Andrea E. Martin

Publications

Displaying 1 - 15 of 15
  • Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2021). Structure-(in)dependent interpretation of phrases in humans and LSTMs. In Proceedings of the Society for Computation in Linguistics (SCiL 2021) (pp. 459-463).

    Abstract

    In this study, we compared the performance of a long short-term memory (LSTM) neural network to the behavior of human participants on a language task that requires hierarchically structured knowledge. We show that humans interpret ambiguous noun phrases, such as second blue ball, in line with their hierarchical constituent structure. LSTMs, instead, only do
    so after unambiguous training, and they do not systematically generalize to novel items. Overall, the results of our simulations indicate that a model can behave hierarchically without relying on hierarchical constituent structure.
  • Doumas, L. A. A., & Martin, A. E. (2021). A model for learning structured representations of similarity and relative magnitude from experience. Current Opinion in Behavioral Sciences, 37, 158-166. doi:10.1016/j.cobeha.2021.01.001.

    Abstract

    How a system represents information tightly constrains the kinds of problems it can solve. Humans routinely solve problems that appear to require abstract representations of stimulus properties and relations. How we acquire such representations has central importance in an account of human cognition. We briefly describe a theory of how a system can learn invariant responses to instances of similarity and relative magnitude, and how structured, relational representations can be learned from initially unstructured inputs. Two operations, comparing distributed representations and learning from the concomitant network dynamics in time, underpin the ability to learn these representations and to respond to invariance in the environment. Comparing analog representations of absolute magnitude produces invariant signals that carry information about similarity and relative magnitude. We describe how a system can then use this information to bootstrap learning structured (i.e., symbolic) concepts of relative magnitude from experience without assuming such representations a priori.
  • Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4), 789-802. doi:10.1177/1745691620970585.

    Abstract

    Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all.
  • Puebla, G., Martin, A. E., & Doumas, L. A. A. (2021). The relational processing limits of classic and contemporary neural network models of language processing. Language, Cognition and Neuroscience, 36(2), 240-254. doi:10.1080/23273798.2020.1821906.

    Abstract

    Whether neural networks can capture relational knowledge is a matter of long-standing controversy. Recently, some researchers have argued that (1) classic connectionist models can handle relational structure and (2) the success of deep learning approaches to natural language processing suggests that structured representations are unnecessary to model human language. We tested the Story Gestalt model, a classic connectionist model of text comprehension, and a Sequence-to-Sequence with Attention model, a modern deep learning architecture for natural language processing. Both models were trained to answer questions about stories based on abstract thematic roles. Two simulations varied the statistical structure of new stories while keeping their relational structure intact. The performance of each model fell below chance at least under one manipulation. We argue that both models fail our tests because they can't perform dynamic binding. These results cast doubts on the suitability of traditional neural networks for explaining relational reasoning and language processing phenomena.

    Additional information

    supplementary material
  • Ten Oever, S., & Martin, A. E. (2021). An oscillating computational model can track pseudo-rhythmic speech by using linguistic predictions. eLife, 10: e68066. doi:10.7554/eLife.68066.

    Abstract

    Neuronal oscillations putatively track speech in order to optimize sensory processing. However, it is unclear how isochronous brain oscillations can track pseudo-rhythmic speech input. Here we propose that oscillations can track pseudo-rhythmic speech when considering that speech time is dependent on content-based predictions flowing from internal language models. We show that temporal dynamics of speech are dependent on the predictability of words in a sentence. A computational model including oscillations, feedback, and inhibition is able to track pseudo-rhythmic speech input. As the model processes, it generates temporal phase codes, which are a candidate mechanism for carrying information forward in time. The model is optimally sensitive to the natural temporal speech dynamics and can explain empirical data on temporal speech illusions. Our results suggest that speech tracking does not have to rely only on the acoustics but could also exploit ongoing interactions between oscillations and constraints flowing from internal language models.
  • Doumas, L. A. A., Hamer, A., Puebla, G., & Martin, A. E. (2017). A theory of the detection and learning of structured representations of similarity and relative magnitude. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1955-1960). Austin, TX: Cognitive Science Society.

    Abstract

    Responding to similarity, difference, and relative magnitude (SDM) is ubiquitous in the animal kingdom. However, humans seem unique in the ability to represent relative magnitude (‘more’/‘less’) and similarity (‘same’/‘different’) as abstract relations that take arguments (e.g., greater-than (x,y)). While many models use structured relational representations of magnitude and similarity, little progress has been made on how these representations arise. Models that developuse these representations assume access to computations of similarity and magnitude a priori, either encoded as features or as output of evaluation operators. We detail a mechanism for producing invariant responses to “same”, “different”, “more”, and “less” which can be exploited to compute similarity and magnitude as an evaluation operator. Using DORA (Doumas, Hummel, & Sandhofer, 2008), these invariant responses can serve be used to learn structured relational representations of relative magnitude and similarity from pixel images of simple shapes
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). How robust are prediction effects in language comprehension? Failure to replicate article-elicited N400 effects. Language, Cognition and Neuroscience, 32, 954-965. doi:10.1080/23273798.2016.1242761.

    Abstract

    Current psycholinguistic theory proffers prediction as a central, explanatory mechanism in language
    processing. However, widely-replicated prediction effects may not mean that prediction is
    necessary in language processing. As a case in point, C. D. Martin et al. [2013. Bilinguals reading
    in their second language do not predict upcoming words as native readers do.
    Journal of
    Memory and Language, 69
    (4), 574

    588. doi:10.1016/j.jml.2013.08.001] reported ERP evidence for
    prediction in native- but not in non-native speakers. Articles mismatching an expected noun
    elicited larger negativity in the N400 time window compared to articles matching the expected
    noun in native speakers only. We attempted to replicate these findings, but found no evidence
    for prediction irrespective of language nativeness. We argue that pre-activation of phonological
    form of upcoming nouns, as evidenced in article-elicited effects, may not be a robust
    phenomenon. A view of prediction as a necessary computation in language comprehension
    must be re-evaluated.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). On predicting form and meaning in a second language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 635-652. doi:10.1037/xlm0000315.

    Abstract

    We used event-related potentials (ERP) to investigate whether Spanish−English bilinguals preactivate form and meaning of predictable words. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a . . .”), followed by the predictable word (book), a word that was form-related (hook) or semantically related (page) to the predictable word, or an unrelated word (sofa). Word stimulus onset synchrony (SOA) was 500 ms (Experiment 1) or 700 ms (Experiment 2). In both experiments, all nonpredictable words elicited classic N400 effects. Form-related and unrelated words elicited similar N400 effects. Semantically related words elicited smaller N400s than unrelated words, which however, did not depend on cloze value of the predictable word. Thus, we found no N400 evidence for preactivation of form or meaning at either SOA, unlike native-speaker results (Ito, Corley et al., 2016). However, non-native speakers did show the post-N400 posterior positivity (LPC effect) for form-related words like native speakers, but only at the slower SOA. This LPC effect increased gradually with cloze value of the predictable word. We do not interpret this effect as necessarily demonstrating prediction, but rather as evincing combined effects of top-down activation (contextual meaning) and bottom-up activation (form similarity) that result in activation of unseen words that fit the context well, thereby leading to an interpretation conflict reflected in the LPC. Although there was no evidence that non-native speakers preactivate form or meaning, non-native speakers nonetheless appear to use bottom-up and top-down information to constrain incremental interpretation much like native speakers do.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). Why the A/AN prediction effect may be hard to replicate: A rebuttal to DeLong, Urbach & Kutas (2017). Language, Cognition and Neuroscience, 32(8), 974-983. doi:10.1080/23273798.2017.1323112.
  • Martin, A. E., & Doumas, L. A. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. PLoS Biology, 15(3): e2000663. doi:10.1371/journal.pbio.2000663.

    Abstract

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation
  • Martin, A. E., Huettig, F., & Nieuwland, M. S. (2017). Can structural priming answer the important questions about language? A commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e304. doi:10.1017/S0140525X17000528.

    Abstract

    While structural priming makes a valuable contribution to psycholinguistics, it does not allow direct observation of representation, nor escape “source ambiguity.” Structural priming taps into implicit memory representations and processes that may differ from what is used online. We question whether implicit memory for language can and should be equated with linguistic representation or with language processing.
  • Martin, A. E., Monahan, P. J., & Samuel, A. G. (2017). Prediction of agreement and phonetic overlap shape sublexical identification. Language and Speech, 60(3), 356-376. doi:10.1177/0023830916650714.

    Abstract

    The mapping between the physical speech signal and our internal representations is rarely straightforward. When faced with uncertainty, higher-order information is used to parse the signal and because of this, the lexicon and some aspects of sentential context have been shown to modulate the identification of ambiguous phonetic segments. Here, using a phoneme identification task (i.e., participants judged whether they heard [o] or [a] at the end of an adjective in a noun–adjective sequence), we asked whether grammatical gender cues influence phonetic identification and if this influence is shaped by the phonetic properties of the agreeing elements. In three experiments, we show that phrase-level gender agreement in Spanish affects the identification of ambiguous adjective-final vowels. Moreover, this effect is strongest when the phonetic characteristics of the element triggering agreement and the phonetic form of the agreeing element are identical. Our data are consistent with models wherein listeners generate specific predictions based on the interplay of underlying morphosyntactic knowledge and surface phonetic cues.
  • Nieuwland, M. S., & Martin, A. E. (2017). Neural oscillations and a nascent corticohippocampal theory of reference. Journal of Cognitive Neuroscience, 29(5), 896-910. doi:10.1162/jocn_a_01091.

    Abstract

    The ability to use words to refer to the world is vital to the communicative power of human language. In particular, the anaphoric use of words to refer to previously mentioned concepts (antecedents) allows dialogue to be coherent and meaningful. Psycholinguistic theory posits that anaphor comprehension involves reactivating a memory representation of the antecedent. Whereas this implies the involvement of recognition memory, or the mnemonic sub-routines by which people distinguish old from new, the neural processes for reference resolution are largely unknown. Here, we report time-frequency analysis of four EEG experiments to reveal the increased coupling of functional neural systems associated with referentially coherent expressions compared to referentially problematic expressions. Despite varying in modality, language, and type of referential expression, all experiments showed larger gamma-band power for referentially coherent expressions compared to referentially problematic expressions. Beamformer analysis in high-density Experiment 4 localised the gamma-band increase to posterior parietal cortex around 400-600 ms after anaphor-onset and to frontaltemporal cortex around 500-1000 ms. We argue that the observed gamma-band power increases reflect successful referential binding and resolution, which links incoming information to antecedents through an interaction between the brain’s recognition memory networks and frontal-temporal language network. We integrate these findings with previous results from patient and neuroimaging studies, and we outline a nascent cortico-hippocampal theory of reference.
  • Davidson, D., & Martin, A. E. (2013). Modeling accuracy as a function of response time with the generalized linear mixed effects model. Acta Psychologica, 144(1), 83-96. doi:10.1016/j.actpsy.2013.04.016.

    Abstract

    In psycholinguistic studies using error rates as a response measure, response times (RT) are most often analyzed independently of the error rate, although it is widely recognized that they are related. In this paper we present a mixed effects logistic regression model for the error rate that uses RT as a trial-level fixed- and random-effect regression input. Production data from a translation–recall experiment are analyzed as an example. Several model comparisons reveal that RT improves the fit of the regression model for the error rate. Two simulation studies then show how the mixed effects regression model can identify individual participants for whom (a) faster responses are more accurate, (b) faster responses are less accurate, or (c) there is no relation between speed and accuracy. These results show that this type of model can serve as a useful adjunct to traditional techniques, allowing psycholinguistic researchers to examine more closely the relationship between RT and accuracy in individual subjects and better account for the variability which may be present, as well as a preliminary step to more advanced RT–accuracy modeling.
  • Nieuwland, M. S., Martin, A. E., & Carreiras, M. (2013). Event-related brain potential evidence for animacy processing asymmetries during sentence comprehension. Brain and Language, 126(2), 151-158. doi:10.1016/j.bandl.2013.04.005.

    Abstract

    The animacy distinction is deeply rooted in the language faculty. A key example is differential object marking, the phenomenon where animate sentential objects receive specific marking. We used event-related potentials to examine the neural processing consequences of case-marking violations on animate and inanimate direct objects in Spanish. Inanimate objects with incorrect prepositional case marker ‘a’ (‘al suelo’) elicited a P600 effect compared to unmarked objects, consistent with previous literature. However, animate objects without the required prepositional case marker (‘el obispo’) only elicited an N400 effect compared to marked objects. This novel finding, an exclusive N400 modulation by a straightforward grammatical rule violation, does not follow from extant neurocognitive models of sentence processing, and mirrors unexpected “semantic P600” effects for thematically problematic sentences. These results may reflect animacy asymmetry in competition for argument prominence: following the article, thematic interpretation difficulties are elicited only by unexpectedly animate objects.

Share this page