Falk Huettig


Displaying 1 - 21 of 21
  • Favier, S., Meyer, A. S., & Huettig, F. (2018). Does literacy predict individual differences in the syntactic processing of spoken language?. Poster presented at the 1st Workshop on Cognitive Science of Culture, Lisbon, Portugal.
  • Favier, S., Meyer, A. S., & Huettig, F. (2018). Does reading ability predict individual differences in spoken language syntactic processing?. Poster presented at the International Meeting of the Psychonomics Society 2018, Amsterdam, The Netherlands.
  • Favier, S., Meyer, A. S., & Huettig, F. (2018). How does literacy influence syntactic processing in spoken language?. Talk presented at Psycholinguistics in Flanders (PiF 2018). Gent, Belgium. 2018-06-04 - 2018-06-05.
  • Garrido Rodriguez, G., Huettig, F., Norcliffe, E., Brown, P., & Levinson, S. C. (2018). Participant assignment to thematic roles in Tzeltal: Eye tracking evidence from sentence comprehension in a verb-initial language. Talk presented at Architectures and Mechanisms for Language Processing (AMLaP 2018). Berlin, Germany. 2018-09-06 - 2018-09-08.
  • Huettig, F. (2018). How learning to read changes mind and brain [keynote]. Talk presented at Architectures and Mechanisms for Language Processing-Asia (AMLaP-Asia 2018). Telangana, India. 2018-02-01 - 2018-02-03.
  • Ostarek, M., Van Paridon, J., Hagoort, P., & Huettig, F. (2018). Multi-voxel pattern analysis reveals conceptual flexibility and invariance in language. Poster presented at the 10th Annual Meeting of the Society for the Neurobiology of Language (SNL 2018), Québec City, Canada.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2014). Prediction using production or production engaging prediction?. Poster presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014), Edinburgh (UK).


    Prominent theories of predictive language processing assume that language production processes are used to anticipate upcoming linguistic input during comprehension (Dell & Chang, 2014; Pickering & Garrod, 2013). Here, we explore the converse case: Does a task set including production in addition to comprehension encourage prediction, compared to a task only including comprehension? To test this hypothesis, we conducted a cross-modal naming experiment (Experiment 1) including an object naming task and a self-paced reading experiment (Experiment 2) that did not include overt production. We used the same predictable (N = 40) and non-predictable (N = 40) sentences in both experiments. The sentences consisted of a fixed agent, a transitive verb and a predictable or non-predictable target word (The man drinks a beer vs. The man buys a beer). Most of the empirical work on prediction used sentences in which the target words were highly predictable (often with a mean cloze probability > .8) and thus it is little surprising that participants engaged in predictive language processing very easily. In the current sentences, the mean cloze probability in the predictable sentences was .39 (ranging from .06 to .8; zero in the non-predictable sentences). If comprehenders are more likely to engage in predictive processing when the task set involves production, we should observe more pronounced effects of prediction in Experiment 1 as compared to Experiment 2. If production does not enhance prediction, we should observe similar effects of prediction in both experiments. In Experiment 1, participants (N = 54) listened to recordings of the sentences which ended right before the spoken target word. Coinciding with the end of the playback, a picture of the target word was shown which the participants were asked to name as fast as possible. Analyses of their naming latencies revealed a statistically significant naming advantage of 106 ms on predictable over non-predictable trials. Moreover, we found that the objects’ naming advantage was predicted by the target words’ cloze probability in the sentences (r = .411, p = .016). In Experiment 2, the same sentences were used in a self-paced reading experiment. To allow for testing of potential spill-over effects, we added a neutral prepositional phrase (buys a beer from the bar keeper/drinks a beer from the shop) to each sentence. Participants (N = 54) read the sentences word-by-word, advancing by pushing the space bar. On 30% of the trials, comprehension questions were used to keep up participants' focus on comprehending the sentences. Analyses of participants’ target and post-target reading times revealed numerical advantages of 6 ms and 20 ms, respectively, in the predictable as compared to the non-predictable condition. However, in both cases, this difference was not statistically reliable (t = .757, t = 1.43) and the significant positive correlation between an item’s naming advantage and its cloze probability as seen in Experiment 1 was absent (r = .037, p = .822). Importantly, the analysis of participants' responses to the comprehension questions, showed that they understood the sentences (mean accuracy = 93%). To conclude, although both experiments used the same sentences, we observed effects of prediction only when the task included production. In Experiment 2, no evidence for anticipation was found although participants clearly understood the sentences and the method has previously been shown to be sensitive to measure prediction effects (Van Berkum et al., 2005). Our results fit with a recent study by Gollan et al. (2011) who found only a small processing advantage of predictive over non-predictive sentences in reading (using highly predictable sentences with a cloze probability > . 87) but a strong prediction effect when participants read the same sentences and carried out an additional object naming task (see also Griffin & Bock, 1998). Taken together, the studies suggest that the comprehenders' task set exerts a powerful influence on the likelihood and magnitude of predictive language processing. When the task set involves language production, as is often the case in natural conversation, comprehenders might engage in prediction to a stronger degree than in pure comprehension tasks. Being able to predict words another person is about to say might optimize the comprehension process and enable smooth turn-taking.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2014). Mechanisms underlying predictive language processing. Talk presented at the 56. Tagung experimentell arbeitender Psychologen [TeaP, Conference on Experimental Psychology]. Giessen, Germany. 2014-03-31 - 2014-04-02.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2014). The influence of verb-specific featural restrictions, word associations, and production-based mechanisms on language-mediated anticipatory eye movements. Talk presented at the 27th annual CUNY conference on human sentence processing. Ohio State University, Columbus/Ohio (US). 2014-03-13 - 2014-03-15.
  • Huettig, F., & Guerra, E. (2014). Context-dependent mapping of linguistic and color representations challenges strong forms of embodiment. Talk presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014). Edinburgh, UK. 2014-09-03 - 2014-09-06.


    A central claim of embodied theories of cognition is that sensory representations are routinely activated and influence language processing even in the absence of relevant sensory input (cf. Pulvermüller, 2005; Wassenburg & Zwaan, 2010). We tested the influence of color representations during language processing in three visual world eye tracking experiments. The method is particularly well suited to investigate this issue because the availability of relevant visual input can be manipulated. We made use of the phenomena that when participants hear a word that refers to a visual object or printed word they quickly direct their eye gaze to objects or printed words which are similar (e.g. semantically or visually) to the heard word. We used a look and listen task which previously has been shown to be sensitive to such relationships between spoken words and visual items. In Experiment 1, on experimental trials, participants listened to sentences containing a critical target word associated with a prototypical color (e.g. '...spinach...') as they inspected a visual display with four words printed in black font. One of the four printed words was associated with the same prototypical color (e.g. green) as the spoken target word (e.g. FROG). On experimental trials, the spoken target word did not have a printed word counterpart (SPINACH was not present in the display). In filler trials (70% of trials) the target was present in the display and attracted significantly more overt attention than the unrelated distractors. In experimental trials color competitors were not looked at more than the distractors. In Experiment 2 the printed words were replaced with line drawings of the objects. In order to direct the attentional focus of our participants toward color features we used a within-participants counter-balanced design and alternated color and greyscale trials randomly throughout the experiment. Therefore, on one trial our participants heard a word such as 'spinach' and saw a frog (colored in green) in the visual display. On the next trial however they saw a banana (in greyscale) on hearing 'canary' (bananas and canaries are typically yellow), etc. The presence (or absence) of color was thus a salient property of the experiment. Participants looked more at color competitors than unrelated distractors on hearing the target word in the color trials but not in the greyscale trials, i.e. on hearing 'spinach' they looked at the green frog but not the greyscale frog. Experiment 3 was identical to Experiment 2, except that the visual display was removed at the sentence onset, after a longer preview. This experiment examined whether the continued presence of color in the immediate visual environment was necessary for the observation of color-mediated eye movements. Eye movements directed towards the now blank screen were recorded as the sentence unfolded (cf. Spivey & Geng, 2001). In the filler trials, participants looked significantly more at the locations where the targets, rather than the distractors, had been previously presented as the target words acoustically unfolded. In the experimental trials, the locations where the color competitors had previously been presented did not attract increased attention (neither in color nor greyscale trials). These data demonstrate that language-mediated eye movements are only influenced by color relations between spoken words and visually displayed items if color is present in the immediate visual environment. We conclude that color representations are unlikely to be routinely activated in language processing. Our findings provide strong constraints for embodied theories of cognition which assume that sensory representations influence language processing even in the absence of relevant sensory input. These results fit best with the notion that the main role of sensory representations in language processing is a different one, namely to contextualize language in the immediate environment, connecting language to the here and now.
  • Huettig, F. (2015). Does prediction in language comprehension involve language production?. Talk presented at the Comprehension=Production? workshop. Nijmegen, the Netherlands. 2015-03-26 - 2015-03-28.


    The notion that predicting upcoming linguistic information in language comprehension makes use of the production system has recently received much attention (e.g., Chang et al., 2006; Dell & Chang, 2014; Federmeier, 2007; Pickering & Garrod, 2007, 2013; Van Berkum et al., 2005). So far there has been little experimental evidence for a relation between prediction and production. I will discuss the results of several recent eye-tracking experiments with toddlers (Mani & Huettig, 2012) and adults (Rommers et al. submitted, Hintz et al., in prep.) which provide some support for the view that production abilities are linked to language-mediated anticipatory eye movements. These data however also indicate that production-based prediction is situation-dependent and only one of many mechanisms supporting prediction. Taken together, these results suggest that multiple-mechanism accounts are required to provide a complete picture of anticipatory language processing.
  • Huettig, F. (2014). How embodied is language processing?. Talk presented at the 2nd Attentive Listener in the Visual World workshop. Hyderabad, India. 2014-11-03 - 2014-11-05.
  • Huettig, F. (2014). How literacy acquisition affects the illiterate mind. Talk presented at the Low Educated Second Language and Literacy Acquisition (LESLLA). Nijmegen, Netherlands. 2014-08-28 - 2014-08-30.
  • Huettig, F. (2014). Literacy influences on predictive language processing and visual search. Talk presented at the Priming across Modalities: The Influence of Orthography on Sign and Spoken Language Processing workshop. Haifa, Israel. 2014-04.
  • Huettig, F. (2014). The context-dependent influence of colour representations during language-vision interactions constrains theories of conceptual processing. Talk presented at the Color in Concepts workshop. Düsseldorf, Germany. 2014-06-02 - 2014-06-03.
  • Rommers, J., & Huettig, F. (2014). Limits to cross-modal semantic and object shape priming in sentence context. Poster presented at the Society for the Neurobiology of Language [SNL 2014], Amsterdam, the Netherlands.
  • Rommers, J., & Huettig, F. (2014). Limits to cross-modal semantic and object shape priming in sentence context. Poster presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014), Edinburgh, UK.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2014). A comprehensive model of spoken word recognition must be multimodal: Evidence from studies of language mediated visual attention. Talk presented at the 36th Annual Conference of the Cognitive Science Society [CogSci 2014]. Quebec, Canada. 2014-07-23 - 2014-07-26.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2014). Examining strains and symptoms of the ‘Literacy Virus’: The effects of orthographic transparency on phonological processing in a connectionist model of reading. Talk presented at the 36th Annual Conference of the Cognitive Science Society [CogSci 2014]. Quebec, Canada. 2014-07-23 - 2014-07-26.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2014). Examining the effects of orthographic transparency on phonological and semantic processing within a connectionist implementation of the triangle model of reading. Talk presented at the 14th Neural Computation and Psychology Workshop [NCPW 14]. Lancaster, U.K. 2014-08-21 - 2014-08-23.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2014). Strains and symptoms of the ‘literacy virus’: Modelling the effects of orthographic transparency on phonological processing. Poster presented at the 20th Architectures and Mechanisms for Language Processing Conference (AMLAP 2014), Edinburgh, UK.

Share this page