Anne Cutler †

Publications

Displaying 1 - 16 of 16
  • Alispahic, S., Pellicano, E., Cutler, A., & Antoniou, M. (2022). Auditory perceptual learning in autistic adults. Autism Research, 15(8), 1495-1507. doi:10.1002/aur.2778.

    Abstract

    The automatic retuning of phoneme categories to better adapt to the speech of a novel talker has been extensively documented across various (neurotypical) populations, including both adults and children. However, no studies have examined auditory perceptual learning effects in populations atypical in perceptual, social, and language processing for communication, such as populations with autism. Employing a classic lexically-guided perceptual learning paradigm, the present study investigated perceptual learning effects in Australian English autistic and non-autistic adults. The findings revealed that automatic attunement to existing phoneme categories was not activated in the autistic group in the same manner as for non-autistic control subjects. Specifically, autistic adults were able to both successfully discern lexical items and to categorize speech sounds; however, they did not show effects of perceptual retuning to talkers. These findings may have implications for the application of current sensory theories (e.g., Bayesian decision theory) to speech and language processing by autistic individuals.
    Lay Summary

    Lexically guided perceptual learning assists in the disambiguation of speech from a novel talker. The present study established that while Australian English autistic adult listeners were able to successfully discern lexical items and categorize speech sounds in their native language, perceptual flexibility in updating speaker-specific phonemic knowledge when exposed to a novel talker was not available. Implications for speech and language processing by autistic individuals as well as current sensory theories are discussed.

    Additional information

    data
  • Cutler, A., Ernestus, M., Warner, N., & Weber, A. (2022). Managing speech perception data sets. In B. McDonnell, E. Koller, & L. B. Collister (Eds.), The Open Handbook of Linguistic Data Management (pp. 565-573). Cambrdige, MA, USA: MIT Press. doi:10.7551/mitpress/12200.003.0055.
  • Ip, M. H. K., & Cutler, A. (2022). Juncture prosody across languages: Similar production but dissimilar perception. Laboratory Phonology, 13(1): 5. doi:10.16995/labphon.6464.

    Abstract

    How do speakers of languages with different intonation systems produce and perceive prosodic junctures in sentences with identical structural ambiguity? Native speakers of English and of Mandarin produced potentially ambiguous sentences with a prosodic juncture either earlier in the utterance (e.g., “He gave her # dog biscuits,” “他给她#狗饼干 ”), or later (e.g., “He gave her dog # biscuits,” “他给她狗 #饼干 ”). These productiondata showed that prosodic disambiguation is realised very similarly in the two languages, despite some differences in the degree to which individual juncture cues (e.g., pausing) were favoured. In perception experiments with a new disambiguation task, requiring speeded responses to select the correct meaning for structurally ambiguous sentences, language differences in disambiguation response time appeared: Mandarin speakers correctly disambiguated sentences with earlier juncture faster than those with later juncture, while English speakers showed the reverse. Mandarin-speakers with L2 English did not show their native-language response time pattern when they heard the English ambiguous sentences. Thus even with identical structural ambiguity and identically cued production, prosodic juncture perception across languages can differ.

    Additional information

    supplementary files
  • Liu, L., Yuan, C., Ong, J. H., Tuninetti, A., Antoniou, M., Cutler, A., & Escudero, P. (2022). Learning to perceive non-native tones via distributional training: Effects of task and acoustic cue weighting. Brain Sciences, 12(5): 559. doi:10.3390/brainsci12050559.

    Abstract

    As many distributional learning (DL) studies have shown, adult listeners can achieve discrimination of a difficult non-native contrast after a short repetitive exposure to tokens falling at the extremes of that contrast. Such studies have shown using behavioural methods that a short distributional training can induce perceptual learning of vowel and consonant contrasts. However, much less is known about the neurological correlates of DL, and few studies have examined non-native lexical tone contrasts. Here, Australian-English speakers underwent DL training on a Mandarin tone contrast using behavioural (discrimination, identification) and neural (oddball-EEG) tasks, with listeners hearing either a bimodal or a unimodal distribution. Behavioural results show that listeners learned to discriminate tones after both unimodal and bimodal training; while EEG responses revealed more learning for listeners exposed to the bimodal distribution. Thus, perceptual learning through exposure to brief sound distributions (a) extends to non-native tonal contrasts, and (b) is sensitive to task, phonetic distance, and acoustic cue-weighting. Our findings have implications for models of how auditory and phonetic constraints influence speech learning.

    Additional information

    supplementary material A-D
  • Cutler, A. (2010). Abstraction-based efficiency in the lexicon. Laboratory Phonology, 1(2), 301-318. doi:10.1515/LABPHON.2010.016.

    Abstract

    Listeners learn from their past experience of listening to spoken words, and use this learning to maximise the efficiency of future word recognition. This paper summarises evidence that the facilitatory effects of drawing on past experience are mediated by abstraction, enabling learning to be generalised across new words and new listening situations. Phoneme category retuning, which allows adaptation to speaker-specific articulatory characteristics, is generalised on the basis of relatively brief experience to words previously unheard from that speaker. Abstract knowledge of prosodic regularities is applied to recognition even of novel words for which these regularities were violated. Prosodic word-boundary regularities drive segmentation of speech into words independently of the membership of the lexical candidate set resulting from the segmentation operation. Each of these different cases illustrates how abstraction from past listening experience has contributed to the efficiency of lexical recognition.
  • Cutler, A., Eisner, F., McQueen, J. M., & Norris, D. (2010). How abstract phonemic categories are necessary for coping with speaker-related variation. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory phonology 10 (pp. 91-111). Berlin: de Gruyter.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (2010). Strategic deployment of orthographic knowledge in phoneme detection. Language and Speech, 53(3), 307 -320. doi:10.1177/0023830910371445.

    Abstract

    The phoneme detection task is widely used in spoken-word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realized. Listeners detected the target sounds [b, m, t, f, s, k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b, m, t], which have consistent word-initial spelling, than to the targets [f, s, k], which are inconsistently spelled, but only when spelling was rendered salient by the presence in the experiment of many irregularly spelled filler words. Within the inconsistent targets [f, s, k], there was no significant difference between responses to targets in words with more usual (foam, seed, cattle) versus less usual (phone, cede, kettle) spellings. Phoneme detection is thus not necessarily sensitive to orthographic effects; knowledge of spelling stored in the lexical representations of words does not automatically become available as word candidates are activated. However, salient orthographic manipulations in experimental input can induce such sensitivity. We attribute this to listeners' experience of the value of spelling in everyday situations that encourage phonemic decisions (such as learning new names)
  • Cutler, A., Cooke, M., & Lecumberri, M. L. G. (2010). Preface. Speech Communication, 52, 863. doi:10.1016/j.specom.2010.11.003.

    Abstract

    Adverse listening conditions always make the perception of speech harder, but their deleterious effect is far greater if the speech we are trying to understand is in a non-native language. An imperfect signal can be coped with by recourse to the extensive knowledge one has of a native language, and imperfect knowledge of a non-native language can still support useful communication when speech signals are high-quality. But the combination of imperfect signal and imperfect knowledge leads rapidly to communication breakdown. This phenomenon is undoubtedly well known to every reader of Speech Communication from personal experience. Many readers will also have a professional interest in explaining, or remedying, the problems it produces. The journal’s readership being a decidedly interdisciplinary one, this interest will involve quite varied scientific approaches, including (but not limited to) modelling the interaction of first and second language vocabularies and phonemic repertoires, developing targeted listening training for language learners, and redesigning the acoustics of classrooms and conference halls. In other words, the phenomenon that this special issue deals with is a well-known one, that raises important scientific and practical questions across a range of speech communication disciplines, and Speech Communication is arguably the ideal vehicle for presentation of such a breadth of approaches in a single volume. The call for papers for this issue elicited a large number of submissions from across the full range of the journal’s interdisciplinary scope, requiring the guest editors to apply very strict criteria to the final selection. Perhaps unique in the history of treatments of this topic is the combination represented by the guest editors for this issue: a phonetician whose primary research interest is in second-language speech (MLGL), an engineer whose primary research field is the acoustics of masking in speech processing (MC), and a psychologist whose primary research topic is the recognition of spoken words (AC). In the opening article of the issue, these three authors together review the existing literature on listening to second-language speech under adverse conditions, bringing together these differing perspectives for the first time in a single contribution. The introductory review is followed by 13 new experimental reports of phonetic, acoustic and psychological studies of the topic. The guest editors thank Speech Communication editor Marc Swerts and the journal’s team at Elsevier, as well as all the reviewers who devoted time and expert efforts to perfecting the contributions to this issue.
  • Lecumberri, M. L. G., Cooke, M., & Cutler, A. (2010). Non-native speech perception in adverse conditions: A review. Speech Communication, 52, 864-886. doi:10.1016/j.specom.2010.08.014.

    Abstract

    If listening in adverse conditions is hard, then listening in a foreign language is doubly so: non-native listeners have to cope with both imperfect signals and imperfect knowledge. Comparison of native and non-native listener performance in speech-in-noise tasks helps to clarify the role of prior linguistic experience in speech perception, and, more directly, contributes to an understanding of the problems faced by language learners in everyday listening situations. This article reviews experimental studies on non-native listening in adverse conditions, organised around three principal contributory factors: the task facing listeners, the effect of adverse conditions on speech, and the differences among listener populations. Based on a comprehensive tabulation of key studies, we identify robust findings, research trends and gaps in current knowledge.
  • McQueen, J. M., & Cutler, A. (2010). Cognitive processes in speech perception. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd ed., pp. 489-520). Oxford: Blackwell.
  • Murty, L., Otake, T., & Cutler, A. (2007). Perceptual tests of rhythmic similarity: I. Mora Rhythm. Language and Speech, 50(1), 77-99. doi:10.1177/00238309070500010401.

    Abstract

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was previously observed only for related languages (English-Dutch; French-Spanish). We now report three experiments in which speakers of Telugu, a Dravidian language unrelated to Japanese but similar to it in crucial aspects of rhythmic structure, heard speech in Japanese and in their own language, and Japanese listeners heard Telugu. For the Telugu listeners, detection of target sequences in Japanese speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. The same results appeared when Japanese listeners heard Telugu speech containing only codas permissible in Japanese. Telugu listeners' results with Telugu speech were mixed, but the overall pattern revealed correspondences between the response patterns of the two listener groups, as predicted by the rhythmic similarity hypothesis. Telugu and Japanese listeners appear to command similar procedures for speech segmentation, further bolstering the proposal that aspects of language phonological structure affect listeners' speech segmentation.
  • Snijders, T. M., Kooijman, V., Cutler, A., & Hagoort, P. (2007). Neurophysiological evidence of delayed segmentation in a foreign language. Brain Research, 1178, 106-113. doi:10.1016/j.brainres.2007.07.080.

    Abstract

    Previous studies have shown that segmentation skills are language-specific, making it difficult to segment continuous speech in an unfamiliar language into its component words. Here we present the first study capturing the delay in segmentation and recognition in the foreign listener using ERPs. We compared the ability of Dutch adults and of English adults without knowledge of Dutch (‘foreign listeners’) to segment familiarized words from continuous Dutch speech. We used the known effect of repetition on the event-related potential (ERP) as an index of recognition of words in continuous speech. Our results show that word repetitions in isolation are recognized with equivalent facility by native and foreign listeners, but word repetitions in continuous speech are not. First, words familiarized in isolation are recognized faster by native than by foreign listeners when they are repeated in continuous speech. Second, when words that have previously been heard only in a continuous-speech context re-occur in continuous speech, the repetition is detected by native listeners, but is not detected by foreign listeners. A preceding speech context facilitates word recognition for native listeners, but delays or even inhibits word recognition for foreign listeners. We propose that the apparent difference in segmentation rate between native and foreign listeners is grounded in the difference in language-specific skills available to the listeners.
  • Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.

    Abstract

    The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised.
  • Cutler, A., & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824-844. doi:10.1006/jmla.1994.1039.

    Abstract

    Japanese listeners detect speech sound targets which correspond precisely to a mora (a phonological unit which is the unit of rhythm in Japanese) more easily than targets which do not. English listeners detect medial vowel targets more slowly than consonants. Six phoneme detection experiments investigated these effects in both subject populations, presented with native- and foreign-language input. Japanese listeners produced faster and more accurate responses to moraic than to nonmoraic targets both in Japanese and, where possible, in English; English listeners responded differently. The detection disadvantage for medial vowels appeared with English listeners both in English and in Japanese; again, Japanese listeners responded differently. Some processing operations which listeners apply to speech input are language-specific; these language-specific procedures, appropriate for listening to input in the native language, may be applied to foreign-language input irrespective of whether they remain appropriate.
  • Cutler, A. (1994). The perception of rhythm in language. Cognition, 50, 79-81. doi:10.1016/0010-0277(94)90021-3.
  • McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.

    Abstract

    Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure.

Share this page