Andrea Ravignani

Publications

Displaying 1 - 6 of 6
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., & Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports, 4: 5283. doi:10.1038/srep05283.

    Abstract

    Cumulative tool-based culture underwrote our species' evolutionary success and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

    Supplementary material

    Supplementary Information
  • Martins, M., Raju, A., & Ravignani, A. (2014). Evaluating the role of quantitative modeling in language evolution. In L. McCrohon, B. Thompson, T. Verhoef, & H. Yamauchi (Eds.), The Past, Present and Future of Language Evolution Research: Student volume of the 9th International Conference on the Evolution of Language (pp. 84-93). Tokyo: EvoLang9 Organising Committee.

    Abstract

    Models are a flourishing and indispensable area of research in language evolution. Here we highlight critical issues in using and interpreting models, and suggest viable approaches. First, contrasting models can explain the same data and similar modelling techniques can lead to diverging conclusions. This should act as a reminder to use the extreme malleability of modelling parsimoniously when interpreting results. Second, quantitative techniques similar to those used in modelling language evolution have proven themselves inadequate in other disciplines. Cross-disciplinary fertilization is crucial to avoid mistakes which have previously occurred in other areas. Finally, experimental validation is necessary both to sharpen models' hypotheses, and to support their conclusions. Our belief is that models should be interpreted as quantitative demonstrations of logical possibilities, rather than as direct sources of evidence. Only an integration of theoretical principles, quantitative proofs and empirical validation can allow research in the evolution of language to progress.
  • Ravignani, A., Bowling, D. L., & Fitch, W. T. (2014). Chorusing, synchrony, and the evolutionary functions of rhythm. Frontiers in Psychology, 5: 1118. doi:10.3389/fpsyg.2014.01118.

    Abstract

    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an “Evolving Signal Timing” hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our “proto-musical” primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language.
  • Ravignani, A. (2014). Chronometry for the chorusing herd: Hamilton's legacy on context-dependent acoustic signalling—a comment on Herbers (2013). Biology Letters, 10(1): 20131018. doi:10.1098/rsbl.2013.1018.
  • Ravignani, A., Bowling, D., & Kirby, S. (2014). The psychology of biological clocks: A new framework for the evolution of rhythm. In E. A. Cartmill, S. G. Roberts, & H. Lyn (Eds.), The Evolution of Language: Proceedings of the 10th International Conference (pp. 262-269). Singapore: World Scientific.
  • Ravignani, A., Martins, M., & Fitch, W. T. (2014). Vocal learning, prosody, and basal ganglia: Don't underestimate their complexity. Behavioral and Brain Sciences, 37(6), 570-571. doi:10.1017/S0140525X13004184.

    Abstract

    In response to: Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective Abstract: Ackermann et al.'s arguments in the target article need sharpening and rethinking at both mechanistic and evolutionary levels. First, the authors' evolutionary arguments are inconsistent with recent evidence concerning nonhuman animal rhythmic abilities. Second, prosodic intonation conveys much more complex linguistic information than mere emotional expression. Finally, human adults' basal ganglia have a considerably wider role in speech modulation than Ackermann et al. surmise.

Share this page