Anne Cutler †

Publications

Displaying 1 - 24 of 24
  • Cutler, A., Andics, A., & Fang, Z. (2011). Inter-dependent categorization of voices and segments. In W.-S. Lee, & E. Zee (Eds.), Proceedings of the 17th International Congress of Phonetic Sciences [ICPhS 2011] (pp. 552-555). Hong Kong: Department of Chinese, Translation and Linguistics, City University of Hong Kong.

    Abstract

    Listeners performed speeded two-alternative choice between two unfamiliar and relatively similar voices or between two phonetically close segments, in VC syllables. For each decision type (segment, voice), the non-target dimension (voice, segment) either was constant, or varied across four alternatives. Responses were always slower when a non-target dimension varied than when it did not, but the effect of phonetic variation on voice identity decision was stronger than that of voice variation on phonetic identity decision. Cues to voice and segment identity in speech are processed inter-dependently, but hard categorization decisions about voices draw on, and are hence sensitive to, segmental information.
  • Tuinman, A., & Cutler, A. (2011). L1 knowledge and the perception of casual speech processes in L2. In M. Wrembel, M. Kul, & K. Dziubalska-Kolaczyk (Eds.), Achievements and perspectives in SLA of speech: New Sounds 2010. Volume I (pp. 289-301). Frankfurt am Main: Peter Lang.

    Abstract

    Every language manifests casual speech processes, and hence every second language too. This study examined how listeners deal with second-language casual speech processes, as a function of the processes in their native language. We compared a match case, where a second-language process t/-reduction) is also operative in native speech, with a mismatch case, where a second-language process (/r/-insertion) is absent from native speech. In each case native and non-native listeners judged stimuli in which a given phoneme (in sentence context) varied along a continuum from absent to present. Second-language listeners in general mimicked native performance in the match case, but deviated significantly from native performance in the mismatch case. Together these results make it clear that the mapping from first to second language is as important in the interpretation of casual speech processes as in other dimensions of speech perception. Unfamiliar casual speech processes are difficult to adapt to in a second language. Casual speech processes that are already familiar from native speech, however, are easy to adapt to; indeed, our results even suggest that it is possible for subtle difference in their occurrence patterns across the two languages to be detected,and to be accommodated to in second-language listening
  • Tuinman, A., Mitterer, H., & Cutler, A. (2011). The efficiency of cross-dialectal word recognition. In Proceedings of the 12th Annual Conference of the International Speech Communication Association (Interspeech 2011), Florence, Italy (pp. 153-156).

    Abstract

    Dialects of the same language can differ in the casual speech processes they allow; e.g., British English allows the insertion of [r] at word boundaries in sequences such as saw ice, while American English does not. In two speeded word recognition experiments, American listeners heard such British English sequences; in contrast to non-native listeners, they accurately perceived intended vowel-initial words even with intrusive [r]. Thus despite input mismatches, cross-dialectal word recognition benefits from the full power of native-language processing.
  • Wagner, M., Tran, D., Togneri, R., Rose, P., Powers, D., Onslow, M., Loakes, D., Lewis, T., Kuratate, T., Kinoshita, Y., Kemp, N., Ishihara, S., Ingram, J., Hajek, J., Grayden, D., Göcke, R., Fletcher, J., Estival, D., Epps, J., Dale, R. and 11 moreWagner, M., Tran, D., Togneri, R., Rose, P., Powers, D., Onslow, M., Loakes, D., Lewis, T., Kuratate, T., Kinoshita, Y., Kemp, N., Ishihara, S., Ingram, J., Hajek, J., Grayden, D., Göcke, R., Fletcher, J., Estival, D., Epps, J., Dale, R., Cutler, A., Cox, F., Chetty, G., Cassidy, S., Butcher, A., Burnham, D., Bird, S., Best, C., Bennamoun, M., Arciuli, J., & Ambikairajah, E. (2011). The Big Australian Speech Corpus (The Big ASC). In M. Tabain, J. Fletcher, D. Grayden, J. Hajek, & A. Butcher (Eds.), Proceedings of the Thirteenth Australasian International Conference on Speech Science and Technology (pp. 166-170). Melbourne: ASSTA.
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). The lexical statistics of word recognition problems caused by L2 phonetic confusion. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 413-416).
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Hillsdale, NJ: Erlbaum.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Koster, M., & Cutler, A. (1997). Segmental and suprasegmental contributions to spoken-word recognition in Dutch. In Proceedings of EUROSPEECH 97 (pp. 2167-2170). Grenoble, France: ESCA.

    Abstract

    Words can be distinguished by segmental differences or by suprasegmental differences or both. Studies from English suggest that suprasegmentals play little role in human spoken-word recognition; English stress, however, is nearly always unambiguously coded in segmental structure (vowel quality); this relationship is less close in Dutch. The present study directly compared the effects of segmental and suprasegmental mispronunciation on word recognition in Dutch. There was a strong effect of suprasegmental mispronunciation, suggesting that Dutch listeners do exploit suprasegmental information in word recognition. Previous findings indicating the effects of mis-stressing for Dutch differ with stress position were replicated only when segmental change was involved, suggesting that this is an effect of segmental rather than suprasegmental processing.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • Pallier, C., Cutler, A., & Sebastian-Galles, N. (1997). Prosodic structure and phonetic processing: A cross-linguistic study. In Proceedings of EUROSPEECH 97 (pp. 2131-2134). Grenoble, France: ESCA.

    Abstract

    Dutch and Spanish differ in how predictable the stress pattern is as a function of the segmental content: it is correlated with syllable weight in Dutch but not in Spanish. In the present study, two experiments were run to compare the abilities of Dutch and Spanish speakers to separately process segmental and stress information. It was predicted that the Spanish speakers would have more difficulty focusing on the segments and ignoring the stress pattern than the Dutch speakers. The task was a speeded classification task on CVCV syllables, with blocks of trials in which the stress pattern could vary versus blocks in which it was fixed. First, we found interference due to stress variability in both languages, suggesting that the processing of segmental information cannot be performed independently of stress. Second, the effect was larger for Spanish than for Dutch, suggesting that that the degree of interference from stress variation may be partially mitigated by the predictability of stress placement in the language.
  • Cutler, A. (1994). How human speech recognition is affected by phonological diversity among languages. In R. Togneri (Ed.), Proceedings of the fifth Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 285-288). Canberra: Australian Speech Science and Technology Association.

    Abstract

    Listeners process spoken language in ways which are adapted to the phonological structure of their native language. As a consequence, non-native speakers do not listen to a language in the same way as native speakers; moreover, listeners may use their native language listening procedures inappropriately with foreign input. With sufficient experience, however, it may be possible to inhibit this latter (counter-productive) behavior.
  • Cutler, A., & Young, D. (1994). Rhythmic structure of word blends in English. In Proceedings of the Third International Conference on Spoken Language Processing (pp. 1407-1410). Kobe: Acoustical Society of Japan.

    Abstract

    Word blends combine fragments from two words, either in speech errors or when a new word is created. Previous work has demonstrated that in Japanese, such blends preserve moraic structure; in English they do not. A similar effect of moraic structure is observed in perceptual research on segmentation of continuous speech in Japanese; English listeners, by contrast, exploit stress units in segmentation, suggesting that a general rhythmic constraint may underlie both findings. The present study examined whether mis parallel would also hold for word blends. In spontaneous English polysyllabic blends, the source words were significantly more likely to be split before a strong than before a weak (unstressed) syllable, i.e. to be split at a stress unit boundary. In an experiment in which listeners were asked to identify the source words of blends, significantly more correct detections resulted when splits had been made before strong syllables. Word blending, like speech segmentation, appears to be constrained by language rhythm.
  • Cutler, A., McQueen, J. M., Baayen, R. H., & Drexler, H. (1994). Words within words in a real-speech corpus. In R. Togneri (Ed.), Proceedings of the 5th Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 362-367). Canberra: Australian Speech Science and Technology Association.

    Abstract

    In a 50,000-word corpus of spoken British English the occurrence of words embedded within other words is reported. Within-word embedding in this real speech sample is common, and analogous to the extent of embedding observed in the vocabulary. Imposition of a syllable boundary matching constraint reduces but by no means eliminates spurious embedding. Embedded words are most likely to overlap with the beginning of matrix words, and thus may pose serious problems for speech recognisers.
  • Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.

    Abstract

    This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.

Share this page