Falk Huettig

Presentations

Displaying 1 - 52 of 52
  • Favier, S., Meyer, A. S., & Huettig, F. (2018). Does literacy predict individual differences in the syntactic processing of spoken language?. Poster presented at the 1st Workshop on Cognitive Science of Culture, Lisbon, Portugal.
  • Favier, S., Meyer, A. S., & Huettig, F. (2018). Does reading ability predict individual differences in spoken language syntactic processing?. Poster presented at the International Meeting of the Psychonomics Society 2018, Amsterdam, The Netherlands.
  • Favier, S., Meyer, A. S., & Huettig, F. (2018). How does literacy influence syntactic processing in spoken language?. Talk presented at Psycholinguistics in Flanders (PiF 2018). Gent, Belgium. 2018-06-04 - 2018-06-05.
  • Garrido Rodriguez, G., Huettig, F., Norcliffe, E., Brown, P., & Levinson, S. C. (2018). Participant assignment to thematic roles in Tzeltal: Eye tracking evidence from sentence comprehension in a verb-initial language. Talk presented at Architectures and Mechanisms for Language Processing (AMLaP 2018). Berlin, Germany. 2018-09-06 - 2018-09-08.
  • Huettig, F. (2018). How learning to read changes mind and brain [keynote]. Talk presented at Architectures and Mechanisms for Language Processing-Asia (AMLaP-Asia 2018). Telangana, India. 2018-02-01 - 2018-02-03.
  • Ostarek, M., Van Paridon, J., Hagoort, P., & Huettig, F. (2018). Multi-voxel pattern analysis reveals conceptual flexibility and invariance in language. Poster presented at the 10th Annual Meeting of the Society for the Neurobiology of Language (SNL 2018), Québec City, Canada.
  • Araújo, S., Huettig, F., & Meyer, A. S. (2016). What's the nature of the deficit underlying impaired naming? An eye-tracking study with dyslexic readers. Talk presented at IWORDD - International Workshop on Reading and Developmental Dyslexia. Bilbao, Spain. 2016-05-05 - 2016-05-07.

    Abstract

    Serial naming deficits have been identified as core symptoms of developmental dyslexia. A prominent hypothesis is that naming delays are due to inefficient phonological encoding, yet the exact nature of this underlying impairment remains largely underspecified. Here we used recordings of eye movements and word onset latencies to examine at what processing level the dyslexic naming deficit emerges: localized at an early stage of lexical encoding or rather later at the level of phonetic or motor planning. 23 dyslexic and 25 control adult readers were tested on a serial object naming task for 30 items and an analogous reading task, where phonological neighborhood density and word-frequency were manipulated. Results showed that both word properties influenced early stages of phonological activation (first fixation and first-pass duration) equally in both groups of participants. Moreover, in the control group any difficulty appeared to be resolved early in the reading process, while for dyslexic readers a processing disadvantage for low-frequency words and for words with sparse neighborhood also emerged in a measure that included late stages of output planning (eye-voice span). Thus, our findings suggest suboptimal phonetic and/or articulatory planning in dyslexia.
  • Eisner, F., Kumar, U., Mishra, R. K., Nand Tripathi, V., Guleria, A., Prakash Singh, J., & Huettig, F. (2016). Literacy acquisition drives hemispheric lateralization of reading. Talk presented at Architectures and Mechanisms for Language Processing (AMLaP 2016). Bilbao, Spain. 2016-09-01 - 2016-09-03.

    Abstract

    Reading functions beyond early visual precessing are known to be lateralized to the left hemisphere, but how left-lateralization arises during literacy acquisition is an open question. Bilateral processing or rightward asymmetries have previously been associated with developmental dyslexia. However, it is unclear at present to what extent this lack of left-lateralization reflects differences in reading ability. In this study, a group of illiterate adults in rural India (N=29) participated in a literacy training program over the course of six months. fMRI measures were obtained before and after training on a number of different visual stimulus categories, including written sentences, false fonts, and object categories such as houses and faces. This training group was matched on demographic and socioeconomic variables to an illiterate no-training group and to low- and highly-literate control groups, who were also scanned twice but received no training (total N=90). In a cross-sectional analysis before training, reading ability was positively correlated with increased BOLD responses in a left-lateralized network including the dorsal and ventral visual streams for text and false fonts, but not for other types of visual stimuli. A longitudinal analysis of learning effects in the training group showed that beginning readers engage bilateral networks more than proficient readers. Lateralization of BOLD responses was further examined by calculating laterality indices in specific regions. We observed training-related changes in lateralization for processing written stimuli in a number of subregions in the dorsal and ventral visual streams, as well as in the cerebellum. Together with the cross-sectional results, these data suggest a causal relationship between reading ability and the degree of hemispheric asymmetry in processing written materials.
  • Eisner, F., Kumar, U., Mishra, R. K., Nand Tripathi, V., Guleria, A., Prakash Singh, J., & Huettig, F. (2016). Literacy acquisition drives hemispheric lateralization of reading. Poster presented at the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016), London, UK.

    Abstract

    Reading functions beyond early visual precessing are known to be lateralized to the left hemisphere, but how left-lateralization arises during literacy acquisition is an open question. Bilateral processing or rightward asymmetries have previously been associated with developmental dyslexia. However, it is unclear at present to what extent this lack of left-lateralization reflects differences in reading ability. In this study, a group of illiterate adults in rural India (N=29) participated in a literacy training program over the course of six months. fMRI measures were obtained before and after training on a number of different visual stimulus categories, including written sentences, false fonts, and object categories such as houses and faces. This training group was matched on demographic and socioeconomic variables to an illiterate no-training group and to low- and highly-literate control groups, who were also scanned twice but received no training (total N=90). In a cross-sectional analysis before training, reading ability was positively correlated with increased BOLD responses in a left-lateralized network including the dorsal and ventral visual streams for text and false fonts, but not for other types of visual stimuli. A longitudinal analysis of learning effects in the training group showed that beginning readers engage bilateral networks more than proficient readers. Lateralization of BOLD responses was further examined by calculating laterality indices in specific regions. We observed training-related changes in lateralization for processing written stimuli in a number of subregions in the dorsal and ventral visual streams, as well as in the cerebellum. Together with the cross-sectional results, these data suggest a causal relationship between reading ability and the degree of hemispheric asymmetry in processing written materials.
  • Eisner, F., Kumar, U., Mishra, R. K., Nand Tripathi, V., Guleria, A., Prakash Singh, J., & Huettig, F. (2016). Literacy acquisition drives hemispheric lateralization of reading. Talk presented at the 31st International Congress of Psychology (ICP2016). Yokohoma, Japan. 2016-07-24 - 2016-07-29.

    Abstract

    Reading functions beyond early visual precessing are known to be lateralized to the left hemisphere, but how left-lateralization arises during literacy acquisition is an open question. Bilateral processing or rightward asymmetries have previously been associated with developmental dyslexia. However, it is unclear at present to what extent this lack of left-lateralization reflects differences in reading ability. In this study, a group of illiterate adults in rural India (N=29) participated in a literacy training program over the course of six months. fMRI measures were obtained before and after training on a number of different visual stimulus categories, including written sentences, false fonts, and object categories such as houses and faces. This training group was matched on demographic and socioeconomic variables to an illiterate no-training group and to low- and highly-literate control groups, who were also scanned twice but received no training (total N=90). In a cross-sectional analysis before training, reading ability was positively correlated with increased BOLD responses in a left-lateralized network including the dorsal and ventral visual streams for text and false fonts, but not for other types of visual stimuli. A longitudinal analysis of learning effects in the training group showed that beginning readers engage bilateral networks more than proficient readers. Lateralization of BOLD responses was further examined by calculating laterality indices in specific regions. We observed training-related changes in lateralization for processing written stimuli in a number of subregions in the dorsal and ventral visual streams, as well as in the cerebellum. Together with the cross-sectional results, these data suggest a causal relationship between reading ability and the degree of hemispheric asymmetry in processing written materials.
  • Huettig, F., Kumar, U., Mishra, R., Tripathi, V. N., Guleria, A., Prakash Singh, J., Eisner, F., & Skeide, M. A. (2016). Learning to read alters intrinsic cortico-subcortical cross-talk in the low-level visual system. Poster presented at the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016), London, UK.

    Abstract

    INTRODUCTION fMRI findings have revealed the important insight that literacy-related learning triggers cognitive adaptation mechanisms manifesting themselves in increased BOLD responses during print processing tasks (Brem et al., 2010; Carreiras et al., 2009; Dehaene et al., 2010). It remains elusive, however, if the cortical plasticity effects of reading acquisition also lead to an intrinsic functional reorganization of neural circuits. METHODS Here, we used resting-state fMRI as a measure of domain-specific spontaneous neuronal activity to capture the impact of reading acquisition on the functional connectome (Honey et al., 2007; Lohmann et al., 2010; Raichle et al., 2001). In a controlled longitudinal intervention study, we taught 21 illiterate adults from Northern India for 6 months how to read Hindi scripts and compared their resting-state fMRI data with those acquired from a sample of 9 illiterates, matched for demographic and socioeconomic variables, that did not undergo such instruction. RESULTS Initially, we investigated at the whole-brain level, if the experience of becoming literate modifies network nodes of spontaneous hemodynamic activity. Therefore, we compared training-related differences in the degree centrality of BOLD signals between the groups (Zuo et al., 2012). A significant group by time interaction (tmax = 4.17, p < 0.005, corrected for cluster size) was found in a cluster extending from the right superior colliculus of the brainstem (+6, -30, -3) to the bilateral pulvinar nuclei of the thalamus (+6, -18, -3; -6, -21, -3). This interaction was characterized by a significant mean degree centrality increase in the trained group (t(1,20) = 8.55, p < 0.001) that did not appear in the untrained group which remained at its base level (t(1,8) = 0.14, p = 0.893). The cluster obtained from the degree centrality analysis was then used as a seed region in a voxel-wise functional connectivity analysis (Biswal et al., 1995). A significant group by time interaction (tmax = 4.45, p < 0.005, corrected for cluster size) emerged in the right occipital cortex (+24, -81, +15; +24, -93, +12; +33, -90, +3). The cortico-subcortical mean functional connectivity got significantly stronger in the group that took part in the reading program (z = 3.77, p < 0.001) but not in the group that remained illiterate (z = 0.77, p = 0.441). Individual slopes of cortico-subcortical connectivity were significantly associated with the improvement in letter knowledge (r = 0.40, p = 0.014) and with the improvement word reading ability (r = 0.38, p = 0.018). CONCLUSION Intrinsic hemodynamic activity changes driven by literacy occurred in subcortical low-level relay stations of the visual pathway and their functional connections to the occipital cortex. Accordingly, the visual system of beginning readers appears to go through fundamental modulations at earlier processing stages than suggested by previous event-related fMRI experiments. Our results add a new dimension to current concepts of the brain basis of reading and raise novel questions regarding the neural origin of developmental dyslexia.
  • Huettig, F. (2016). Is prediction necessary to understand language?. Talk presented at the RefNet Round Table conference. Aberdeen, Scotland. 2016-01-15 - 2016-01-16.

    Abstract

    Many psycholinguistic experiments suggest that prediction is an important characteristic of language processing. Some recent theoretical accounts in the cognitive sciences (e.g., Clark, 2013; Friston, 2010) and psycholinguistics (e.g., Dell & Chang, 2014) appear to suggest that prediction is even necessary to understand language. I will evaluate this proposal. I will first discuss several arguments that may appear to be in line with the notion that prediction is necessary for language processing. These arguments include that prediction provides a unified theoretical principle of the human mind and that it pervades cortical function. We discuss whether evidence of human abilities to detect statistical regularities is necessarily evidence for predictive processing and evaluate suggestions that prediction is necessary for language learning. Five arguments are then presented that question the claim that all language processing is predictive in nature. I point out that not all language users appear to predict language and that suboptimal input makes prediction often very challenging. Prediction, moreover, is strongly context-dependent and impeded by resource limitations. I will also argue that it may be problematic that most experimental evidence for predictive language processing comes from 'prediction-encouraging' experimental set-ups. Finally, I will discuss possible ways that may lead to a further resolution of this debate. We conclude that languages can be learned and understood in the absence of prediction. Claims that all language processing is predictive in nature are premature.
  • Huettig, F. (2016). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the Psychology Department, University of Brussels. Brussels, Belgium. 2016-10.
  • Huettig, F., Kumar, U., Mishra, R. K., Tripathi, V., Guleria, A., Prakash Singh, J., & Eisner, F. (2016). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the International meeting of the Psychonomic Society. Granada, Spain. 2016-05-05 - 2016-05-08.

    Abstract

    How do human cultural inventions such as reading result in neural re-organization? In this first longitudinal study with young completely illiterate adult participants, we measured brain responses to speech, text, and other categories of visual stimuli with fMRI before and after a group of illiterate participants in India completed a literacy training program in which they learned to read and write Devanagari script. A literate and an illiterate no-training control group were matched to the training group in terms of socioeconomic background and were recruited from the same societal community in two villages of a rural area near Lucknow, India. This design permitted investigating effects of literacy cross-sectionally across groups before training (N=86) as well as longitudinally (training group N=25). The two analysis approaches yielded converging results: Literacy was associated with enhanced, left-lateralized responses to written text along the ventral stream (including lingual gyrus, fusiform gyrus, and parahippocampal gyrus), dorsal stream (intraparietal sulcus), and (pre-) motor systems (pre-central sulcus, supplementary motor area) and thalamus (pulvinar). Significantly reduced responses were observed bilaterally in the superior parietal lobe (precuneus) and in the right angular gyrus. These effects corroborate and extend previous findings from cross-sectional studies. However, effects of literacy were specific to written text and (to a lesser extent) to false fonts. We did not find any evidence for effects of literacy on responses in the auditory cortex in our Hindi-speaking participants. This raises questions about the extent to which phonological representations are altered by literacy acquisition.
  • Ostarek, M., Ishag, A., & Huettig, F. (2016). Language comprehension does not require perceptual simulation. Poster presented at the 23rd Annual Meeting of the Cognitive Neuroscience Society (CNS 2016), New York, NY, USA.
  • Ostarek, M., & Huettig, F. (2016). Sensory representations are causally involved in cognition but only when the task requires it. Talk presented at the 3rd Attentive Listener in the Visual World (AttLis) workshop. Potsdam, Germany. 2016-05-10 - 2016-05-11.
  • Ostarek, M., & Huettig, F. (2016). Spoken words can make the invisible visible: Testing the involvement of low-level visual representations in spoken word processing. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.

    Abstract

    The notion that processing spoken (object) words involves activation of category-specific representations in visual cortex is a key prediction of modality-specific theories of representation that contrasts with theories assuming dedicated conceptual representational systems abstracted away from sensorimotor systems. Although some neuroimaging evidence is consistent with such a prediction (Desai et al., 2009; Hwang et al., 2009; Lewis & Poeppel, 2014), these findings do not tell us much about the nature of the representations that were accessed. In the present study, we directly tested whether low-level visual cortex is involved in spoken word processing. Using continuous flash suppression we show that spoken words activate behaviorally relevant low-level visual representations and pin down the time-course of this effect to the first hundreds of milliseconds after word onset. We investigated whether participants (N=24) can detect otherwise invisible objects (presented for 400ms) when they are presented with the corresponding spoken word 200ms before the picture appears. We implemented a design in which all cue words appeared equally often in picture-present (50%) and picture-absent trials (50%). In half of the picture-present trials, the spoken word was congruent with the target picture ("bottle" -> picture of a bottle), while on the other half it was incongruent ("bottle" -> picture of a banana). All picture stimuli were evenly distributed over the experimental conditions to rule out low-level differences that can affect detectability regardless of the prime words. Our results showed facilitated detection for congruent vs. incongruent pictures in terms of hit rates (z=-2.33, p=0.02) and d'-scores (t=3.01, p<0.01). A second experiment (N=33) investigated the time-course of the effect by manipulating the timing of picture presentation relative to word onset and revealed that it arises as soon as 200-400ms after word onset and decays at around word offset. Together, these data strongly suggest that spoken words can rapidly activate low-level category-specific visual representations that affect the mere detection of a stimulus, i.e. what we see. More generally our findings fit best with the notion that spoken words activate modality-specific visual representations that are low-level enough to provide information related to a given token and at the same time abstract enough to be relevant not only for previously seen tokens (a signature of episodic memory) but also for generalizing to novel exemplars one has never seen before.
  • Ostarek, M., & Huettig, F. (2016). Spoken words can make the invisible visible: Testing the involvement of low-level visual representations in spoken word processing. Poster presented at the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016), London, UK.

    Abstract

    The notion that processing spoken (object) words involves activation of category-specific representations in visual cortex is a key prediction of modality-specific theories of representation that contrasts with theories assuming dedicated conceptual representational systems abstracted away from sensorimotor systems. Although some neuroimaging evidence is consistent with such a prediction (Desai et al., 2009; Hwang et al., 2009; Lewis & Poeppel, 2014), these findings do not tell us much about the nature of the representations that were accessed. In the present study, we directly tested whether low-level visual cortex is involved in spoken word processing. Using continuous flash suppression we show that spoken words activate behaviorally relevant low-level visual representations and pin down the time-course of this effect to the first hundreds of milliseconds after word onset. We investigated whether participants (N=24) can detect otherwise invisible objects (presented for 400ms) when they are presented with the corresponding spoken word 200ms before the picture appears. We implemented a design in which all cue words appeared equally often in picture-present (50%) and picture-absent trials (50%). In half of the picture-present trials, the spoken word was congruent with the target picture ("bottle" -> picture of a bottle), while on the other half it was incongruent ("bottle" -> picture of a banana). All picture stimuli were evenly distributed over the experimental conditions to rule out low-level differences that can affect detectability regardless of the prime words. Our results showed facilitated detection for congruent vs. incongruent pictures in terms of hit rates (z=-2.33, p=0.02) and d'-scores (t=3.01, p<0.01). A second experiment (N=33) investigated the time-course of the effect by manipulating the timing of picture presentation relative to word onset and revealed that it arises as soon as 200-400ms after word onset and decays at around word offset. Together, these data strongly suggest that spoken words can rapidly activate low-level category-specific visual representations that affect the mere detection of a stimulus, i.e. what we see. More generally our findings fit best with the notion that spoken words activate modality-specific visual representations that are low-level enough to provide information related to a given token and at the same time abstract enough to be relevant not only for previously seen tokens (a signature of episodic memory) but also for generalizing to novel exemplars one has never seen before.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2016). Testing alternative architectures for multimodal integration during spoken language processing in the visual world. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.

    Abstract

    Current cognitive models of spoken word recognition and comprehension are underspecified with respect to when and how multimodal information interacts. We compare two computational models both of which permit the integration of concurrent information within linguistic and non-linguistic processing streams, however their architectures differ critically in the level at which multimodal information interacts. We compare the predictions of the Multimodal Integration Model (MIM) of language processing (Smith, Monaghan & Huettig, 2014), which implements full interactivity between modalities, to a model in which interaction between modalities is restricted to lexical representations which we represent by an extended multimodal version of the TRACE model of spoken word recognition (McClelland & Elman, 1986). Our results demonstrate that previous visual world data sets involving phonological onset similarity are compatible with both models, whereas our novel experimental data on rhyme similarity is able to distinguish between competing architectures. The fully interactive MIM system correctly predicts a greater influence of visual and semantic information relative to phonological rhyme information on gaze behaviour, while by contrast a system that restricts multimodal interaction to the lexical level overestimates the influence of phonological rhyme, thereby providing an upper limit for when information interacts in multimodal tasks
  • Smith, A. C., Monaghan, P., & Huettig, F. (2016). The multimodal nature of spoken word processing in the visual world: Testing the predictions of alternative models of multimodal integration. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.

    Abstract

    Current cognitive models of spoken word recognition and comprehension are underspecified with respect to when and how multimodal information interacts. We compare two computational models both of which permit the integration of concurrent information within linguistic and non-linguistic processing streams, however their architectures differ critically in the level at which multimodal information interacts. We compare the predictions of the Multimodal Integration Model (MIM) of language processing (Smith, Monaghan & Huettig, 2014), which implements full interactivity between modalities, to a model in which interaction between modalities is restricted to lexical representations which we represent by an extended multimodal version of the TRACE model of spoken word recognition (McClelland & Elman, 1986). Our results demonstrate that previous visual world data sets involving phonological onset similarity are compatible with both models, whereas our novel experimental data on rhyme similarity is able to distinguish between competing architectures. The fully interactive MIM system correctly predicts a greater influence of visual and semantic information relative to phonological rhyme information on gaze behaviour, while by contrast a system that restricts multimodal interaction to the lexical level overestimates the influence of phonological rhyme, thereby providing an upper limit for when information interacts in multimodal tasks.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2016). The multimodal nature of spoken word processing in the visual world: Testing the predictions of alternative models of multimodal integration. Talk presented at the 15th Neural Computation and Psychology Workshop: Contemporary Neural Network Models (NCPW15). Philadelphia, PA, USA. 2016-08-08 - 2016-08-09.
  • Speed, L., Chen, J., Huettig, F., & Majid, A. (2016). Do classifier categories affect or reflect object concepts?. Talk presented at the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Philadelphia, PA, USA. 2016-08-10 - 2016-08-13.

    Abstract

    We conceptualize objects based on sensory and motor information gleaned from real-world experience. But to what extent is such conceptual information structured according to higher level linguistic features too? Here we investigate whether classifiers, a grammatical category, shape the conceptual representations of objects. In three experiments native Mandarin speakers (speakers of a classifier language) and native Dutch speakers (speakers of a language without classifiers) judged the similarity of a target object (presented as a word or picture) with four objects (presented as words or pictures). One object shared a classifier with the target, the other objects did not, serving as distractors. Across all experiments, participants judged the target object as more similar to the object with the shared classifier than distractor objects. This effect was seen in both Dutch and Mandarin speakers, and there was no difference between the two languages. Thus, even speakers of a non-classifier language are sensitive to object similarities underlying classifier systems, and using a classifier system does not exaggerate these similarities. This suggests that classifier systems simply reflect, rather than affect, conceptual structure.
  • Eisner, F., Kumar, U., Mishra, R. K., Nand Tripathi, V., Guleria, A., Singh, P., & Huettig, F. (2015). The effect of literacy acquisition on cortical and subcortical networks: A longitudinal approach. Talk presented at the 7th Annual Meeting of the Society for the Neurobiology of Language. Chicago, US. 2015-10-15 - 2015-10-17.

    Abstract

    How do human cultural inventions such as reading result in neural re-organization? Previous cross-sectional studies have reported extensive effects of literacy on the neural systems for vision and language (Dehaene et al [2010, Science], Castro-Caldas et al [1998, Brain], Petersson et al [1998, NeuroImage], Carreiras et al [2009, Nature]). In this first longitudinal study with completely illiterate participants, we measured brain responses to speech, text, and other categories of visual stimuli with fMRI before and after a group of illiterate participants in India completed a literacy training program in which they learned to read and write Devanagari script. A literate and an illiterate no-training control group were matched to the training group in terms of socioeconomic background and were recruited from the same societal community in two villages of a rural area near Lucknow, India. This design permitted investigating effects of literacy cross-sectionally across groups before training (N=86) as well as longitudinally (training group N=25). The two analysis approaches yielded converging results: Literacy was associated with enhanced, mainly left-lateralized responses to written text along the ventral stream (including lingual gyrus, fusiform gyrus, and parahippocampal gyrus), dorsal stream (intraparietal sulcus), and (pre-) motor systems (pre-central sulcus, supplementary motor area), thalamus (pulvinar), and cerebellum. Significantly reduced responses were observed bilaterally in the superior parietal lobe (precuneus) and in the right angular gyrus. These positive effects corroborate and extend previous findings from cross-sectional studies. However, effects of literacy were specific to written text and (to a lesser extent) to false fonts. Contrary to previous research, we found no direct evidence of literacy affecting the processing of other types of visual stimuli such as faces, tools, houses, and checkerboards. Furthermore, unlike in some previous studies, we did not find any evidence for effects of literacy on responses in the auditory cortex in our Hindi-speaking participants. We conclude that learning to read has a specific and extensive effect on the processing of written text along the visual pathways, including low-level thalamic nuclei, high-level systems in the intraparietal sulcus and the fusiform gyrus, and motor areas. The absence of an effect of literacy on responses in the auditory cortex in particular raises questions about the extent to which phonological representations in the auditory cortex are altered by literacy acquisition or recruited online during reading.
  • de Groot, F., Huettig, F., & Olivers, C. N. (2015). Semantic influences on visual attention. Talk presented at the 15th NVP Winter Conference. Egmond aan Zee, The Netherlands. 2015-12-17 - 2015-12-19.

    Abstract

    To what extent is visual attention driven by the semantics of individual objects, rather than by their visual appearance? To investigate this we continuously measured eye movements, while observers searched through displays of common objects for an aurally instructed target. On crucial trials, the target was absent, but the display contained object s that were either semantically or visually related to the target. We hypothesized that timing is crucial in the occurrence and strength of semantic influences on visual orienting, and therefore presented the target instruction either before, during, or af ter (memory - based search) picture onset. When the target instruction was presented before picture onset we found a substantial, but delayed bias in orienting towards semantically related objects as compared to visually related objects. However, this delay disappeared when the visual information was presented before the target instruction. Furthermore, the temporal dynamics of the semantic bias did not change in the absence of visual competition. These results po int to cascadic but independent influences of semantic and visual representations on attention. In addition. the results of the memory - based search studies suggest that visual and semantic biases only arise when the visual stimuli are present. Although we consistent ly found that people fixate at locat ions previously occupied by the target object (a replication of earlier findings), we did not find such biases for visually or semantically related objects. Overall, our studies show that the question whether visual orienting is driven by semantic c ontent is better rephrased as when visual orienting is driven by semantic content.
  • de Groot, F., Huettig, F., & Olivers, C. (2015). When meaning matters: The temporal dynamics of semantic influences on visual attention. Poster presented at the 19th Meeting of the European Society for Cognitive Psychology (ESCoP 2015), Paphos, Cyprus.
  • De Groot, F., Huettig, F., & Olivers, C. (2015). When meaning matters: The temporal dynamics of semantic influences on visual attention. Poster presented at the Psychonomic Society's 56th Annual Meeting, Chicago, USA.
  • de Groot, F., Huettig, F., & Olivers, C. (2015). When meaning matters: The temporal dynamics of semantic influences on visual attention. Talk presented at the 23rd Annual Workshop on Object Perception, Attention, and Memory. Chigaco, USA. 2015-10-19.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2015). Context-dependent employment of mechanisms in anticipatory language processing. Talk presented at the 15th NVP Winter Conference. Egmond aan Zee, The Netherlands. 2015-12-17 - 2015-12-19.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2015). Doing a production task encourages prediction: Evidence from interleaved object naming and sentence reading. Poster presented at the 28th Annual CUNY Conference on Human Sentence Processing, Los Angeles (CA, USA).

    Abstract

    Prominent theories of predictive language processing assume that language production processes are used to anticipate upcoming linguistic input during comprehension (Dell & Chang, 2014; Pickering & Garrod, 2013). Here, we explored the converse case: Does a task set including production in addition to comprehension encourage prediction, compared to a task only including comprehension? To test this hypothesis, participants carried out a cross-modal naming task (Exp 1a), a self-paced reading task (Exp1 b) that did not include overt production, and a task (Exp 1c) in which naming and reading trials were evenly interleaved. We used the same predictable (N = 40) and non-predictable (N = 40) sentences in all three tasks. The sentences consisted of a fixed agent, a transitive verb and a predictable or non-predictable target word (The man breaks a glass vs. The man borrows a glass). The mean cloze probability in the predictable sentences was .39 (ranging from .06 to .8; zero in the non-predictable sentences). A total of 162 volunteers took part in the experiment which was run in a between-participants design. In Exp 1a, fifty-four participants listened to recordings of the sentences which ended right before the spoken target word. Coinciding with the end of the playback, a picture of the target word was shown which the participants were asked to name as fast as possible. Analyses of their naming latencies revealed a statistically significant naming advantage of 108 ms on predictable over non-predictable trials. Moreover, we found that the objects’ naming advantage was predicted by the target words’ cloze probability in the sentences (r = .347, p = .038). In Exp 1b, 54 participants were asked to read the same sentences in a self-paced fashion. To allow for testing of potential spillover effects, we added a neutral prepositional phrase (breaks a glass from the collection/borrows a glass from the neighbor) to each sentence. The sentences were read word-by-word, advancing by pushing the space bar. On 30% of the trials, comprehension questions were used to keep up participants' focus on comprehending the sentences. Analyses of their spillover region reading times revealed a numerical advantage (8 ms; tspillover = -1.1, n.s.) in the predictable as compared to the non-predictable condition. Importantly, the analysis of participants' responses to the comprehension questions, showed that they understood the sentences (mean accuracy = 93%). In Exp 1c, the task comprised 50% naming trials and 50% reading trials which appeared in random order. Fifty-four participants named and read the same objects and sentences as in the previous versions. The results showed a naming advantage on predictable over non-predictable items (99 ms) and a positive correlation between the items’ cloze probability and their naming advantage (r = .322, p = .055). Crucially, the post-target reading time analysis showed that with naming trials and reading trials interleaved, there was also a statistically reliable prediction effect on reading trials. Participants were 19 ms faster at reading the spillover region on predictable relative to non-predictable items (tspillover = -2.624). To summarize, although we used the same sentences in all sub-experiments, we observed effects of prediction only when the task set involved production. In the reading only experiment (Exp 1b), no evidence for anticipation was obtained although participants clearly understood the sentences and the same sentences yielded reading facilitation when interleaved with naming trials (Exp 1c). This suggests that predictive language processing can be modulated by the comprehenders’ task set. When the task set involves language production, as is often the case in natural conversation, comprehenders appear to engage in prediction to a stronger degree than in pure comprehension tasks. In our discussion, we will discuss the notion that language production may engage prediction, because being able to predict words another person is about to say might optimize the comprehension process and enable smooth turn-taking.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2015). Event knowledge and word associations jointly influence predictive processing during discourse comprehension. Poster presented at the 28th Annual CUNY Conference on Human Sentence Processing, Los Angeles (CA, USA).

    Abstract

    A substantial body of literature has shown that readers and listeners often anticipate information. An open question concerns the mechanisms underlying predictive language processing. Multiple mechanisms have been suggested. One proposal is that comprehenders use event knowledge to predict upcoming words. Other theoretical frameworks propose that predictions are made based on simple word associations. In a recent EEG study, Metusalem and colleagues reported evidence for the modulating influence of event knowledge on prediction. They examined the degree to which event knowledge is activated during sentence comprehension. Their participants read two sentences, establishing an event scenario, which were followed by a final sentence containing one of three target words: a highly expected word, a semantically unexpected word that was related to the described event, or a semantically unexpected and event-unrelated word (see Figure, for an example). Analyses of participants’ ERPs elicited by the target words revealed a three-way split with regard to the amplitude of the N400 elicited by the different types of target: the expected targets elicited the smallest N400, the unexpected and event-unrelated targets elicited the largest N400. Importantly, the amplitude of the N400 elicited by the unexpected but event-related targets was significantly attenuated relative to the amplitude of the N400 elicited by the unexpected and event-unrelated targets. Metusalem et al. concluded that event knowledge is immediately available to constrain on-line language processing. Based on a post-hoc analysis, the authors rejected the possibility that the results could be explained by simple word associations. In the present study, we addressed the role of simple word associations in discourse comprehension more directly. Specifically, we explored the contribution of associative priming to the graded N400 pattern seen in Metusalem et al’s study. We conducted two EEG experiments. In Experiment 1, we reran Metusalem and colleagues’ context manipulation and closely replicated their results. In Experiment 2, we selected two words from the event-establishing sentences which were most strongly associated with the unexpected but event-related targets in the final sentences. Each of the two associates was then placed in a neutral carrier sentence. We controlled that none of the other words in these carrier sentences was associatively related to the target words. Importantly, the two carrier sentences did not build up a coherent event. We recorded EEG while participants read the carrier sentences followed by the same final sentences as in Experiment 1. The results showed that as in Experiment 1 the amplitude of the N400 elicited by both types of unexpected target words was larger than the N400 elicited by the highly expected target. Moreover, we found a global tendency towards the critical difference between event-related and event-unrelated unexpected targets which reached statistical significance only at parietal electrodes over the right hemisphere. Because the difference between event-related and event-unrelated conditions was larger when the sentences formed a coherent event compared to when they did not, our results suggest that associative priming alone cannot account for the N400 pattern observed in our Experiment 1 (and in the study by Metusalem et al.). However, because part of the effect remained, probably due to associative facilitation, the findings demonstrate that during discourse reading both event knowledge activation and simple word associations jointly contribute to the prediction process. The results highlight that multiple mechanisms underlie predictive language processing.
  • Huettig, F. (2015). Cause or effect? What commonalities between illiterates and individuals with dyslexia can tell us about dyslexia. Talk presented at the Reading in the Forest workshop. Annweiler, Germany. 2015-10-26 - 2015-10-28.

    Abstract

    I will discuss recent research with illiterates and individuals with dyslexia which suggests that many cognitive ‚defi ciencies‘ proposed as possible causes of dyslexia are simply a consequence of decreased reading experience. I will argue that in order to make further progress towards an understanding of the causes of dyslexia it is necessary to appropriately distinguish between cause and effect.
  • Huettig, F. (2015). Effekte der Literalität auf die Kognition. Talk presented at Die Abschlußtagung des Verbundprojekts Alpha plus Job. Bamberg, Germany. 2015-01.
  • Huettig, F., & Guerra, E. (2015). Testing the limits of prediction in language processing: Prediction occurs but far from always. Poster presented at the 21st Annual Conference on Architectures and Mechanisms for Language Processing (AMLaP 2015), Valetta, Malta.
  • Huettig, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the Individual differences in language processing across the adult life span workshop. Nijmegen, The Netherlands. 2015-12-10 - 2015-12-11.
  • Huettig, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the Psychology Department, University of York. York, UK. 2015-11.
  • Huettig, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the Psychology Department, University of Leeds. Leeds, UK. 2015-11.
  • Huettig, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the Psychology Department, University of Glasgow. Glasgow, Scotland. 2015-11.
  • Huettig, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the Psychology Department, University of Edinburgh. Edinburgh, Scotland. 2015-09.
  • Huettig, F., Kumar, U., Mishra, R. K., Tripathi, V., Guleria, A., Prakash Singh, J., & Eisner, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the 21st Annual Conference on Architectures and Mechanisms for Language Processing (AMLaP 2015). Valetta, Malta. 2015-09-03 - 2015-09-05.

    Abstract

    How do human cultural inventions such as reading result in neural re-organization? In this first longitudinal study with young completely illiterate adult participants, we measured brain responses to speech, text, and other categories of visual stimuli with fMRI before and after a group of illiterate participants in India completed a literacy training program in which they learned to read and write Devanagari script. A literate and an illiterate no-training control group were matched to the training group in terms of socioeconomic background and were recruited from the same societal community in two villages of a rural area near Lucknow, India. This design permitted investigating effects of literacy cross-sectionally across groups before training (N=86) as well as longitudinally (training group N=25). The two analysis approaches yielded converging results: Literacy was associated with enhanced, left-lateralized responses to written text along the ventral stream (including lingual gyrus, fusiform gyrus, and parahippocampal gyrus), dorsal stream (intraparietal sulcus), and (pre-) motor systems (pre-central sulcus, supplementary motor area) and thalamus (pulvinar). Significantly reduced responses were observed bilaterally in the superior parietal lobe (precuneus) and in the right angular gyrus. These effects corroborate and extend previous findings from cross-sectional studies. However, effects of literacy were specific to written text and (to a lesser extent) to false fonts. We did not find any evidence for effects of literacy on responses in the auditory cortex in our Hindi-speaking participants. This raises questions about the extent to which phonological representations are altered by literacy acquisition.
  • Huettig, F., Kumar, U., Mishra, R. K., Tripathi, V., Guleria, A., Prakash Singh, J., & Eisner, F. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the 19th Meeting of the European Society for Cognitive Psychology (ESCoP 2015). Paphos, Cyprus. 2015-09-17 - 2015-09-20.

    Abstract

    How do human
    cultural
    inventions
    such as reading
    result
    in neural
    re-organization?
    In this first longitudinal
    study
    with young
    completely
    illiterate
    adult
    participants,
    we measured
    brain
    responses
    to speech,
    text, and other
    categories
    of visual
    stimuli
    with fMRI
    before
    and after a group
    of
    illiterate
    participants
    in India
    completed
    a literacy
    training
    program
    in which
    they learned
    to read and write
    Devanagari
    script.
    A literate
    and an illiterate
    no-training
    control
    group
    were
    matched
    to the
    training
    group
    in terms
    of socioeconomic
    background
    and were
    recruited
    from
    the same
    societal
    community
    in two villages
    of a
    rural area near Lucknow,
    India.
    This design
    permitted
    investigating
    effects
    of literacy
    cross-sectionally
    across
    groups
    before
    training
    (N=86)
    as well as longitudinally
    (training
    group
    N=25).
    The two
    analysis
    approaches
    yielded
    converging
    results:
    Literacy
    was
    associated
    with enhanced,
    left-lateralized
    responses
    to written
    text
    along
    the ventral
    stream
    (including
    lingual
    gyrus,
    fusiform
    gyrus,
    and parahippocampal
    gyrus),
    dorsal
    stream
    (intraparietal
    sulcus),
    and (pre-)
    motor
    systems
    (pre-central
    sulcus,
    supplementary
    motor
    area)
    and thalamus
    (pulvinar).
    Significantly
    reduced
    responses
    were observed
    bilaterally
    in the superior
    parietal
    lobe (precuneus)
    and in the right angular
    gyrus.
    These
    effects
    corroborate
    and extend
    previous
    findings
    from
    cross-sectional
    studies.
    However,
    effects
    of literacy
    were
    specific
    to written
    text and (to a lesser
    extent)
    to
    false fonts.
    We did not find any evidence
    for effects
    of literacy
    on
    responses
    in the auditory
    cortex
    in our Hindi-speaking
    participants.
    This
    raises
    questions
    about
    the extent
    to which
    phonological
    representations are altered by literacy acquisition.
  • Mani, N., Daum, M., & Huettig, F. (2015). “Pro-active” in Many Ways: Evidence for Multiple Mechanisms in Prediction. Talk presented at the Biennial Meeting of the Society for Research in Child Development (SRCD 2015). Philadelphia, Pennsylvania, USA. 2015-03-19 - 2015-03-21.
  • Ostarek, M., & Huettig, F. (2015). Grounding language in the visual system: Visual noise interferes more with concrete than abstract word processing. Poster presented at the 19th Meeting of the European Society for Cognitive Psychology (ESCoP 2015), Paphos, Cyprus.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2016). The effects of orthographic transparency on the reading system: Insights from a computational model of reading development. Talk presented at the Experimental Psychology Society, London Meeting. London, U.K. 2016-01-06 - 2016-01-08.
  • Rommers, J., Huettig, F., & Meyer, A. S. (2011). Task-dependency in the activation of visual representations during language processing. Poster presented at Tagung experimentell arbeitender Psychologen [TaeP 2011], Halle (Saale), Germany.
  • Rommers, J., Meyer, A. S., & Huettig, F. (2011). The timing of the on-line activation of visual shape information during sentence processing. Poster presented at the 17th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2011], Paris, France.
  • Weber, A., Sumner, M., Krott, A., Huettig, F., & Hanulikova, A. (2011). Sinking about boats and brains: Activation of word meaning in foreign-accented speech by native and nonnative listeners. Poster presented at the First International Conference on Cognitive Hearing Science for Communication, Linköping, Sweden.

    Abstract

    Sinking about boats and brains: activation of word meaning in foreign-accented speech by native and non-native listeners Andrea Weber, Meghan Sumner, Andrea Krott, Falk Huettig, Adriana Hanulikova Understanding foreign-accented speech requires from listeners the correct interpretation of segmental variation as in German-accented [s]eft for English theft. The task difficulty increases when the accented word forms resemble existing words as in [s]ink for think. In two English priming experiments, we investigated the activation of the meanings of intended and unintended words by accented primes. American native (L1) and German non-native (L2) participants listened to auditory primes followed by visual targets to which they made lexical decisions. Primes were produced by a native German speaker and were either nonsense words ([s]eft for theft), unintended words ([s]ink for think), or words in their canonical forms (salt for salt). Furthermore, primes were strongly associated to targets, with the co-occurrence being high either between the surface form of the prime and the target ([s]ink-BOAT, salt-PEPPER) or the underlying form and the target ([s]ink-BRAIN, seft-PRISON). L1 listeners responded faster when the underlying form was associated with the target (in comparison to unrelated primes), but L2 listeners responded faster when the surface form was associated. Seemingly, L1 listeners interpreted all primes as being mispronounced – facilitating the activation of think when hearing the unintended word [s]ink, but erroneously preventing the activation of salt when hearing the canonical form salt. L2 listeners, though, took primes at face value and failed to activate the meaning of think when hearing [s]ink but did activate the meaning of salt when hearing salt. This asymmetry suggests an interesting difference in the use of high-level information, with L1 listeners, but not L2 listeners, using knowledge about segmental variations for immediate meaning activation.
  • Brouwer, S., Mitterer, H., & Huettig, F. (2009). Listeners reconstruct reduced forms during spontaneous speech: Evidence from eye movements. Poster presented at 15th Annual Conference on Architectures and Mechanisms for Language Processing (AMLaP 2009), Barcelona, Spain.
  • Brouwer, S., Mitterer, H., & Huettig, F. (2009). Phonological competition during the recognition of spontaneous speech: Effects of linguistic context and spectral cues. Poster presented at 157th Meeting of the Acoustical Society of America, Portland, OR.

    Abstract

    How do listeners recognize reduced forms that occur in spontaneous speech, such as “puter” for “computer”? To this end, eye-tracking experiments were performed in which participants heard a sentence and saw four printed words on a computer screen. The auditory stimuli contained canonical and reduced forms from a spontaneous speech corpus in different amounts of linguistic context. The four printed words were a “canonical form” competitor e.g., “companion”, phonologically similar to “computer”, a “reduced form” competitor e.g., “pupil”, phonologically similar to “puter” and two unrelated distractors. The results showed, first, that reduction inhibits word recognition overall. Second, listeners look more often to the “reduced form” competitor than to the “canonical form” competitor when reduced forms are presented in isolation or in a phonetic context. In full context, however, both competitors attracted looks: early rise of the “reduced form” competitor and late rise of the “canonical form” competitor. This “late rise” of the “canonical form” competitor was not observed when we replaced the original /p/ from “puter” with a real onset /p/. This indicates that phonetic detail and semantic/syntactic context are necessary for the recognition of reduced forms.
  • Huettig, F., & McQueen, J. M. (2009). AM radio noise changes the dynamics of spoken word recognition. Talk presented at 15th Annual Conference on Architectures and Mechanisms for Language Processing (AMLaP 2009). Barcelona, Spain. 2009-09-09.

    Abstract

    Language processing does not take place in isolation from the sensory environment. Listeners are able to recognise spoken words in many different situations, ranging from carefully articulated and noise-free laboratory speech, through casual conversational speech in a quiet room, to degraded conversational speech in a busy train-station. For listeners to be able to recognize speech optimally in each of these listening situations, they must be able to adapt to the constraints of each situation. We investigated this flexibility by comparing the dynamics of the spoken-word recognition process in clear speech and speech disrupted by radio noise. In Experiment 1, Dutch participants listened to clearly articulated spoken Dutch sentences which each included a critical word while their eye movements to four visual objects presented on a computer screen were measured. There were two critical conditions. In the first, the objects included a cohort competitor (e.g., parachute, “parachute”) with the same onset as the critical spoken word (e.g., paraplu, “umbrella”) and three unrelated distractors. In the second condition, a rhyme competitor (e.g., hamer, “hammer”) of the critical word (e.g., kamer, “room”) was present in the display, again with three distractors. To maximize competitor effects pictures of the critical words themselves were not present in the displays on the experimental trials (e.g.,there was no umbrella in the display with the 'paraplu' sentence) and a passive listening task was used (Huettig McQueen, 2007). Experiment 2 was identical to Experiment 1 except that phonemes in the spoken sentences were replaced with radio-signal noises (as in AM radio listening conditions). In each sentence, two,three or four phonemes were replaced with noises. The sentential position of these replacements was unpredictable, but the adjustments were always made to onset phonemes. The critical words (and the immediately surrounding words) were not changed. The question was whether listeners could learn that, under these circumstances, onset information is less reliable. We predicted that participants would look less at the cohort competitors (the initial match to the competitor is less good) and more at the rhyme competitors (the initial mismatch is less bad). We observed a significant experiment by competitor type interaction. In Experiment 1 participants fixated both kinds competitors more than unrelated distractors, but there were more and earlier looks to cohort competitors than to rhyme competitors (Allopenna et al., 1998). In Experiment 2 participants still fixated cohort competitors more than rhyme competitors but the early cohort effect was reduced and the rhyme effect was stronger and occurred earlier. These results suggest that AM radio noise changes the dynamics of spoken word recognition. The well-attested finding of stronger reliance on word onset overlap in speech recognition appears to be due in part to the use of clear speech in most experiments. When onset information becomes less reliable, listeners appear to depend on it less. A core feature of the speech-recognition system thus appears to be its flexibility. Listeners are able to adjust the perceptual weight they assign to different parts of incoming spoken language.
  • Huettig, F. (2009). Language-mediated visual search. Talk presented at Invited talk at VU Amsterdam. Amsterdam.
  • Huettig, F. (2009). On the use of distributional models of semantic space to investigate human cognition. Talk presented at Distributional Semantics beyond Concrete Concepts (Workshop at Annual Meeting of the Cognitive Science Society (CogSci 2009). Amsterdam, The Netherlands. 2009-07-29 - 2009-01-08.
  • Huettig, F. (2009). The role of colour during language-vision interactions. Talk presented at International Conference on Language-Cognition Interface 2009. Allahabad, India. 2009-12-06 - 2009-12-09.

Share this page