subs2vec: Word embeddings from subtitles in 55 languages

Van Paridon, J., & Thompson, B. (2021). subs2vec: Word embeddings from subtitles in 55 languages. Behavior Research Methods, 53(2), 629-655. doi:10.3758/s13428-020-01406-3.
This paper introduces a novel collection of word embeddings, numerical representations of lexical semantics, in 55 languages, trained on a large corpus of pseudo-conversational speech transcriptions from television shows and movies. The embeddings were trained on the OpenSubtitles corpus using the fastText implementation of the skipgram algorithm. Performance comparable with (and in some cases exceeding) embeddings trained on non-conversational (Wikipedia) text is reported on standard benchmark evaluation datasets. A novel evaluation method of particular relevance to psycholinguists is also introduced: prediction of experimental lexical norms in multiple languages. The models, as well as code for reproducing the models and all analyses reported in this paper (implemented as a user-friendly Python package), are freely available at:
Additional information
Publication type
Journal article
Publication date

Share this page