Counting 'uhm's: how tracking the distribution of native and non-native disfluencies influences online language comprehension

Disfluencies, like 'uh', have been shown to help listeners anticipate reference to low-frequency words. The associative account of this 'disfluency bias' proposes that listeners learn to associate disfluency with low-frequency referents based on prior exposure to non-arbitrary disfluency distributions (i.e., greater probability of low-frequency words after disfluencies). However, there is limited evidence for listeners actually tracking disfluency distributions online. The present experiments are the first to show that adult listeners, exposed to a typical or more atypical disfluency distribution (i.e., hearing a talker unexpectedly say uh before high-frequency words), flexibly adjust their predictive strategies to the disfluency distribution at hand (e.g., learn to predict high-frequency referents after disfluency). However, when listeners were presented with the same atypical disfluency distribution but produced by a non-native speaker, no adjustment was observed. This suggests pragmatic inferences can modulate distributional learning, revealing the flexibility of, and constraints on, distributional learning in incremental language comprehension.
Publication type
Journal article
Publication date
2019

Share this page