initial response delay. A fine‐grained group‐level analysis suggested that a developmental shift to a lexical mode of processing occurs toward the end of the first year, with variation across individual infants in the exact timing of this shift.

    Additional information

    supporting information
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Cutler, A., & Otake, T. (1997). Contrastive studies of spoken-language processing. Journal of Phonetic Society of Japan, 1, 4-13.
  • Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception and Psychophysics, 59, 165-179. Retrieved from http://www.psychonomic.org/search/view.cgi?id=778.

    Abstract

    In three experiments, the processing of lexical tone in Cantonese was examined. Cantonese listeners more often accepted a nonword as a word when the only difference between the nonword and the word was in tone, especially when the F0 onset difference between correct and erroneous tone was small. Same–different judgments by these listeners were also slower and less accurate when the only difference between two syllables was in tone, and this was true whether the F0 onset difference between the two tones was large or small. Listeners with no knowledge of Cantonese produced essentially the same same-different judgment pattern as that produced by the native listeners, suggesting that the results display the effects of simple perceptual processing rather than of linguistic knowledge. It is argued that the processing of lexical tone distinctions may be slowed, relative to the processing of segmental distinctions, and that, in speeded-response tasks, tone is thus more likely to be misprocessed than is segmental structure.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40, 141-201.

    Abstract

    Research on the exploitation of prosodic information in the recognition of spoken language is reviewed. The research falls into three main areas: the use of prosody in the recognition of spoken words, in which most attention has been paid to the question of whether the prosodic structure of a word plays a role in initial contact with stored lexical representations; the use of prosody in the computation of syntactic structure, in which the resolution of global and local ambiguities has formed the central focus; and the role of prosody in the processing of discourse structure, in which there has been a preponderance of work on the contribution of accentuation and deaccentuation to integration of concepts with an existing discourse model. The review reveals that in each area progress has been made towards new conceptions of prosody's role in processing, and in particular this has involved abandonment of previously held deterministic views of the relationship between prosodic structure and other aspects of linguistic structure
  • Cutler, A. (1997). The comparative perspective on spoken-language processing. Speech Communication, 21, 3-15. doi:10.1016/S0167-6393(96)00075-1.

    Abstract

    Psycholinguists strive to construct a model of human language processing in general. But this does not imply that they should confine their research to universal aspects of linguistic structure, and avoid research on language-specific phenomena. First, even universal characteristics of language structure can only be accurately observed cross-linguistically. This point is illustrated here by research on the role of the syllable in spoken-word recognition, on the perceptual processing of vowels versus consonants, and on the contribution of phonetic assimilation phonemena to phoneme identification. In each case, it is only by looking at the pattern of effects across languages that it is possible to understand the general principle. Second, language-specific processing can certainly shed light on the universal model of language comprehension. This second point is illustrated by studies of the exploitation of vowel harmony in the lexical segmentation of Finnish, of the recognition of Dutch words with and without vowel epenthesis, and of the contribution of different kinds of lexical prosodic structure (tone, pitch accent, stress) to the initial activation of candidate words in lexical access. In each case, aspects of the universal processing model are revealed by analysis of these language-specific effects. In short, the study of spoken-language processing by human listeners requires cross-linguistic comparison.
  • Cutler, A. (1997). The syllable’s role in the segmentation of stress languages. Language and Cognitive Processes, 12, 839-845. doi:10.1080/016909697386718.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • Norris, D., McQueen, J. M., Cutler, A., & Butterfield, S. (1997). The possible-word constraint in the segmentation of continuous speech. Cognitive Psychology, 34, 191-243. doi:10.1006/cogp.1997.0671.

    Abstract

    We propose that word recognition in continuous speech is subject to constraints on what may constitute a viable word of the language. This Possible-Word Constraint (PWC) reduces activation of candidate words if their recognition would imply word status for adjacent input which could not be a word - for instance, a single consonant. In two word-spotting experiments, listeners found it much harder to detectapple,for example, infapple(where [f] alone would be an impossible word), than invuffapple(wherevuffcould be a word of English). We demonstrate that the PWC can readily be implemented in a competition-based model of continuous speech recognition, as a constraint on the process of competition between candidate words; where a stretch of speech between a candidate word and a (known or likely) word boundary is not a possible word, activation of the candidate word is reduced. This implementation accurately simulates both the present results and data from a range of earlier studies of speech segmentation.
  • Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36, 422-444. doi:10.1006/jmla.1996.2495.

    Abstract

    Finnish vowel harmony rules require that if the vowel in the first syllable of a word belongs to one of two vowel sets, then all subsequent vowels in that word must belong either to the same set or to a neutral set. A harmony mismatch between two syllables containing vowels from the opposing sets thus signals a likely word boundary. We report five experiments showing that Finnish listeners can exploit this information in an on-line speech segmentation task. Listeners found it easier to detect words likehymyat the end of the nonsense stringpuhymy(where there is a harmony mismatch between the first two syllables) than in the stringpyhymy(where there is no mismatch). There was no such effect, however, when the target words appeared at the beginning of the nonsense string (e.g.,hymypuvshymypy). Stronger harmony effects were found for targets containing front harmony vowels (e.g.,hymy) than for targets containing back harmony vowels (e.g.,paloinkypaloandkupalo). The same pattern of results appeared whether target position within the string was predictable or unpredictable. Harmony mismatch thus appears to provide a useful segmentation cue for the detection of word onsets in Finnish speech.
  • Cutler, A., Norris, D., & McQueen, J. M. (1996). Lexical access in continuous speech: Language-specific realisations of a universal model. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 227-242). Berlin: Mouton de Gruyter.
  • Cutler, A., & Otake, T. (1996). Phonological structure and its role in language processing. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 1-12). Berlin: Mouton de Gruyter.
  • Cutler, A. (1996). Prosody and the word boundary problem. In J. L. Morgan, & K. Demuth (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 87-99). Mahwah, NJ: Erlbaum.
  • Cutler, A., Van Ooijen, B., Norris, D., & Sanchez-Casas, R. (1996). Speeded detection of vowels: A cross-linguistic study. Perception and Psychophysics, 58, 807-822. Retrieved from http://www.psychonomic.org/search/view.cgi?id=430.

    Abstract

    In four experiments, listeners’ response times to detect vowel targets in spoken input were measured. The first three experiments were conducted in English. In two, one using real words and the other, nonwords, detection accuracy was low, targets in initial syllables were detected more slowly than targets in final syllables, and both response time and missed-response rate were inversely correlated with vowel duration. In a third experiment, the speech context for some subjects included all English vowels, while for others, only five relatively distinct vowels occurred. This manipulation had essentially no effect, and the same response pattern was again observed. A fourth experiment, conducted in Spanish, replicated the results in the first three experiments, except that miss rate was here unrelated to vowel duration. We propose that listeners’ responses to vowel targets in naturally spoken input are effectively cautious, reflecting realistic appreciation of vowel variability in natural context.
  • Otake, T., & Cutler, A. (Eds.). (1996). Phonological structure and language processing: Cross-linguistic studies. Berlin: Mounton de Gruyter.
  • Otake, T., Yoneyama, K., Cutler, A., & van der Lugt, A. (1996). The representation of Japanese moraic nasals. Journal of the Acoustical Society of America, 100, 3831-3842. doi:10.1121/1.417239.

    Abstract

    Nasal consonants in syllabic coda position in Japanese assimilate to the place of articulation of a following consonant. The resulting forms may be perceived as different realizations of a single underlying unit, and indeed the kana orthographies represent them with a single character. In the present study, Japanese listeners' response time to detect nasal consonants was measured. Nasals in coda position, i.e., moraic nasals, were detected faster and more accurately than nonmoraic nasals, as reported in previous studies. The place of articulation with which moraic nasals were realized affected neither response time nor accuracy. Non-native subjects who knew no Japanese, given the same materials with the same instructions, simply failed to respond to moraic nasals which were realized bilabially. When the nasals were cross-spliced across place of articulation contexts the Japanese listeners still showed no significant place of articulation effects, although responses were faster and more accurate to unspliced than to cross-spliced nasals. When asked to detect the phoneme following the (cross-spliced) moraic nasal, Japanese listeners showed effects of mismatch between nasal and context, but non-native listeners did not. Together, these results suggest that Japanese listeners are capable of very rapid abstraction from phonetic realization to a unitary representation of moraic nasals; but they can also use the phonetic realization of a moraic nasal effectively to obtain anticipatory information about following phonemes.
  • Connine, C. M., Clifton, Jr., C., & Cutler, A. (1987). Effects of lexical stress on phonetic categorization. Phonetica, 44, 133-146.
  • Cutler, A., Norris, D., & Williams, J. (1987). A note on the role of phonological expectations in speech segmentation. Journal of Memory and Language, 26, 480-487. doi:10.1016/0749-596X(87)90103-3.

    Abstract

    Word-initial CVC syllables are detected faster in words beginning consonant-vowel-consonant-vowel (CVCV-) than in words beginning consonant-vowel-consonant-consonant (CVCC-). This effect was reported independently by M. Taft and G. Hambly (1985, Journal of Memory and Language, 24, 320–335) and by A. Cutler, J. Mehler, D. Norris, and J. Segui (1986, Journal of Memory and Language, 25, 385–400). Taft and Hambly explained the effect in terms of lexical factors. This explanation cannot account for Cutler et al.'s results, in which the effect also appeared with nonwords and foreign words. Cutler et al. suggested that CVCV-sequences might simply be easier to perceive than CVCC-sequences. The present study confirms this suggestion, and explains it as a reflection of listener expectations constructed on the basis of distributional characteristics of the language.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1987). Phoneme identification and the lexicon. Cognitive Psychology, 19, 141-177. doi:10.1016/0010-0285(87)90010-7.
  • Cutler, A. (1987). Speaking for listening. In A. Allport, D. MacKay, W. Prinz, & E. Scheerer (Eds.), Language perception and production: Relationships between listening, speaking, reading and writing (pp. 23-40). London: Academic Press.

    Abstract

    Speech production is constrained at all levels by the demands of speech perception. The speaker's primary aim is successful communication, and to this end semantic, syntactic and lexical choices are directed by the needs of the listener. Even at the articulatory level, some aspects of production appear to be perceptually constrained, for example the blocking of phonological distortions under certain conditions. An apparent exception to this pattern is word boundary information, which ought to be extremely useful to listeners, but which is not reliably coded in speech. It is argued that the solution to this apparent problem lies in rethinking the concept of the boundary of the lexical access unit. Speech rhythm provides clear information about the location of stressed syllables, and listeners do make use of this information. If stressed syllables can serve as the determinants of word lexical access codes, then once again speakers are providing precisely the necessary form of speech information to facilitate perception.
  • Cutler, A., Butterfield, S., & Williams, J. (1987). The perceptual integrity of syllabic onsets. Journal of Memory and Language, 26, 406-418. doi:10.1016/0749-596X(87)90099-4.
  • Cutler, A., & Carter, D. (1987). The predominance of strong initial syllables in the English vocabulary. Computer Speech and Language, 2, 133-142. doi:10.1016/0885-2308(87)90004-0.

    Abstract

    Studies of human speech processing have provided evidence for a segmentation strategy in the perception of continuous speech, whereby a word boundary is postulated, and a lexical access procedure initiated, at each metrically strong syllable. The likely success of this strategy was here estimated against the characteristics of the English vocabulary. Two computerized dictionaries were found to list approximately three times as many words beginning with strong syllables (i.e. syllables containing a full vowel) as beginning with weak syllables (i.e. syllables containing a reduced vowel). Consideration of frequency of lexical word occurrence reveals that words beginning with strong syllables occur on average more often than words beginning with weak syllables. Together, these findings motivate an estimate for everyday speech recognition that approximately 85% of lexical words (i.e. excluding function words) will begin with strong syllables. This estimate was tested against a corpus of 190 000 words of spontaneous British English conversion. In this corpus, 90% of lexical words were found to begin with strong syllables. This suggests that a strategy of postulating word boundaries at the onset of strong syllables would have a high success rate in that few actual lexical word onsets would be missed.
  • Cutler, A. (1987). The task of the speaker and the task of the hearer [Commentary/Sperber & Wilson: Relevance]. Behavioral and Brain Sciences, 10, 715-716.

Share this page