Andrea E. Martin

Publications

Displaying 1 - 6 of 6
  • Doumas, L. A. A., & Martin, A. E. (2018). Learning structured representations from experience. Psychology of Learning and Motivation, 69, 165-203. doi:10.1016/bs.plm.2018.10.002.

    Abstract

    How a system represents information tightly constrains the kinds of problems it can solve. Humans routinely solve problems that appear to require structured representations of stimulus properties and the relations between them. An account of how we might acquire such representations has central importance for theories of human cognition. We describe how a system can learn structured relational representations from initially unstructured inputs using comparison, sensitivity to time, and a modified Hebbian learning algorithm. We summarize how the model DORA (Discovery of Relations by Analogy) instantiates this approach, which we call predicate learning, as well as how the model captures several phenomena from cognitive development, relational reasoning, and language processing in the human brain. Predicate learning offers a link between models based on formal languages and models which learn from experience and provides an existence proof for how structured representations might be learned in the first place.
  • Lakens, D., Adolfi, F. G., Albers, C. J., Anvari, F., Apps, M. A. J., Argamon, S. E., Baguley, T., Becker, R. B., Benning, S. D., Bradford, D. E., Buchanan, E. M., Caldwell, A. R., Van Calster, B., Carlsson, R., Chen, S.-C., Chung, B., Colling, L. J., Collins, G. S., Crook, Z., Cross, E. S. and 68 moreLakens, D., Adolfi, F. G., Albers, C. J., Anvari, F., Apps, M. A. J., Argamon, S. E., Baguley, T., Becker, R. B., Benning, S. D., Bradford, D. E., Buchanan, E. M., Caldwell, A. R., Van Calster, B., Carlsson, R., Chen, S.-C., Chung, B., Colling, L. J., Collins, G. S., Crook, Z., Cross, E. S., Daniels, S., Danielsson, H., DeBruine, L., Dunleavy, D. J., Earp, B. D., Feist, M. I., Ferrelle, J. D., Field, J. G., Fox, N. W., Friesen, A., Gomes, C., Gonzalez-Marquez, M., Grange, J. A., Grieve, A. P., Guggenberger, R., Grist, J., Van Harmelen, A.-L., Hasselman, F., Hochard, K. D., Hoffarth, M. R., Holmes, N. P., Ingre, M., Isager, P. M., Isotalus, H. K., Johansson, C., Juszczyk, K., Kenny, D. A., Khalil, A. A., Konat, B., Lao, J., Larsen, E. G., Lodder, G. M. A., Lukavský, J., Madan, C. R., Manheim, D., Martin, S. R., Martin, A. E., Mayo, D. G., McCarthy, R. J., McConway, K., McFarland, C., Nio, A. Q. X., Nilsonne, G., De Oliveira, C. L., De Xivry, J.-J.-O., Parsons, S., Pfuhl, G., Quinn, K. A., Sakon, J. J., Saribay, S. A., Schneider, I. K., Selvaraju, M., Sjoerds, Z., Smith, S. G., Smits, T., Spies, J. R., Sreekumar, V., Steltenpohl, C. N., Stenhouse, N., Świątkowski, W., Vadillo, M. A., Van Assen, M. A. L. M., Williams, M. N., Williams, S. E., Williams, D. R., Yarkoni, T., Ziano, I., & Zwaan, R. A. (2018). Justify your alpha. Nature Human Behaviour, 2, 168-171. doi:10.1038/s41562-018-0311-x.

    Abstract

    In response to recommendations to redefine statistical significance to P ≤ 0.005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level.
  • Martin, A. E. (2018). Cue integration during sentence comprehension: Electrophysiological evidence from ellipsis. PLoS One, 13(11): e0206616. doi:10.1371/journal.pone.0206616.

    Abstract

    Language processing requires us to integrate incoming linguistic representations with representations of past input, often across intervening words and phrases. This computational situation has been argued to require retrieval of the appropriate representations from memory via a set of features or representations serving as retrieval cues. However, even within in a cue-based retrieval account of language comprehension, both the structure of retrieval cues and the particular computation that underlies direct-access retrieval are still underspecified. Evidence from two event-related brain potential (ERP) experiments that show cue-based interference from different types of linguistic representations during ellipsis comprehension are consistent with an architecture wherein different cue types are integrated, and where the interaction of cue with the recent contents of memory determines processing outcome, including expression of the interference effect in ERP componentry. I conclude that retrieval likely includes a computation where cues are integrated with the contents of memory via a linear weighting scheme, and I propose vector addition as a candidate formalization of this computation. I attempt to account for these effects and other related phenomena within a broader cue-based framework of language processing.
  • Martin, A. E., & McElree, B. (2018). Retrieval cues and syntactic ambiguity resolution: Speed-accuracy tradeoff evidence. Language, Cognition and Neuroscience, 33(6), 769-783. doi:10.1080/23273798.2018.1427877.

    Abstract

    Language comprehension involves coping with ambiguity and recovering from misanalysis. Syntactic ambiguity resolution is associated with increased reading times, a classic finding that has shaped theories of sentence processing. However, reaction times conflate the time it takes a process to complete with the quality of the behavior-related information available to the system. We therefore used the speed-accuracy tradeoff procedure (SAT) to derive orthogonal estimates of processing time and interpretation accuracy, and tested whether stronger retrieval cues (via semantic relatedness: neighed->horse vs. fell->horse) aid interpretation during recovery. On average, ambiguous sentences took 250ms longer (SAT rate) to interpret than unambiguous controls, demonstrating veridical differences in processing time. Retrieval cues more strongly related to the true subject always increased accuracy, regardless of ambiguity. These findings are consistent with a language processing architecture where cue-driven operations give rise to interpretation, and wherein diagnostic cues aid retrieval, regardless of parsing difficulty or structural uncertainty.
  • Martin, A. E., & McElree, B. (2009). Memory operations that support language comprehension: Evidence from verb-phrase ellipsis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1231-1239. doi:10.1037/a0016271.

    Abstract

    Comprehension of verb-phrase ellipsis (VPE) requires reevaluation of recently processed constituents, which often necessitates retrieval of information about the elided constituent from memory. A. E. Martin and B. McElree (2008) argued that representations formed during comprehension are content addressable and that VPE antecedents are retrieved from memory via a cue-dependent direct-access pointer rather than via a search process. This hypothesis was further tested by manipulating the location of interfering material—either before the onset of the antecedent (proactive interference; PI) or intervening between antecedent and ellipsis site (retroactive interference; RI). The speed–accuracy tradeoff procedure was used to measure the time course of VPE processing. The location of the interfering material affected VPE comprehension accuracy: RI conditions engendered lower accuracy than PI conditions. Crucially, location did not affect the speed of processing VPE, which is inconsistent with both forward and backward search mechanisms. The observed time-course profiles are consistent with the hypothesis that VPE antecedents are retrieved via a cue-dependent direct-access operation. (PsycINFO Database Record (c) 2016 APA, all rights reserved)
  • Pylkkänen, L., Martin, A. E., McElree, B., & Smart, A. (2009). The Anterior Midline Field: Coercion or decision making? Brain and Language, 108(3), 184-190. doi:10.1016/j.bandl.2008.06.006.

    Abstract

    To study the neural bases of semantic composition in language processing without confounds from syntactic composition, recent magnetoencephalography (MEG) studies have investigated the processing of constructions that exhibit some type of syntax-semantics mismatch. The most studied case of such a mismatch is complement coercion; expressions such as the author began the book, where an entity-denoting noun phrase is coerced into an eventive meaning in order to match the semantic properties of the event-selecting verb (e.g., ‘the author began reading/writing the book’). These expressions have been found to elicit increased activity in the Anterior Midline Field (AMF), an MEG component elicited at frontomedial sensors at ∼400 ms after the onset of the coercing noun [Pylkkänen, L., & McElree, B. (2007). An MEG study of silent meaning. Journal of Cognitive Neuroscience, 19, 11]. Thus, the AMF constitutes a potential neural correlate of coercion. However, the AMF was generated in ventromedial prefrontal regions, which are heavily associated with decision-making. This raises the possibility that, instead of semantic processing, the AMF effect may have been related to the experimental task, which was a sensicality judgment. We tested this hypothesis by assessing the effect of coercion when subjects were simply reading for comprehension, without a decision-task. Additionally, we investigated coercion in an adjectival rather than a verbal environment to further generalize the findings. Our results show that an AMF effect of coercion is elicited without a decision-task and that the effect also extends to this novel syntactic environment. We conclude that in addition to its role in non-linguistic higher cognition, ventromedial prefrontal regions contribute to the resolution of syntax-semantics mismatches in language processing.

Share this page