Andrea E. Martin

Publications

Displaying 1 - 24 of 24
  • Cutter, M. G., Martin, A. E., & Sturt, P. (2020). Capitalization interacts with syntactic complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(6), 1146-1164. doi:10.1037/xlm0000780.

    Abstract

    We investigated whether readers use the low-level cue of proper noun capitalization in the parafovea to infer syntactic category, and whether this results in an early update of the representation of a sentence’s syntactic structure. Participants read sentences containing either a subject relative or object relative clause, in which the relative clause’s overt argument was a proper noun (e.g., The tall lanky guard who alerted Charlie/Charlie alerted to the danger was young) across three experiments. In Experiment 1 these sentences were presented in normal sentence casing or entirely in upper case. In Experiment 2 participants received either valid or invalid parafoveal previews of the relative clause. In Experiment 3 participants viewed relative clauses in only normal conditions. We hypothesized that we would observe relative clause effects (i.e., inflated fixation times for object relative clauses) while readers were still fixated on the word who, if readers use capitalization to infer a parafoveal word’s syntactic class. This would constitute a syntactic parafoveal-on-foveal effect. Furthermore, we hypothesised that this effect should be influenced by sentence casing in Experiment 1 (with no cue for syntactic category being available in upper case sentences) but not by parafoveal preview validity of the target words. We observed syntactic parafoveal-on-foveal effects in Experiment 1 and 3, and a Bayesian analysis of the combined data from all three experiments. These effects seemed to be influenced more by noun capitalization than lexical processing. We discuss our findings in relation to models of eye movement control and sentence processing theories.
  • Cutter, M. G., Martin, A. E., & Sturt, P. (2020). Readers detect an low-level phonological violation between two parafoveal words. Cognition, 204: 104395. doi:10.1016/j.cognition.2020.104395.

    Abstract

    In two eye-tracking studies we investigated whether readers can detect a violation of the phonological-grammatical convention for the indefinite article an to be followed by a word beginning with a vowel when these two words appear in the parafovea. Across two experiments participants read sentences in which the word an was followed by a parafoveal preview that was either correct (e.g. Icelandic), incorrect and represented a phonological violation (e.g. Mongolian), or incorrect without representing a phonological violation (e.g. Ethiopian), with this parafoveal preview changing to the target word as participants made a saccade into the space preceding an. Our data suggests that participants detected the phonological violation while the target word was still two words to the right of fixation, with participants making more regressions from the previewed word and having longer go-past times on this word when they received a violation preview as opposed to a non-violation preview. We argue that participants were attempting to perform aspects of sentence integration on the basis of low-level orthographic information from the previewed word.

    Additional information

    Data files and R Scripts
  • Cutter, M. G., Martin, A. E., & Sturt, P. (2020). The activation of contextually predictable words in syntactically illegal positions. Quarterly Journal of Experimental Psychology, 73(9), 1423-1430. doi:10.1177/1747021820911021.

    Abstract

    We present an eye-tracking study testing a hypothesis emerging from several theories of prediction during language processing, whereby predictable words should be skipped more than unpredictable words even in syntactically illegal positions. Participants read sentences in which a target word became predictable by a certain point (e.g., “bone” is 92% predictable given, “The dog buried his. . .”), with the next word actually being an intensifier (e.g., “really”), which a noun cannot follow. The target noun remained predictable to appear later in the sentence. We used the boundary paradigm to present the predictable noun or an alternative unpredictable noun (e.g., “food”) directly after the intensifier, until participants moved beyond the intensifier, at which point the noun changed to a syntactically legal word. Participants also read sentences in which predictable or unpredictable nouns appeared in syntactically legal positions. A Bayesian linear-mixed model suggested a 5.7% predictability effect on skipping of nouns in syntactically legal positions, and a 3.1% predictability effect on skipping of nouns in illegal positions. We discuss our findings in relation to theories of lexical prediction during reading.

    Additional information

    OSF data
  • Doumas, L. A. A., Martin, A. E., & Hummel, J. E. (2020). Relation learning in a neurocomputational architecture supports cross-domain transfer. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 932-937). Montreal, QB: Cognitive Science Society.

    Abstract

    Humans readily generalize, applying prior knowledge to novel situations and stimuli. Advances in machine learning have begun to approximate and even surpass human performance, but these systems struggle to generalize what they have learned to untrained situations. We present a model based on wellestablished neurocomputational principles that demonstrates human-level generalisation. This model is trained to play one video game (Breakout) and performs one-shot generalisation to a new game (Pong) with different characteristics. The model
    generalizes because it learns structured representations that are functionally symbolic (viz., a role-filler binding calculus) from unstructured training data. It does so without feedback, and without requiring that structured representations are specified a priori. Specifically, the model uses neural co-activation to discover which characteristics of the input are invariant and to learn relational predicates, and oscillatory regularities in network firing to bind predicates to arguments. To our knowledge,
    this is the first demonstration of human-like generalisation in a machine system that does not assume structured representa-
    tions to begin with.
  • Hashemzadeh, M., Kaufeld, G., White, M., Martin, A. E., & Fyshe, A. (2020). From language to language-ish: How brain-like is an LSTM representation of nonsensical language stimuli? In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 645-655). Association for Computational Linguistics.

    Abstract

    The representations generated by many mod-
    els of language (word embeddings, recurrent
    neural networks and transformers) correlate
    to brain activity recorded while people read.
    However, these decoding results are usually
    based on the brain’s reaction to syntactically
    and semantically sound language stimuli. In
    this study, we asked: how does an LSTM (long
    short term memory) language model, trained
    (by and large) on semantically and syntac-
    tically intact language, represent a language
    sample with degraded semantic or syntactic
    information? Does the LSTM representation
    still resemble the brain’s reaction? We found
    that, even for some kinds of nonsensical lan-
    guage, there is a statistically significant rela-
    tionship between the brain’s activity and the
    representations of an LSTM. This indicates
    that, at least in some instances, LSTMs and the
    human brain handle nonsensical data similarly.
  • Kaufeld, G., Naumann, W., Meyer, A. S., Bosker, H. R., & Martin, A. E. (2020). Contextual speech rate influences morphosyntactic prediction and integration. Language, Cognition and Neuroscience, 35(7), 933-948. doi:10.1080/23273798.2019.1701691.

    Abstract

    Understanding spoken language requires the integration and weighting of multiple cues, and may call on cue integration mechanisms that have been studied in other areas of perception. In the current study, we used eye-tracking (visual-world paradigm) to examine how contextual speech rate (a lower-level, perceptual cue) and morphosyntactic knowledge (a higher-level, linguistic cue) are iteratively combined and integrated. Results indicate that participants used contextual rate information immediately, which we interpret as evidence of perceptual inference and the generation of predictions about upcoming morphosyntactic information. Additionally, we observed that early rate effects remained active in the presence of later conflicting lexical information. This result demonstrates that (1) contextual speech rate functions as a cue to morphosyntactic inferences, even in the presence of subsequent disambiguating information; and (2) listeners iteratively use multiple sources of information to draw inferences and generate predictions during speech comprehension. We discuss the implication of these demonstrations for theories of language processing
  • Kaufeld, G., Ravenschlag, A., Meyer, A. S., Martin, A. E., & Bosker, H. R. (2020). Knowledge-based and signal-based cues are weighted flexibly during spoken language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(3), 549-562. doi:10.1037/xlm0000744.

    Abstract

    During spoken language comprehension, listeners make use of both knowledge-based and signal-based sources of information, but little is known about how cues from these distinct levels of representational hierarchy are weighted and integrated online. In an eye-tracking experiment using the visual world paradigm, we investigated the flexible weighting and integration of morphosyntactic gender marking (a knowledge-based cue) and contextual speech rate (a signal-based cue). We observed that participants used the morphosyntactic cue immediately to make predictions about upcoming referents, even in the presence of uncertainty about the cue’s reliability. Moreover, we found speech rate normalization effects in participants’ gaze patterns even in the presence of preceding morphosyntactic information. These results demonstrate that cues are weighted and integrated flexibly online, rather than adhering to a strict hierarchy. We further found rate normalization effects in the looking behavior of participants who showed a strong behavioral preference for the morphosyntactic gender cue. This indicates that rate normalization effects are robust and potentially automatic. We discuss these results in light of theories of cue integration and the two-stage model of acoustic context effects
  • Kaufeld, G., Bosker, H. R., Ten Oever, S., Alday, P. M., Meyer, A. S., & Martin, A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content-specific hierarchy. The Journal of Neuroscience, 49(2), 9467-9475. doi:10.1523/JNEUROSCI.0302-20.2020.

    Abstract

    Neural oscillations track linguistic information during speech comprehension (e.g., Ding et al., 2016; Keitel et al., 2018), and are known to be modulated by acoustic landmarks and speech intelligibility (e.g., Doelling et al., 2014; Zoefel & VanRullen, 2015). However, studies investigating linguistic tracking have either relied on non-naturalistic isochronous stimuli or failed to fully control for prosody. Therefore, it is still unclear whether low frequency activity tracks linguistic structure during natural speech, where linguistic structure does not follow such a palpable temporal pattern. Here, we measured electroencephalography (EEG) and manipulated the presence of semantic and syntactic information apart from the timescale of their occurrence, while carefully controlling for the acoustic-prosodic and lexical-semantic information in the signal. EEG was recorded while 29 adult native speakers (22 women, 7 men) listened to naturally-spoken Dutch sentences, jabberwocky controls with morphemes and sentential prosody, word lists with lexical content but no phrase structure, and backwards acoustically-matched controls. Mutual information (MI) analysis revealed sensitivity to linguistic content: MI was highest for sentences at the phrasal (0.8-1.1 Hz) and lexical timescale (1.9-2.8 Hz), suggesting that the delta-band is modulated by lexically-driven combinatorial processing beyond prosody, and that linguistic content (i.e., structure and meaning) organizes neural oscillations beyond the timescale and rhythmicity of the stimulus. This pattern is consistent with neurophysiologically inspired models of language comprehension (Martin, 2016, 2020; Martin & Doumas, 2017) where oscillations encode endogenously generated linguistic content over and above exogenous or stimulus-driven timing and rhythm information.
  • Martin, A. E. (2020). A compositional neural architecture for language. Journal of Cognitive Neuroscience, 32(8), 1407-1427. doi:10.1162/jocn_a_01552.

    Abstract

    Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de) compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.
  • Meyer, L., Sun, Y., & Martin, A. E. (2020). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 35(9), 1089-1099. doi:10.1080/23273798.2019.1693050.

    Abstract

    Research on speech processing is often focused on a phenomenon termed “entrainment”, whereby the cortex shadows rhythmic acoustic information with oscillatory activity. Entrainment has been observed to a range of rhythms present in speech; in addition, synchronicity with abstract information (e.g. syntactic structures) has been observed. Entrainment accounts face two challenges: First, speech is not exactly rhythmic; second, synchronicity with representations that lack a clear acoustic counterpart has been described. We propose that apparent entrainment does not always result from acoustic information. Rather, internal rhythms may have functionalities in the generation of abstract representations and predictions. While acoustics may often provide punctate opportunities for entrainment, internal rhythms may also live a life of their own to infer and predict information, leading to intrinsic synchronicity – not to be counted as entrainment. This possibility may open up new research avenues in the psycho– and neurolinguistic study of language processing and language development.
  • Meyer, L., Sun, Y., & Martin, A. E. (2020). “Entraining” to speech, generating language? Language, Cognition and Neuroscience, 35(9), 1138-1148. doi:10.1080/23273798.2020.1827155.

    Abstract

    Could meaning be read from acoustics, or from the refraction rate of pyramidal cells innervated by the cochlea, everyone would be an omniglot. Speech does not contain sufficient acoustic cues to identify linguistic units such as morphemes, words, and phrases without prior knowledge. Our target article (Meyer, L., Sun, Y., & Martin, A. E. (2019). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 1–11. https://doi.org/10.1080/23273798.2019.1693050) thus questioned the concept of “entrainment” of neural oscillations to such units. We suggested that synchronicity with these points to the existence of endogenous functional “oscillators”—or population rhythmic activity in Giraud’s (2020) terms—that underlie the inference, generation, and prediction of linguistic units. Here, we address a series of inspirational commentaries by our colleagues. As apparent from these, some issues raised by our target article have already been raised in the literature. Psycho– and neurolinguists might still benefit from our reply, as “oscillations are an old concept in vision and motor functions, but a new one in linguistics” (Giraud, A.-L. 2020. Oscillations for all A commentary on Meyer, Sun & Martin (2020). Language, Cognition and Neuroscience, 1–8).
  • Doumas, L. A. A., Hamer, A., Puebla, G., & Martin, A. E. (2017). A theory of the detection and learning of structured representations of similarity and relative magnitude. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1955-1960). Austin, TX: Cognitive Science Society.

    Abstract

    Responding to similarity, difference, and relative magnitude (SDM) is ubiquitous in the animal kingdom. However, humans seem unique in the ability to represent relative magnitude (‘more’/‘less’) and similarity (‘same’/‘different’) as abstract relations that take arguments (e.g., greater-than (x,y)). While many models use structured relational representations of magnitude and similarity, little progress has been made on how these representations arise. Models that developuse these representations assume access to computations of similarity and magnitude a priori, either encoded as features or as output of evaluation operators. We detail a mechanism for producing invariant responses to “same”, “different”, “more”, and “less” which can be exploited to compute similarity and magnitude as an evaluation operator. Using DORA (Doumas, Hummel, & Sandhofer, 2008), these invariant responses can serve be used to learn structured relational representations of relative magnitude and similarity from pixel images of simple shapes
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). How robust are prediction effects in language comprehension? Failure to replicate article-elicited N400 effects. Language, Cognition and Neuroscience, 32, 954-965. doi:10.1080/23273798.2016.1242761.

    Abstract

    Current psycholinguistic theory proffers prediction as a central, explanatory mechanism in language
    processing. However, widely-replicated prediction effects may not mean that prediction is
    necessary in language processing. As a case in point, C. D. Martin et al. [2013. Bilinguals reading
    in their second language do not predict upcoming words as native readers do.
    Journal of
    Memory and Language, 69
    (4), 574

    588. doi:10.1016/j.jml.2013.08.001] reported ERP evidence for
    prediction in native- but not in non-native speakers. Articles mismatching an expected noun
    elicited larger negativity in the N400 time window compared to articles matching the expected
    noun in native speakers only. We attempted to replicate these findings, but found no evidence
    for prediction irrespective of language nativeness. We argue that pre-activation of phonological
    form of upcoming nouns, as evidenced in article-elicited effects, may not be a robust
    phenomenon. A view of prediction as a necessary computation in language comprehension
    must be re-evaluated.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). On predicting form and meaning in a second language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 635-652. doi:10.1037/xlm0000315.

    Abstract

    We used event-related potentials (ERP) to investigate whether Spanish−English bilinguals preactivate form and meaning of predictable words. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a . . .”), followed by the predictable word (book), a word that was form-related (hook) or semantically related (page) to the predictable word, or an unrelated word (sofa). Word stimulus onset synchrony (SOA) was 500 ms (Experiment 1) or 700 ms (Experiment 2). In both experiments, all nonpredictable words elicited classic N400 effects. Form-related and unrelated words elicited similar N400 effects. Semantically related words elicited smaller N400s than unrelated words, which however, did not depend on cloze value of the predictable word. Thus, we found no N400 evidence for preactivation of form or meaning at either SOA, unlike native-speaker results (Ito, Corley et al., 2016). However, non-native speakers did show the post-N400 posterior positivity (LPC effect) for form-related words like native speakers, but only at the slower SOA. This LPC effect increased gradually with cloze value of the predictable word. We do not interpret this effect as necessarily demonstrating prediction, but rather as evincing combined effects of top-down activation (contextual meaning) and bottom-up activation (form similarity) that result in activation of unseen words that fit the context well, thereby leading to an interpretation conflict reflected in the LPC. Although there was no evidence that non-native speakers preactivate form or meaning, non-native speakers nonetheless appear to use bottom-up and top-down information to constrain incremental interpretation much like native speakers do.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). Why the A/AN prediction effect may be hard to replicate: A rebuttal to DeLong, Urbach & Kutas (2017). Language, Cognition and Neuroscience, 32(8), 974-983. doi:10.1080/23273798.2017.1323112.
  • Martin, A. E., & Doumas, L. A. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. PLoS Biology, 15(3): e2000663. doi:10.1371/journal.pbio.2000663.

    Abstract

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation
  • Martin, A. E., Huettig, F., & Nieuwland, M. S. (2017). Can structural priming answer the important questions about language? A commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e304. doi:10.1017/S0140525X17000528.

    Abstract

    While structural priming makes a valuable contribution to psycholinguistics, it does not allow direct observation of representation, nor escape “source ambiguity.” Structural priming taps into implicit memory representations and processes that may differ from what is used online. We question whether implicit memory for language can and should be equated with linguistic representation or with language processing.
  • Martin, A. E., Monahan, P. J., & Samuel, A. G. (2017). Prediction of agreement and phonetic overlap shape sublexical identification. Language and Speech, 60(3), 356-376. doi:10.1177/0023830916650714.

    Abstract

    The mapping between the physical speech signal and our internal representations is rarely straightforward. When faced with uncertainty, higher-order information is used to parse the signal and because of this, the lexicon and some aspects of sentential context have been shown to modulate the identification of ambiguous phonetic segments. Here, using a phoneme identification task (i.e., participants judged whether they heard [o] or [a] at the end of an adjective in a noun–adjective sequence), we asked whether grammatical gender cues influence phonetic identification and if this influence is shaped by the phonetic properties of the agreeing elements. In three experiments, we show that phrase-level gender agreement in Spanish affects the identification of ambiguous adjective-final vowels. Moreover, this effect is strongest when the phonetic characteristics of the element triggering agreement and the phonetic form of the agreeing element are identical. Our data are consistent with models wherein listeners generate specific predictions based on the interplay of underlying morphosyntactic knowledge and surface phonetic cues.
  • Nieuwland, M. S., & Martin, A. E. (2017). Neural oscillations and a nascent corticohippocampal theory of reference. Journal of Cognitive Neuroscience, 29(5), 896-910. doi:10.1162/jocn_a_01091.

    Abstract

    The ability to use words to refer to the world is vital to the communicative power of human language. In particular, the anaphoric use of words to refer to previously mentioned concepts (antecedents) allows dialogue to be coherent and meaningful. Psycholinguistic theory posits that anaphor comprehension involves reactivating a memory representation of the antecedent. Whereas this implies the involvement of recognition memory, or the mnemonic sub-routines by which people distinguish old from new, the neural processes for reference resolution are largely unknown. Here, we report time-frequency analysis of four EEG experiments to reveal the increased coupling of functional neural systems associated with referentially coherent expressions compared to referentially problematic expressions. Despite varying in modality, language, and type of referential expression, all experiments showed larger gamma-band power for referentially coherent expressions compared to referentially problematic expressions. Beamformer analysis in high-density Experiment 4 localised the gamma-band increase to posterior parietal cortex around 400-600 ms after anaphor-onset and to frontaltemporal cortex around 500-1000 ms. We argue that the observed gamma-band power increases reflect successful referential binding and resolution, which links incoming information to antecedents through an interaction between the brain’s recognition memory networks and frontal-temporal language network. We integrate these findings with previous results from patient and neuroimaging studies, and we outline a nascent cortico-hippocampal theory of reference.
  • Martin, A. E., Nieuwland, M. S., & Carrieras, M. (2014). Agreement attraction during comprehension of grammatical sentences: ERP evidence from ellipsis. Brain and Language, 135, 42-51. doi:10.1016/j.bandl.2014.05.001.

    Abstract

    Successful dependency resolution during language comprehension relies on accessing certain representations in memory, and not others. We recently reported event-related potential (ERP) evidence that syntactically unavailable, intervening attractor-nouns interfered during comprehension of Spanish noun-phrase ellipsis (the determiner otra/otro): grammatically correct determiners that mismatched the gender of attractor-nouns elicited a sustained negativity as also observed for incorrect determiners (Martin, Nieuwland, & Carreiras, 2012). The current study sought to extend this novel finding in sentences containing object-extracted relative clauses, where the antecedent may be less prominent. Whereas correct determiners that matched the gender of attractor-nouns now elicited an early anterior negativity as also observed for mismatching determiners, the previously reported interaction pattern was replicated in P600 responses to subsequent words. Our results suggest that structural and gender information is simultaneously taken into account, providing further evidence for retrieval interference during comprehension of grammatical sentences.
  • Martin, A. E., Nieuwland, M. S., & Carreiras, M. (2012). Event-related brain potentials index cue-based retrieval interference during sentence comprehension. NeuroImage, 59(2), 1859-1869. doi:10.1016/j.neuroimage.2011.08.057.

    Abstract

    Successful language use requires access to products of past processing within an evolving discourse. A central issue for any neurocognitive theory of language then concerns the role of memory variables during language processing. Under a cue-based retrieval account of language comprehension, linguistic dependency resolution (e.g., retrieving antecedents) is subject to interference from other information in the sentence, especially information that occurs between the words that form the dependency (e.g., between the antecedent and the retrieval site). Retrieval interference may then shape processing complexity as a function of the match of the information at retrieval with the antecedent versus other recent or similar items in memory. To address these issues, we studied the online processing of ellipsis in Castilian Spanish, a language with morphological gender agreement. We recorded event-related brain potentials while participants read sentences containing noun-phrase ellipsis indicated by the determiner otro/a (‘another’). These determiners had a grammatically correct or incorrect gender with respect to their antecedent nouns that occurred earlier in the sentence. Moreover, between each antecedent and determiner, another noun phrase occurred that was structurally unavailable as an antecedent and that matched or mismatched the gender of the antecedent (i.e., a local agreement attractor). In contrast to extant P600 results on agreement violation processing, and inconsistent with predictions from neurocognitive models of sentence processing, grammatically incorrect determiners evoked a sustained, broadly distributed negativity compared to correct ones between 400 and 1000 ms after word onset, possibly related to sustained negativities as observed for referential processing difficulties. Crucially, this effect was modulated by the attractor: an increased negativity was observed for grammatically correct determiners that did not match the gender of the attractor, suggesting that structurally unavailable noun phrases were at least temporarily considered for grammatically correct ellipsis. These results constitute the first ERP evidence for cue-based retrieval interference during comprehension of grammatical sentences.
  • Nieuwland, M. S., Martin, A. E., & Carreiras, M. (2012). Brain regions that process case: Evidence from basque. Human Brain Mapping, 33(11), 2509-2520. doi:10.1002/hbm.21377.

    Abstract

    The aim of this event-related fMRI study was to investigate the cortical networks involved in case processing, an operation that is crucial to language comprehension yet whose neural underpinnings are not well-understood. What is the relationship of these networks to those that serve other aspects of syntactic and semantic processing? Participants read Basque sentences that contained case violations, number agreement violations or semantic anomalies, or that were both syntactically and semantically correct. Case violations elicited activity increases, compared to correct control sentences, in a set of parietal regions including the posterior cingulate, the precuneus, and the left and right inferior parietal lobules. Number agreement violations also elicited activity increases in left and right inferior parietal regions, and additional activations in the left and right middle frontal gyrus. Regions-of-interest analyses showed that almost all of the clusters that were responsive to case or number agreement violations did not differentiate between these two. In contrast, the left and right anterior inferior frontal gyrus and the dorsomedial prefrontal cortex were only sensitive to semantic violations. Our results suggest that whereas syntactic and semantic anomalies clearly recruit distinct neural circuits, case, and number violations recruit largely overlapping neural circuits and that the distinction between the two rests on the relative contributions of parietal and prefrontal regions, respectively. Furthermore, our results are consistent with recently reported contributions of bilateral parietal and dorsolateral brain regions to syntactic processing, pointing towards potential extensions of current neurocognitive theories of language. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
  • Nieuwland, M. S., & Martin, A. E. (2012). If the real world were irrelevant, so to speak: The role of propositional truth-value in counterfactual sentence comprehension. Cognition, 122(1), 102-109. doi:10.1016/j.cognition.2011.09.001.

    Abstract

    Propositional truth-value can be a defining feature of a sentence’s relevance to the unfolding discourse, and establishing propositional truth-value in context can be key to successful interpretation. In the current study, we investigate its role in the comprehension of counterfactual conditionals, which describe imaginary consequences of hypothetical events, and are thought to require keeping in mind both what is true and what is false. Pre-stored real-world knowledge may therefore intrude upon and delay counterfactual comprehension, which is predicted by some accounts of discourse comprehension, and has been observed during online comprehension. The impact of propositional truth-value may thus be delayed in counterfactual conditionals, as also claimed for sentences containing other types of logical operators (e.g., negation, scalar quantifiers). In an event-related potential (ERP) experiment, we investigated the impact of propositional truth-value when described consequences are both true and predictable given the counterfactual premise. False words elicited larger N400 ERPs than true words, in negated counterfactual sentences (e.g., “If N.A.S.A. had not developed its Apollo Project, the first country to land on the moon would have been Russia/America”) and real-world sentences (e.g., “Because N.A.S.A. developed its Apollo Project, the first country to land on the moon was America/Russia”) alike. These indistinguishable N400 effects of propositional truth-value, elicited by opposite word pairs, argue against disruptions by real-world knowledge during counterfactual comprehension, and suggest that incoming words are mapped onto the counterfactual context without any delay. Thus, provided a sufficiently constraining context, propositional truth-value rapidly impacts ongoing semantic processing, be the proposition factual or counterfactual.
  • Martin, A. E., & McElree, B. (2011). Direct-access retrieval during sentence comprehension: Evidence from Sluicing. Journal of Memory and Language, 64(4), 327-343. doi:10.1016/j.jml.2010.12.006.

    Abstract

    Language comprehension requires recovering meaning from linguistic form, even when the mapping between the two is indirect. A canonical example is ellipsis, the omission of information that is subsequently understood without being overtly pronounced. Comprehension of ellipsis requires retrieval of an antecedent from memory, without prior prediction, a property which enables the study of retrieval in situ ( Martin and McElree, 2008 and Martin and McElree, 2009). Sluicing, or inflectional-phrase ellipsis, in the presence of a conjunction, presents a test case where a competing antecedent position is syntactically licensed, in contrast with most cases of nonadjacent dependency, including verb–phrase ellipsis. We present speed–accuracy tradeoff and eye-movement data inconsistent with the hypothesis that retrieval is accomplished via a syntactically guided search, a particular variant of search not examined in past research. The observed timecourse profiles are consistent with the hypothesis that antecedents are retrieved via a cue-dependent direct-access mechanism susceptible to general memory variables.

Share this page