Andrea E. Martin

Publications

Displaying 1 - 7 of 7
  • Doumas, L. A., & Martin, A. E. (2016). Abstraction in time: Finding hierarchical linguistic structure in a model of relational processing. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2279-2284). Austin, TX: Cognitive Science Society.

    Abstract

    Abstract mental representation is fundamental for human cognition. Forming such representations in time, especially from dynamic and noisy perceptual input, is a challenge for any processing modality, but perhaps none so acutely as for language processing. We show that LISA (Hummel & Holyaok, 1997) and DORA (Doumas, Hummel, & Sandhofer, 2008), models built to process and to learn structured (i.e., symbolic) rep resentations of conceptual properties and relations from unstructured inputs, show oscillatory activation during processing that is highly similar to the cortical activity elicited by the linguistic stimuli from Ding et al.(2016). We argue, as Ding et al.(2016), that this activation reflects formation of hierarchical linguistic representation, and furthermore, that the kind of computational mechanisms in LISA/DORA (e.g., temporal binding by systematic asynchrony of firing) may underlie formation of abstract linguistic representations in the human brain. It may be this repurposing that allowed for the generation or mergence of hierarchical linguistic structure, and therefore, human language, from extant cognitive and neural systems. We conclude that models of thinking and reasoning and models of language processing must be integrated —not only for increased plausiblity, but in order to advance both fields towards a larger integrative model of human cognition
  • Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S. (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171. doi:10.1016/j.jml.2015.10.007.

    Abstract

    We used ERPs to investigate the pre-activation of form and meaning in language comprehension. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a…”), followed by a word that was predictable (book), form-related (hook) or semantically related (page) to the predictable word, or unrelated (sofa). At a 500 ms SOA (Experiment 1), semantically related words, but not form-related words, elicited a reduced N400 compared to unrelated words. At a 700 ms SOA (Experiment 2), semantically related words and form-related words elicited reduced N400 effects, but the effect for form-related words occurred in very high-cloze sentences only. At both SOAs, form-related words elicited an enhanced, post-N400 posterior positivity (Late Positive Component effect). The N400 effects suggest that readers can pre-activate meaning and form information for highly predictable words, but form pre-activation is more limited than meaning pre-activation. The post-N400 LPC effect suggests that participants detected the form similarity between expected and encountered input. Pre-activation of word forms crucially depends upon the time that readers have to make predictions, in line with production-based accounts of linguistic prediction.
  • Martin, A. E. (2016). Language processing as cue integration: Grounding the psychology of language in perception and neurophysiology. Frontiers in Psychology, 7: 120. doi:10.3389/fpsyg.2016.00120.

    Abstract

    I argue that cue integration, a psychophysiological mechanism from vision and multisensory perception, offers a computational linking hypothesis between psycholinguistic theory and neurobiological models of language. I propose that this mechanism, which incorporates probabilistic estimates of a cue's reliability, might function in language processing from the perception of a phoneme to the comprehension of a phrase structure. I briefly consider the implications of the cue integration hypothesis for an integrated theory of language that includes acquisition, production, dialogue and bilingualism, while grounding the hypothesis in canonical neural computation.
  • Martin, A. E., & McElree, B. (2009). Memory operations that support language comprehension: Evidence from verb-phrase ellipsis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1231-1239. doi:10.1037/a0016271.

    Abstract

    Comprehension of verb-phrase ellipsis (VPE) requires reevaluation of recently processed constituents, which often necessitates retrieval of information about the elided constituent from memory. A. E. Martin and B. McElree (2008) argued that representations formed during comprehension are content addressable and that VPE antecedents are retrieved from memory via a cue-dependent direct-access pointer rather than via a search process. This hypothesis was further tested by manipulating the location of interfering material—either before the onset of the antecedent (proactive interference; PI) or intervening between antecedent and ellipsis site (retroactive interference; RI). The speed–accuracy tradeoff procedure was used to measure the time course of VPE processing. The location of the interfering material affected VPE comprehension accuracy: RI conditions engendered lower accuracy than PI conditions. Crucially, location did not affect the speed of processing VPE, which is inconsistent with both forward and backward search mechanisms. The observed time-course profiles are consistent with the hypothesis that VPE antecedents are retrieved via a cue-dependent direct-access operation. (PsycINFO Database Record (c) 2016 APA, all rights reserved)
  • Pylkkänen, L., Martin, A. E., McElree, B., & Smart, A. (2009). The Anterior Midline Field: Coercion or decision making? Brain and Language, 108(3), 184-190. doi:10.1016/j.bandl.2008.06.006.

    Abstract

    To study the neural bases of semantic composition in language processing without confounds from syntactic composition, recent magnetoencephalography (MEG) studies have investigated the processing of constructions that exhibit some type of syntax-semantics mismatch. The most studied case of such a mismatch is complement coercion; expressions such as the author began the book, where an entity-denoting noun phrase is coerced into an eventive meaning in order to match the semantic properties of the event-selecting verb (e.g., ‘the author began reading/writing the book’). These expressions have been found to elicit increased activity in the Anterior Midline Field (AMF), an MEG component elicited at frontomedial sensors at ∼400 ms after the onset of the coercing noun [Pylkkänen, L., & McElree, B. (2007). An MEG study of silent meaning. Journal of Cognitive Neuroscience, 19, 11]. Thus, the AMF constitutes a potential neural correlate of coercion. However, the AMF was generated in ventromedial prefrontal regions, which are heavily associated with decision-making. This raises the possibility that, instead of semantic processing, the AMF effect may have been related to the experimental task, which was a sensicality judgment. We tested this hypothesis by assessing the effect of coercion when subjects were simply reading for comprehension, without a decision-task. Additionally, we investigated coercion in an adjectival rather than a verbal environment to further generalize the findings. Our results show that an AMF effect of coercion is elicited without a decision-task and that the effect also extends to this novel syntactic environment. We conclude that in addition to its role in non-linguistic higher cognition, ventromedial prefrontal regions contribute to the resolution of syntax-semantics mismatches in language processing.
  • Ashby, J., & Martin, A. E. (2008). Prosodic phonological representations early in visual word recognition. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 224-236. doi:10.1037/0096-1523.34.1.224.

    Abstract

    Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable information before lexical access. In a modified lexical decision task (Experiment 1), words were preceded by parafoveal previews that were congruent with a target's initial syllable as well as previews that contained 1 letter more or less than the initial syllable. Lexical decision times were faster in the syllable congruent conditions than in the incongruent conditions. In Experiment 2, we recorded brain electrical potentials (electroencephalograms) during single word reading in a masked priming paradigm. The event-related potential waveform elicited in the syllable congruent condition was more positive 250-350 ms posttarget compared with the waveform elicited in the syllable incongruent condition. In combination, these experiments demonstrate that readers process prosodic syllable information early in visual word recognition in English. They offer further evidence that skilled readers routinely activate elaborated, speechlike phonological representations during silent reading. (PsycINFO Database Record (c) 2016 APA, all rights reserved)
  • Martin, A. E., & McElree, B. (2008). A content-addressable pointer mechanism underlies comprehension of verb-phrase ellipsis. Journal of Memory and Language, 58(3), 879-906. doi:10.1016/j.jml.2007.06.010.

    Abstract

    Interpreting a verb-phrase ellipsis (VP ellipsis) requires accessing an antecedent in memory, and then integrating a representation of this antecedent into the local context. We investigated the online interpretation of VP ellipsis in an eye-tracking experiment and four speed–accuracy tradeoff experiments. To investigate whether the antecedent for a VP ellipsis is accessed with a search or direct-access retrieval process, Experiments 1 and 2 measured the effect of the distance between an ellipsis and its antecedent on the speed and accuracy of comprehension. Accuracy was lower with longer distances, indicating that interpolated material reduced the quality of retrieved information about the antecedent. However, contra a search process, distance did not affect the speed of interpreting ellipsis. This pattern suggests that antecedent representations are content-addressable and retrieved with a direct-access process. To determine whether interpreting ellipsis involves copying antecedent information into the ellipsis site, Experiments 3–5 manipulated the length and complexity of the antecedent. Some types of antecedent complexity lowered accuracy, notably, the number of discourse entities in the antecedent. However, neither antecedent length nor complexity affected the speed of interpreting the ellipsis. This pattern is inconsistent with a copy operation, and it suggests that ellipsis interpretation may involve a pointer to extant structures in memory.

Share this page