Stephen C. Levinson

Publications

Displaying 1 - 6 of 6
  • Barthel, M., Sauppe, S., Levinson, S. C., & Meyer, A. S. (2016). The timing of utterance planning in task-oriented dialogue: Evidence from a novel list-completion paradigm. Frontiers in Psychology, 7: 1858. doi:10.3389/fpsyg.2016.01858.

    Abstract

    In conversation, interlocutors rarely leave long gaps between turns, suggesting that next speak- ers begin to plan their turns while listening to the previous speaker. The present experiment used analyses of speech onset latencies and eye-movements in a task-oriented dialogue paradigm to investigate when speakers start planning their response. Adult German participants heard a confederate describe sets of objects in utterances that either ended in a noun (e.g. Ich habe eine Tür und ein Fahrrad (‘I have a door and a bicycle’)) or a verb form (Ich habe eine Tür und ein Fahrrad besorgt (‘I have gotten a door and a bicycle’)), while the presence or absence of the final verb either was or was not predictable from the preceding sentence structure. In response, participants had to name any unnamed objects they could see in their own display in utterances such as Ich habe ein Ei (‘I have an egg’). The main question was when participants started to plan their response. The results are consistent with the view that speakers begin to plan their turn as soon as sufficient information is available to do so, irrespective of further incoming words.
  • Holler, J., Kendrick, K. H., Casillas, M., & Levinson, S. C. (Eds.). (2016). Turn-Taking in Human Communicative Interaction. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-825-2.

    Abstract

    The core use of language is in face-to-face conversation. This is characterized by rapid turn-taking. This turn-taking poses a number central puzzles for the psychology of language. Consider, for example, that in large corpora the gap between turns is on the order of 100 to 300 ms, but the latencies involved in language production require minimally between 600ms (for a single word) or 1500 ms (for as simple sentence). This implies that participants in conversation are predicting the ends of the incoming turn and preparing in advance. But how is this done? What aspects of this prediction are done when? What happens when the prediction is wrong? What stops participants coming in too early? If the system is running on prediction, why is there consistently a mode of 100 to 300 ms in response time? The timing puzzle raises further puzzles: it seems that comprehension must run parallel with the preparation for production, but it has been presumed that there are strict cognitive limitations on more than one central process running at a time. How is this bottleneck overcome? Far from being 'easy' as some psychologists have suggested, conversation may be one of the most demanding cognitive tasks in our everyday lives. Further questions naturally arise: how do children learn to master this demanding task, and what is the developmental trajectory in this domain? Research shows that aspects of turn-taking such as its timing are remarkably stable across languages and cultures, but the word order of languages varies enormously. How then does prediction of the incoming turn work when the verb (often the informational nugget in a clause) is at the end? Conversely, how can production work fast enough in languages that have the verb at the beginning, thereby requiring early planning of the whole clause? What happens when one changes modality, as in sign languages -- with the loss of channel constraints is turn-taking much freer? And what about face-to-face communication amongst hearing individuals -- do gestures, gaze, and other body behaviors facilitate turn-taking? One can also ask the phylogenetic question: how did such a system evolve? There seem to be parallels (analogies) in duetting bird species, and in a variety of monkey species, but there is little evidence of anything like this among the great apes. All this constitutes a neglected set of problems at the heart of the psychology of language and of the language sciences. This research topic welcomes contributions from right across the board, for example from psycholinguists, developmental psychologists, students of dialogue and conversation analysis, linguists interested in the use of language, phoneticians, corpus analysts and comparative ethologists or psychologists. We welcome contributions of all sorts, for example original research papers, opinion pieces, and reviews of work in subfields that may not be fully understood in other subfields.
  • Levinson, S. C. (2016). “Process and perish” or multiple buffers with push-down stacks? [Commentary on Christiansen & Slater]. Behavioral and Brain Sciences, 39: e81. doi:10.1017/S0140525X15000862.

    Abstract

    This commentary raises two issues: (1) Language processing is hastened not only by internal pressures but also externally by turntaking in language use; (2) the theory requires nested levels of processing, but linguistic levels do not fully nest; further, it would seem to require multiple memory buffers, otherwise there’s no obvious treatment for discontinuous structures, or for verbatim recall.
  • Levinson, S. C. (2016). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication [3rd ed.] (pp. 68-80). Oxford: Oxford University Press.
  • Levinson, S. C. (2016). Turn-taking in human communication, origins, and implications for language processing. Trends in Cognitive Sciences, 20(1), 6-14. doi:10.1016/j.tics.2015.10.010.

    Abstract

    Most language usage is interactive, involving rapid turn-taking. The turn-taking system has a number of striking properties: turns are short and responses are remarkably rapid, but turns are of varying length and often of very complex construction such that the underlying cognitive processing is highly compressed. Although neglected in cognitive science, the system has deep implications for language processing and acquisition that are only now becoming clear. Appearing earlier in ontogeny than linguistic competence, it is also found across all the major primate clades. This suggests a possible phylogenetic continuity, which may provide key insights into language evolution.
  • Levinson, S. C. (2016). The countable singulare tantum. In A. Reuneker, R. Boogaart, & S. Lensink (Eds.), Aries netwerk: Een constructicon (pp. 145-146). Leiden: Leiden University.

Share this page