Publications

Displaying 201 - 300 of 803
  • Eibl-Eibesfeldt, I., Senft, B., & Senft, G. (1998). Trobriander (Ost-Neuguinea, Trobriand Inseln, Kaile'una) Fadenspiele 'ninikula'. In Ethnologie - Humanethologische Begleitpublikationen von I. Eibl-Eibesfeldt und Mitarbeitern. Sammelband I, 1985-1987. Göttingen: Institut für den Wissenschaftlichen Film.
  • Eisenbeiss, S. (2000). The acquisition of Determiner Phrase in German child language. In M.-A. Friedemann, & L. Rizzi (Eds.), The Acquisition of Syntax (pp. 26-62). Harlow, UK: Pearson Education Ltd.
  • Eisner, F., & Scott, S. K. (2008). Speech and auditory processing in the cortex: Evidence from functional neuroimaging. In A. Cacace, & D. McFarland (Eds.), Controversies in central auditory processing disorder. San Diego, Ca: Plural Publishing.
  • Enfield, N. J. (2008). Verbs and multi-verb construction in Lao. In A. V. Diller, J. A. Edmondson, & Y. Luo (Eds.), The Tai-Kadai languages (pp. 83-183). London: Routledge.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2004). Building a corpus of multimodal interaction in your field site. In A. Majid (Ed.), Field Manual Volume 9 (pp. 32-36). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506951.

    Abstract

    This Field Manual entry has been superceded by the 2007 version:
    https://doi.org/10.17617/2.468728

    Files private

    Request files
  • Enfield, N. J., & Majid, A. (2008). Constructions in 'language and perception'. In A. Majid (Ed.), Field Manual Volume 11 (pp. 11-17). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492949.

    Abstract

    This field guide is for eliciting information about grammatical resources used in describing perceptual events and perception-based properties and states. A list of leading questions outlines an underlying semantic space for events/states of perception, against which language-specific constructions may be defined. It should be used as an entry point into a flexible exploration of the structures and constraints which are specific to the language you are working on. The goal is to provide a cross-linguistically comparable description of the constructions of a language used in describing perceptual events and states. The core focus is to discover any sensory asymmetries, i.e., ways in which different sensory modalities are treated differently with respect to these constructions.
  • Enfield, N. J. (2013). Doing fieldwork on the body, language, and communication. In C. Müller, E. Fricke, S. Ladewig, A. Cienki, D. McNeill, & S. Teßendorf (Eds.), Handbook Body – Language – Communication. Volume 1 (pp. 974-981). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2009). 'Case relations' in Lao, a radically isolating language. In A. L. Malčukov, & A. Spencer (Eds.), The Oxford handbook of case (pp. 808-819). Oxford: Oxford University Press.
  • Enfield, N. J. (2013). A ‘Composite Utterances’ approach to meaning. In C. Müller, E. Fricke, S. Ladewig, A. Cienki, D. McNeill, & S. Teßendorf (Eds.), Handbook Body – Language – Communication. Volume 1 (pp. 689-706). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2008). Common ground as a resource for social affiliation. In I. Kecskes, & J. L. Mey (Eds.), Intention, common ground and the egocentric speaker-hearer (pp. 223-254). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2004). Adjectives in Lao. In R. M. W. Dixon, & A. Y. Aikhenvald (Eds.), Adjective classes: A cross-linguistic typology (pp. 323-347). Oxford: Oxford University Press.
  • Enfield, N. J. (2004). Areal grammaticalisation of postverbal 'acquire' in mainland Southeast Asia. In S. Burusphat (Ed.), Proceedings of the 11th Southeast Asia Linguistics Society Meeting (pp. 275-296). Arizona State University: Tempe.
  • Enfield, N. J. (2008). Lao linguistics in the 20th century and since. In Y. Goudineau, & M. Lorrillard (Eds.), Recherches nouvelles sur le Laos (pp. 435-452). Paris: EFEO.
  • Enfield, N. J., Dingemanse, M., Baranova, J., Blythe, J., Brown, P., Dirksmeyer, T., Drew, P., Floyd, S., Gipper, S., Gisladottir, R. S., Hoymann, G., Kendrick, K. H., Levinson, S. C., Magyari, L., Manrique, E., Rossi, G., San Roque, L., & Torreira, F. (2013). Huh? What? – A first survey in 21 languages. In M. Hayashi, G. Raymond, & J. Sidnell (Eds.), Conversational repair and human understanding (pp. 343-380). New York: Cambridge University Press.

    Abstract

    Introduction

    A comparison of conversation in twenty-one languages from around the world reveals commonalities and differences in the way that people do open-class other-initiation of repair (Schegloff, Jefferson, and Sacks, 1977; Drew, 1997). We find that speakers of all of the spoken languages in the sample make use of a primary interjection strategy (in English it is Huh?), where the phonetic form of the interjection is strikingly similar across the languages: a monosyllable featuring an open non-back vowel [a, æ, ə, ʌ], often nasalized, usually with rising intonation and sometimes an [h-] onset. We also find that most of the languages have another strategy for open-class other-initiation of repair, namely the use of a question word (usually “what”). Here we find significantly more variation across the languages. The phonetic form of the question word involved is completely different from language to language: e.g., English [wɑt] versus Cha'palaa [ti] versus Duna [aki]. Furthermore, the grammatical structure in which the repair-initiating question word can or must be expressed varies within and across languages. In this chapter we present data on these two strategies – primary interjections like Huh? and question words like What? – with discussion of possible reasons for the similarities and differences across the languages. We explore some implications for the notion of repair as a system, in the context of research on the typology of language use.

    The general outline of this chapter is as follows. We first discuss repair as a system across languages and then introduce the focus of the chapter: open-class other-initiation of repair. A discussion of the main findings follows, where we identify two alternative strategies in the data: an interjection strategy (Huh?) and a question word strategy (What?). Formal features and possible motivations are discussed for the interjection strategy and the question word strategy in order. A final section discusses bodily behavior including posture, eyebrow movements and eye gaze, both in spoken languages and in a sign language.
  • Enfield, N. J., & Levinson, S. C. (2008). Metalanguage for speech acts. In A. Majid (Ed.), Field manual volume 11 (pp. 77-79). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492937.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J., & Levinson, S. C. (2009). Metalanguage for speech acts. In A. Majid (Ed.), Field manual volume 12 (pp. 51-53). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883559.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J. (2009). Language and culture. In L. Wei, & V. Cook (Eds.), Contemporary Applied Linguistics Volume 2 (pp. 83-97). London: Continuum.
  • Enfield, N. J. (2013). Hippie, interrupted. In J. Barker, & J. Lindquist (Eds.), Figures of Southeast Asian modernity (pp. 101-103). Honolulu: University of Hawaii Press.
  • Enfield, N. J. (2009). Everyday ritual in the residential world. In G. Senft, & E. B. Basso (Eds.), Ritual communication (pp. 51-80). Oxford: Berg.
  • Enfield, N. J. (2000). On linguocentrism. In M. Pütz, & M. H. Verspoor (Eds.), Explorations in linguistic relativity (pp. 125-157). Amsterdam: Benjamins.
  • Enfield, N. J. (2013). Reference in conversation. In J. Sidnell, & T. Stivers (Eds.), The handbook of conversation analysis (pp. 433-454). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch21.

    Abstract

    This chapter contains sections titled: Introduction Lexical Selection in Reference: Introductory Examples of Reference to Times Multiple “Preferences” Future Directions Conclusion
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Enfield, N. J., Levinson, S. C., & Stivers, T. (2008). Social action formulation: A "10-minutes" task. In A. Majid (Ed.), Field manual volume 11 (pp. 80-81). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492939.

    Abstract

    This Field Manual entry has been superceded by the 2009 version: https://doi.org/10.17617/2.883564

    Files private

    Request files
  • Enfield, N. J., Levinson, S. C., & Stivers, T. (2009). Social action formulation: A "10-minutes" task. In A. Majid (Ed.), Field manual volume 12 (pp. 54-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883564.

    Abstract

    Human actions in the social world – like greeting, requesting, complaining, accusing, asking, confirming, etc. – are recognised through the interpretation of signs. Language is where much of the action is, but gesture, facial expression and other bodily actions matter as well. The goal of this task is to establish a maximally rich description of a representative, good quality piece of conversational interaction, which will serve as a reference point for comparative exploration of the status of social actions and their formulation across language
  • Enfield, N. J., & Evans, G. (2000). Transcription as standardisation: The problem of Tai languages. In S. Burusphat (Ed.), Proceedings: the International Conference on Tai Studies, July 29-31, 1998, (pp. 201-212). Bangkok, Thailand: Institute of Language and Culture for Rural Development, Mahidol University.
  • Ernestus, M., & Giezenaar, G. (2015). Een goed verstaander heeft maar een half woord nodig. In B. Bossers (Ed.), Klassiek vakwerk II: Achtergronden van het NT2-onderwijs (pp. 143-155). Amsterdam: Boom.
  • Ernestus, M. (2016). L'utilisation des corpus oraux pour la recherche en (psycho)linguistique. In M. Kilani-Schoch, C. Surcouf, & A. Xanthos (Eds.), Nouvelles technologies et standards méthodologiques en linguistique (pp. 65-93). Lausanne: Université de Lausanne.
  • Ernestus, M. (2009). The roles of reconstruction and lexical storage in the comprehension of regular pronunciation variants. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 1875-1878). Causal Productions Pty Ltd.

    Abstract

    This paper investigates how listeners process regular pronunciation variants, resulting from simple general reduction processes. Study 1 shows that when listeners are presented with new words, they store the pronunciation variants presented to them, whether these are unreduced or reduced. Listeners thus store information on word-specific pronunciation variation. Study 2 suggests that if participants are presented with regularly reduced pronunciations, they also reconstruct and store the corresponding unreduced pronunciations. These unreduced pronunciations apparently have special status. Together the results support hybrid models of speech processing, assuming roles for both exemplars and abstract representations.
  • Eryilmaz, K., Little, H., & De Boer, B. (2016). Using HMMs To Attribute Structure To Artificial Languages. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/125.html.

    Abstract

    We investigated the use of Hidden Markov Models (HMMs) as a way of representing repertoires of continuous signals in order to infer their building blocks. We tested the idea on a dataset from an artificial language experiment. The study demonstrates using HMMs for this purpose is viable, but also that there is a lot of room for refinement such as explicit duration modeling, incorporation of autoregressive elements and relaxing the Markovian assumption, in order to accommodate specific details.
  • Esling, J. H., Benner, A., & Moisik, S. R. (2015). Laryngeal articulatory function and speech origins. In H. Little (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) Satellite Event: The Evolution of Phonetic Capabilities: Causes constraints, consequences (pp. 2-7). Glasgow: ICPhS.

    Abstract

    The larynx is the essential articulatory mechanism that primes the vocal tract. Far from being only a glottal source of voicing, the complex laryngeal mechanism entrains the ontogenetic acquisition of speech and, through coarticulatory coupling, guides the production of oral sounds in the infant vocal tract. As such, it is not possible to speculate as to the origins of the speaking modality in humans without considering the fundamental role played by the laryngeal articulatory mechanism. The Laryngeal Articulator Model, which divides the vocal tract into a laryngeal component and an oral component, serves as a basis for describing early infant speech and for positing how speech sounds evolving in various hominids may be related phonetically. To this end, we offer some suggestions for how the evolution and development of vocal tract anatomy fit with our infant speech acquisition data and discuss the implications this has for explaining phonetic learning and for interpreting the biological evolution of the human vocal tract in relation to speech and speech acquisition.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Fawcett, C., & Liszkowski, U. (2015). Social referencing during infancy and early childhood across cultures. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., pp. 556-562). doi:10.1016/B978-0-08-097086-8.23169-3.
  • Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.

    Abstract

    This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production
  • Filippi, P. (2015). Before Babel: The Evolutionary Roots of Human Language. In E. Velmezova, K. Kull, & S. J. Cowley (Eds.), Biosemiotic Perspectives on Language and Linguistics (pp. 191-204). Springer International Publishing. doi:10.1007/978-3-319-20663-9_10.

    Abstract

    The aim of the present work is to identify the evolutionary origins of the ability to speak and understand a natural language. I will adopt Botha’s “Windows Approach” (Language and Communication, 2006, 26, pp. 129–143) in order to justify the following two assumptions, which concern the evolutionary continuity between human language and animals’ communication systems: (a) despite the uniqueness of human language in sharing and conveying utterances with an open-ended structure, some isolated components of our linguistic competence are shared with non- human primates, grounding a line of evolutionary continuity; (b) the very first “linguistic” utterances were holistic, that is, whole bunches of sounds able to convey information despite their lack of modern syntax. I will address such suppositions through the comparative analysis of three constitutive features of human language: syntax, the semantic value of utterances, and the ability to attribute mental states to conspecifics, i.e. the theory of mind.
  • Filippi, P., Congdon, J. V., Hoang, J., Bowling, D. L., Reber, S., Pašukonis, A., Hoeschele, M., Ocklenburg, S., de Boer, B., Sturdy, C. B., Newen, A., & Güntürkün, O. (2016). Humans Recognize Vocal Expressions Of Emotional States Universally Across Species. In The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/91.html.

    Abstract

    The perception of danger in the environment can induce physiological responses (such as a heightened state of arousal) in animals, which may cause measurable changes in the prosodic modulation of the voice (Briefer, 2012). The ability to interpret the prosodic features of animal calls as an indicator of emotional arousal may have provided the first hominins with an adaptive advantage, enabling, for instance, the recognition of a threat in the surroundings. This ability might have paved the ability to process meaningful prosodic modulations in the emerging linguistic utterances.
  • Filippi, P., Ocklenburg, S., Bowling, D. L., Heege, L., Newen, A., Güntürkün, O., & de Boer, B. (2016). Multimodal Processing Of Emotional Meanings: A Hypothesis On The Adaptive Value Of Prosody. In The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/90.html.

    Abstract

    Humans combine multiple sources of information to comprehend meanings. These sources can be characterized as linguistic (i.e., lexical units and/or sentences) or paralinguistic (e.g. body posture, facial expression, voice intonation, pragmatic context). Emotion communication is a special case in which linguistic and paralinguistic dimensions can simultaneously denote the same, or multiple incongruous referential meanings. Think, for instance, about when someone says “I’m sad!”, but does so with happy intonation and a happy facial expression. Here, the communicative channels express very specific (although conflicting) emotional states as denotations. In such cases of intermodal incongruence, are we involuntarily biased to respond to information in one channel over the other? We hypothesize that humans are involuntary biased to respond to prosody over verbal content and facial expression, since the ability to communicate socially relevant information such as basic emotional states through prosodic modulation of the voice might have provided early hominins with an adaptive advantage that preceded the emergence of segmental speech (Darwin 1871; Mithen, 2005). To address this hypothesis, we examined the interaction between multiple communicative channels in recruiting attentional resources, within a Stroop interference task (i.e. a task in which different channels give conflicting information; Stroop, 1935). In experiment 1, we used synonyms of “happy” and “sad” spoken with happy and sad prosody. Participants were asked to identify the emotion expressed by the verbal content while ignoring prosody (Word task) or vice versa (Prosody task). Participants responded faster and more accurately in the Prosody task. Within the Word task, incongruent stimuli were responded to more slowly and less accurately than congruent stimuli. In experiment 2, we adopted synonyms of “happy” and “sad” spoken in happy and sad prosody, while a happy or sad face was displayed. Participants were asked to identify the emotion expressed by the verbal content while ignoring prosody and face (Word task), to identify the emotion expressed by prosody while ignoring verbal content and face (Prosody task), or to identify the emotion expressed by the face while ignoring prosody and verbal content (Face task). Participants responded faster in the Face task and less accurately when the two non-focused channels were expressing an emotion that was incongruent with the focused one, as compared with the condition where all the channels were congruent. In addition, in the Word task, accuracy was lower when prosody was incongruent to verbal content and face, as compared with the condition where all the channels were congruent. Our data suggest that prosody interferes with emotion word processing, eliciting automatic responses even when conflicting with both verbal content and facial expressions at the same time. In contrast, although processed significantly faster than prosody and verbal content, faces alone are not sufficient to interfere in emotion processing within a three-dimensional Stroop task. Our findings align with the hypothesis that the ability to communicate emotions through prosodic modulation of the voice – which seems to be dominant over verbal content - is evolutionary older than the emergence of segmental articulation (Mithen, 2005; Fitch, 2010). This hypothesis fits with quantitative data suggesting that prosody has a vital role in the perception of well-formed words (Johnson & Jusczyk, 2001), in the ability to map sounds to referential meanings (Filippi et al., 2014), and in syntactic disambiguation (Soderstrom et al., 2003). This research could complement studies on iconic communication within visual and auditory domains, providing new insights for models of language evolution. Further work aimed at how emotional cues from different modalities are simultaneously integrated will improve our understanding of how humans interpret multimodal emotional meanings in real life interactions.
  • Fisher, S. E. (2013). Building bridges between genes, brains and language. In J. J. Bolhuis, & M. Everaert (Eds.), Birdsong, speech and language: Exploring the evolution of mind and brain (pp. 425-454). Cambridge, Mass: MIT Press.
  • Fisher, S. E. (2016). A molecular genetic perspective on speech and language. In G. Hickok, & S. Small (Eds.), Neurobiology of Language (pp. 13-24). Amsterdam: Elsevier. doi:10.1016/B978-0-12-407794-2.00002-X.

    Abstract

    The rise of genomic technologies has yielded exciting new routes for studying the biological foundations of language. Researchers have begun to identify genes implicated in neurodevelopmental disorders that disrupt speech and language skills. This chapter illustrates how such work can provide powerful entry points into the critical neural pathways using FOXP2 as an example. Rare mutations of this gene cause problems with learning to sequence mouth movements during speech, accompanied by wide-ranging impairments in language production and comprehension. FOXP2 encodes a regulatory protein, a hub in a network of other genes, several of which have also been associated with language-related impairments. Versions of FOXP2 are found in similar form in many vertebrate species; indeed, studies of animals and birds suggest conserved roles in the development and plasticity of certain sets of neural circuits. Thus, the contributions of this gene to human speech and language involve modifications of evolutionarily ancient functions.
  • Fisher, S. E. (2015). Translating the genome in human neuroscience. In G. Marcus, & J. Freeman (Eds.), The future of the brain: Essays by the world's leading neuroscientists (pp. 149-159). Princeton, NJ: Princeton University Press.
  • Fitz, H., & Chang, F. (2009). Syntactic generalization in a connectionist model of sentence production. In J. Mayor, N. Ruh, & K. Plunkett (Eds.), Connectionist models of behaviour and cognition II: Proceedings of the 11th Neural Computation and Psychology Workshop (pp. 289-300). River Edge, NJ: World Scientific Publishing.

    Abstract

    We present a neural-symbolic learning model of sentence production which displays strong semantic systematicity and recursive productivity. Using this model, we provide evidence for the data-driven learnability of complex yes/no- questions.
  • Fitz, H., & Chang, F. (2008). The role of the input in a connectionist model of the accessibility hierarchy in development. In H. Chan, H. Jacob, & E. Kapia (Eds.), Proceedings from the 32nd Annual Boston University Conference on Language Development [BUCLD 32] (pp. 120-131). Somerville, Mass.: Cascadilla Press.
  • Flecken, M., & Gerwien, J. (2013). Grammatical aspect modulates event duration estimations: findings from Dutch. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual meeting of the Cognitive Science Society (CogSci 2013) (pp. 2309-2314). Austin,TX: Cognitive Science Society.
  • Floyd, S. (2016). Insubordination in Interaction: The Cha’palaa counter-assertive. In N. Evans, & H. Wananabe (Eds.), Dynamics of Insubordination (pp. 341-366). Amsterdam: John Benjamins.

    Abstract

    In the Cha’palaa language of Ecuador the main-clause use of the otherwise non-finite morpheme -ba can be accounted for by a specific interactive practice: the ‘counter-assertion’ of statement or implicature of a previous conversational turn. Attention to the ways in which different constructions are deployed in such recurrent conversational contexts reveals a plausible account for how this type of dependent clause has come to be one of the options for finite clauses. After giving some background on Cha’palaa and placing ba clauses within a larger ecology of insubordination constructions in the language, this chapter uses examples from a video corpus of informal conversation to illustrate how interactive data provides answers that may otherwise be elusive for understanding how the different grammatical options for Cha’palaa finite verb constructions have been structured by insubordination
  • Floyd, S. (2009). Nexos históricos, gramaticales y culturales de los números en cha'palaa [Historical, grammatical and cultural connections of Cha'palaa numerals]. In Proceedings of the Conference on Indigenous Languages of Latin America (CILLA) -IV.

    Abstract

    Los idiomas sudamericanas tienen una diversidad de sistemas numéricos, desde sistemas con solamente dos o tres términos en algunos idiomas amazónicos hasta sistemas con numerales extendiendo a miles. Una mirada al sistema del idioma cha’palaa de Ecuador demuestra rasgos de base-2, base-5, base-10 y base-20, ligados a diferentes etapas de cambio, desarrollo y contacto lingüístico. Conocer estas etapas nos permite proponer algunas correlaciones con lo que conocemos de la historia de contactos culturales en la región. The South American languages have diverse types of numeral systems, from systems of just two or three terms in some Amazonian languages to systems extending into the thousands. A look a the system of the Cha'palaa language of Ecuador demonstrates base-2, base-5, base-10 and base-20 features, linked to different stages of change, development and language contact. Learning about these stages permits up to propose some correlations between them and what we know about the history of cultural contact in the region.
  • Floyd, S. (2004). Purismo lingüístico y realidad local: ¿Quichua puro o puro quichuañol? In Proceedings of the Conference on Indigenous Languages of Latin America (CILLA)-I.
  • Floyd, S. (2013). Semantic transparency and cultural calquing in the Northwest Amazon. In P. Epps, & K. Stenzel (Eds.), Upper Rio Negro: Cultural and linguistic interaction in northwestern Amazonia (pp. 271-308). Rio de Janiero: Museu do Indio. Retrieved from http://www.museunacional.ufrj.br/ppgas/livros_ele.html.

    Abstract

    The ethnographic literature has sometimes described parts of the northwest Amazon as areas of shared culture across linguistic groups. This paper illustrates how a principle of semantic transparency across languages is a key means of establishing elements of a common regional culture through practices like the calquing of ethnonyms and toponyms so that they are semantically, but not phonologically, equivalent across languages. It places the upper Rio Negro area of the northwest Amazon in a general discussion of cross-linguistic naming practices in South America and considers the extent to which a preference for semantic transparency can be linked to cases of widespread cultural ‘calquing’, in which culturally-important meanings are kept similar across different linguistic systems. It also addresses the principle of semantic transparency beyond specific referential phrases and into larger discourse structures. It concludes that an attention to semiotic practices in multilingual settings can provide new and more complex ways of thinking about the idea of shared culture.
  • Floyd, S., & Norcliffe, E. (2016). Switch reference systems in the Barbacoan languages and their neighbors. In R. Van Gijn, & J. Hammond (Eds.), Switch Reference 2.0 (pp. 207-230). Amsterdam: Benjamins.

    Abstract

    This chapter surveys the available data on Barbacoan languages and their neighbors to explore a case study of switch reference within a single language family and in a situation of areal contact. To the extent possible given the available data, we weigh accounts appealing to common inheritance and areal convergence to ask what combination of factors led to the current state of these languages. We discuss the areal distribution of switch reference systems in the northwest Andean region, the different types of systems and degrees of complexity observed, and scenarios of contact and convergence, particularly in the case of Barbacoan and Ecuadorian Quechua. We then covers each of the Barbacoan languages’ systems (with the exception of Totoró, represented by its close relative Guambiano), identifying limited formal cognates, primarily between closely-related Tsafiki and Cha’palaa, as well as broader functional similarities, particularly in terms of interactions with topic/focus markers. n accounts for the current state of affairs with a complex scenario of areal prevalence of switch reference combined with deep structural family inheritance and formal re-structuring of the systems over time
  • Folia, V., Forkstam, C., Hagoort, P., & Petersson, K. M. (2009). Language comprehension: The interplay between form and content. In N. Taatgen, & H. van Rijn (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 1686-1691). Austin, TX: Cognitive Science Society.

    Abstract

    In a 2x2 event-related FMRI study we find support for the idea that the inferior frontal cortex, centered on Broca’s region and its homologue, is involved in constructive unification operations during the structure-building process in parsing for comprehension. Tentatively, we provide evidence for a role of the dorsolateral prefrontal cortex centered on BA 9/46 in the control component of the language system. Finally, the left temporo-parietal cortex, in the vicinity of Wernicke’s region, supports the interaction between the syntax of gender agreement and sentence-level semantics.
  • Forkstam, C., Jansson, A., Ingvar, M., & Petersson, K. M. (2009). Modality transfer of acquired structural regularities: A preference for an acoustic route. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

    Abstract

    Human implicit learning can be investigated with implicit artificial grammar learning, a simple model for aspects of natural language acquisition. In this paper we investigate the remaining effect of modality transfer in syntactic classification of an acquired grammatical sequence structure after implicit grammar acquisition. Participants practiced either on acoustically presented syllable sequences or visually presented consonant letter sequences. During classification we independently manipulated the statistical frequency-based and rule-based characteristics of the classification stimuli. Participants performed reliably above chance on the within modality classification task although more so for those working on syllable sequence acquisition. These subjects were also the only group that kept a significant performance level in transfer classification. We speculate that this finding is of particular relevance in consideration of an ecological validity in the input signal in the use of artificial grammar learning and in language learning paradigms at large.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (Eds.), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.

    Abstract

    The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
    LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
    LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
    Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring.
  • Franken, M. K., McQueen, J. M., Hagoort, P., & Acheson, D. J. (2015). Assessing the link between speech perception and production through individual differences. In Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow: the University of Glasgow.

    Abstract

    This study aims to test a prediction of recent
    theoretical frameworks in speech motor control: if speech production targets are specified in auditory
    terms, people with better auditory acuity should have more precise speech targets.
    To investigate this, we had participants perform speech perception and production tasks in a counterbalanced order. To assess speech perception acuity, we used an adaptive speech discrimination
    task. To assess variability in speech production, participants performed a pseudo-word reading task; formant values were measured for each recording.
    We predicted that speech production variability to correlate inversely with discrimination performance.
    The results suggest that people do vary in their production and perceptual abilities, and that better discriminators have more distinctive vowel production targets, confirming our prediction. This
    study highlights the importance of individual
    differences in the study of speech motor control, and sheds light on speech production-perception interaction.
  • Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2016). Using Statistics to Learn Words and Grammatical Categories: How High Frequency Words Assist Language Acquisition. In A. Papafragou, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 81-86). Austin, Tx: Cognitive Science Society. Retrieved from https://mindmodeling.org/cogsci2016/papers/0027/index.html.

    Abstract

    Recent studies suggest that high-frequency words may benefit speech segmentation (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005) and grammatical categorisation (Monaghan, Christiansen, & Chater, 2007). To date, these tasks have been examined separately, but not together. We familiarised adults with continuous speech comprising repetitions of target words, and compared learning to a language in which targets appeared alongside high-frequency marker words. Marker words reliably preceded targets, and distinguished them into two otherwise unidentifiable categories. Participants completed a 2AFC segmentation test, and a similarity judgement categorisation test. We tested transfer to a word-picture mapping task, where words from each category were used either consistently or inconsistently to label actions/objects. Participants segmented the speech successfully, but only demonstrated effective categorisation when speech contained high-frequency marker words. The advantage of marker words extended to the early stages of the transfer task. Findings indicate the same high-frequency words may assist speech segmentation and grammatical categorisation.
  • Gannon, E., He, J., Gao, X., & Chaparro, B. (2016). RSVP Reading on a Smart Watch. In Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting (pp. 1130-1134).

    Abstract

    Reading with Rapid Serial Visual Presentation (RSVP) has shown promise for optimizing screen space and increasing reading speed without compromising comprehension. Given the wide use of small-screen devices, the present study compared RSVP and traditional reading on three types of reading comprehension, reading speed, and subjective measures on a smart watch. Results confirm previous studies that show faster reading speed with RSVP without detracting from comprehension. Subjective data indicate that Traditional is strongly preferred to RSVP as a primary reading method. Given the optimal use of screen space, increased speed and comparable comprehension, future studies should focus on making RSVP a more comfortable format.
  • Garcia, N., Lenkiewicz, P., Freire, M., & Monteiro, P. (2009). A new architecture for optical burst switching networks based on cooperative control. In Proceeding of the 8th IEEE International Symposium on Network Computing and Applications (IEEE NCA09) (pp. 310-313).

    Abstract

    This paper presents a new architecture for optical burst switched networks where the control plane of the network functions in a cooperative manner. Each node interprets the data conveyed by the control packet and forwards it to the next nodes, making the control plane of the network distribute the relevant information to all the nodes in the network. A cooperation transmission tree is used, thus allowing all the nodes to store the information related to the traffic management in the network, and enabling better network resource planning at each node. A model of this network architecture is proposed, and its performance is evaluated.
  • García Lecumberri, M. L., Cooke, M., Cutugno, F., Giurgiu, M., Meyer, B. T., Scharenborg, O., Van Dommelen, W., & Volin, J. (2008). The non-native consonant challenge for European languages. In INTERSPEECH 2008 - 9th Annual Conference of the International Speech Communication Association (pp. 1781-1784). ISCA Archive.

    Abstract

    This paper reports on a multilingual investigation into the effects of different masker types on native and non-native perception in a VCV consonant recognition task. Native listeners outperformed 7 other language groups, but all groups showed a similar ranking of maskers. Strong first language (L1) interference was observed, both from the sound system and from the L1 orthography. Universal acoustic-perceptual tendencies are also at work in both native and non-native sound identifications in noise. The effect of linguistic distance, however, was less clear: in large multilingual studies, listener variables may overpower other factors.
  • Gebre, B. G., Wittenburg, P., & Heskes, T. (2013). Automatic sign language identification. In Proceeding of the 20th IEEE International Conference on Image Processing (ICIP) (pp. 2626-2630).

    Abstract

    We propose a Random-Forest based sign language identification system. The system uses low-level visual features and is based on the hypothesis that sign languages have varying distributions of phonemes (hand-shapes, locations and movements). We evaluated the system on two sign languages -- British SL and Greek SL, both taken from a publicly available corpus, called Dicta Sign Corpus. Achieved average F1 scores are about 95% - indicating that sign languages can be identified with high accuracy using only low-level visual features.
  • Gebre, B. G., Wittenburg, P., & Heskes, T. (2013). Automatic signer diarization - the mover is the signer approach. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on (pp. 283-287). doi:10.1109/CVPRW.2013.49.

    Abstract

    We present a vision-based method for signer diarization -- the task of automatically determining "who signed when?" in a video. This task has similar motivations and applications as speaker diarization but has received little attention in the literature. In this paper, we motivate the problem and propose a method for solving it. The method is based on the hypothesis that signers make more movements than their interlocutors. Experiments on four videos (a total of 1.4 hours and each consisting of two signers) show the applicability of the method. The best diarization error rate (DER) obtained is 0.16.
  • Gebre, B. G., Zampieri, M., Wittenburg, P., & Heskes, T. (2013). Improving Native Language Identification with TF-IDF weighting. In Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 216-223).

    Abstract

    This paper presents a Native Language Identification (NLI) system based on TF-IDF weighting schemes and using linear classifiers - support vector machines, logistic regressions and perceptrons. The system was one of the participants of the 2013 NLI Shared Task in the closed-training track, achieving 0.814 overall accuracy for a set of 11 native languages. This accuracy was only 2.2 percentage points lower than the winner's performance. Furthermore, with subsequent evaluations using 10-fold cross-validation (as given by the organizers) on the combined training and development data, the best average accuracy obtained is 0.8455 and the features that contributed to this accuracy are the TF-IDF of the combined unigrams and bigrams of words.
  • Gebre, B. G., Wittenburg, P., & Heskes, T. (2013). The gesturer is the speaker. In Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013) (pp. 3751-3755).

    Abstract

    We present and solve the speaker diarization problem in a novel way. We hypothesize that the gesturer is the speaker and that identifying the gesturer can be taken as identifying the active speaker. We provide evidence in support of the hypothesis from gesture literature and audio-visual synchrony studies. We also present a vision-only diarization algorithm that relies on gestures (i.e. upper body movements). Experiments carried out on 8.9 hours of a publicly available dataset (the AMI meeting data) show that diarization error rates as low as 15% can be achieved.
  • Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465-480). New York: Psychology Press.
  • Gerwien, J., & Flecken, M. (2016). First things first? Top-down influences on event apprehension. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2633-2638). Austin, TX: Cognitive Science Society.

    Abstract

    Not much is known about event apprehension, the earliest stage of information processing in elicited language production studies, using pictorial stimuli. A reason for our lack of knowledge on this process is that apprehension happens very rapidly (<350 ms after stimulus onset, Griffin & Bock 2000), making it difficult to measure the process directly. To broaden our understanding of apprehension, we analyzed landing positions and onset latencies of first fixations on visual stimuli (pictures of real-world events) given short stimulus presentation times, presupposing that the first fixation directly results from information processing during apprehension
  • Gijssels, T., Bottini, R., Rueschemeyer, S.-A., & Casasanto, D. (2013). Space and time in the parietal cortex: fMRI Evidence for a meural asymmetry. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 495-500). Austin,TX: Cognitive Science Society. Retrieved from http://mindmodeling.org/cogsci2013/papers/0113/index.html.

    Abstract

    How are space and time related in the brain? This study contrasts two proposals that make different predictions about the interaction between spatial and temporal magnitudes. Whereas ATOM implies that space and time are symmetrically related, Metaphor Theory claims they are asymmetrically related. Here we investigated whether space and time activate the same neural structures in the inferior parietal cortex (IPC) and whether the activation is symmetric or asymmetric across domains. We measured participants’ neural activity while they made temporal and spatial judgments on the same visual stimuli. The behavioral results replicated earlier observations of a space-time asymmetry: Temporal judgments were more strongly influenced by irrelevant spatial information than vice versa. The BOLD fMRI data indicated that space and time activated overlapping clusters in the IPC and that, consistent with Metaphor Theory, this activation was asymmetric: The shared region of IPC was activated more strongly during temporal judgments than during spatial judgments. We consider three possible interpretations of this neural asymmetry, based on 3 possible functions of IPC.
  • Goldin-Meadow, S., Ozyurek, A., Sancar, B., & Mylander, C. (2009). Making language around the globe: A cross-linguistic study of homesign in the United States, China, and Turkey. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 27-39). New York: Psychology Press.
  • Goldin-Meadow, S., Gentner, D., Ozyurek, A., & Gurcanli, O. (2009). Spatial language supports spatial cognition: Evidence from deaf homesigners [abstract]. Cognitive Processing, 10(Suppl. 2), S133-S134.
  • Gordon, P. C., Lowder, M. W., & Hoedemaker, R. S. (2016). Reading in normally aging adults. In H. Wright (Ed.), Cognitive-Linguistic Processes and Aging (pp. 165-192). Amsterdam: Benjamins. doi:10.1075/z.200.07gor.

    Abstract

    The activity of reading raises fundamental theoretical and practical questions about healthy cognitive aging. Reading relies greatly on knowledge of patterns of language and of meaning at the level of words and topics of text. Further, this knowledge must be rapidly accessed so that it can be coordinated with processes of perception, attention, memory and motor control that sustain skilled reading at rates of four-to-five words a second. As such, reading depends both on crystallized semantic intelligence which grows or is maintained through healthy aging, and on components of fluid intelligence which decline with age. Reading is important to older adults because it facilitates completion of everyday tasks that are essential to independent living. In addition, it entails the kind of active mental engagement that can preserve and deepen the cognitive reserve that may mitigate the negative consequences of age-related changes in the brain. This chapter reviews research on the front end of reading (word recognition) and on the back end of reading (text memory) because both of these abilities are surprisingly robust to declines associated with cognitive aging. For word recognition, that robustness is surprising because rapid processing of the sort found in reading is usually impaired by aging; for text memory, it is surprising because other types of episodic memory performance (e.g., paired associates) substantially decline in aging. These two otherwise quite different levels of reading comprehension remain robust because they draw on the knowledge of language that older adults gain through a life-time of experience with language.
  • Gubian, M., Torreira, F., Strik, H., & Boves, L. (2009). Functional data analysis as a tool for analyzing speech dynamics a case study on the French word c'était. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (Interspeech 2009) (pp. 2199-2202).

    Abstract

    In this paper we introduce Functional Data Analysis (FDA) as a tool for analyzing dynamic transitions in speech signals. FDA makes it possible to perform statistical analyses of sets of mathematical functions in the same way as classical multivariate analysis treats scalar measurement data. We illustrate the use of FDA with a reduction phenomenon affecting the French word c'était /setε/ 'it was', which can be reduced to [stε] in conversational speech. FDA reveals that the dynamics of the transition from [s] to [t] in fully reduced cases may still be different from the dynamics of [s] - [t] transitions in underlying /st/ clusters such as in the word stage.
  • Le Guen, O. (2009). Geocentric gestural deixis among Yucatecan Maya (Quintana Roo, México). In 18th IACCP Book of Selected Congress Papers (pp. 123-136). Athens, Greece: Pedio Books Publishing.
  • Le Guen, O., Senft, G., & Sicoli, M. A. (2008). Language of perception: Views from anthropology. In A. Majid (Ed.), Field Manual Volume 11 (pp. 29-36). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.446079.

    Abstract

    To understand the underlying principles of categorisation and classification of sensory input semantic analyses must be based on both language and culture. The senses are not only physiological phenomena, but they are also linguistic, cultural, and social. The goal of this task is to explore and describe sociocultural patterns relating language of perception, ideologies of perception, and perceptual practice in our speech communities.
  • Le Guen, O. (2009). The ethnography of emotions: A field worker's guide. In A. Majid (Ed.), Field manual volume 12 (pp. 31-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.446076.

    Abstract

    The goal of this task is to investigate cross-cultural emotion categories in language and thought. This entry is designed to provide researchers with some guidelines to describe the emotional repertoire of a community from an emic perspective. The first objective is to offer ethnographic tools and a questionnaire in order to understand the semantics of emotional terms and the local conception of emotions. The second objective is to identify the local display rules of emotions in communicative interactions.
  • Gullberg, M. (2008). A helping hand? Gestures, L2 learners, and grammar. In S. G. McCafferty, & G. Stam (Eds.), Gesture: Second language acquisition and classroom research (pp. 185-210). New York: Routledge.

    Abstract

    This chapter explores what L2 learners' gestures reveal about L2 grammar. The focus is on learners’ difficulties with maintaining reference in discourse caused by their incomplete mastery of pronouns. The study highlights the systematic parallels between properties of L2 speech and gesture, and the parallel effects of grammatical development in both modalities. The validity of a communicative account of interlanguage grammar in this domain is tested by taking the cohesive properties of the gesture-speech ensemble into account. Specifically, I investigate whether learners use gestures to compensate for and to license over-explicit reference in speech. The results rule out a communicative account for the spoken variety of maintained reference. In contrast, cohesive gestures are found to be multi-functional. While the presence of cohesive gestures is not communicatively motivated, their spatial realisation is. It is suggested that gestures are exploited as a grammatical communication strategy to disambiguate speech wherever possible, but that they may also be doing speaker-internal work. The methodological importance of considering L2 gestures when studying grammar is also discussed.
  • Gullberg, M., & Indefrey, P. (2008). Cognitive and neural prerequisites for time in language: Any answers? In P. Indefrey, & M. Gullberg (Eds.), Time to speak: Cognitive and neural prerequisites for time in language (pp. 207-216). Oxford: Blackwell.
  • Gullberg, M. (2008). Gestures and second language acquisition. In P. Robinson, & N. C. Ellis (Eds.), Handbook of cognitive linguistics and second language acquisition (pp. 276-305). New York: Routledge.

    Abstract

    Gestures, the symbolic movements speakers perform while they speak, are systematically related to speech and language at multiple levels, and reflect cognitive and linguistic activities in non-trivial ways. This chapter presents an overview of what gestures can tell us about the processes of second language acquisition. It focuses on two key aspects, (a) gestures and the developing language system and (b) gestures and learning, and discusses some implications of an expanded view of language acquisition that takes gestures into account.
  • Gullberg, M., & De Bot, K. (Eds.). (2008). Gestures in language development [Special Issue]. Gesture, 8(2).
  • Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (Eds.), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.

    Abstract

    The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified.
  • Gullberg, M. (2009). Why gestures are relevant to the bilingual mental lexicon. In A. Pavlenko (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 161-184). Clevedon: Multilingual Matters.

    Abstract

    Gestures, the symbolic movements speakers perform while they speak, are systematically related to speech and language in non-trivial ways. This chapter presents an overview of what gestures can and cannot tell us about the monolingual and the bilingual mental lexicon. Gesture analysis opens for a broader view of the mental lexicon, targeting the interface between conceptual, semantic and syntactic aspects of event construal, and offers new possibilities for examining how languages co-exist and interact in bilinguals beyond the level of surface forms. The first section of this chapter gives a brief introduction to gesture studies and outlines the current views on the relationship between gesture, speech, and language. The second section targets the key questions for the study of the monolingual and bilingual lexicon, and illustrates the methods employed for addressing these questions. It further exemplifies systematic cross-linguistic patterns in gestural behaviour in monolingual and bilingual contexts. The final section discusses some implications of an expanded view of the multilingual lexicon that includes gesture, and outlines directions for future inquiry.

    Files private

    Request files
  • Gussenhoven, C., & Zhou, W. (2013). Revisiting pitch slope and height effects on perceived duration. In Proceedings of INTERSPEECH 2013: 14th Annual Conference of the International Speech Communication Association (pp. 1365-1369).

    Abstract

    The shape of pitch contours has been shown to have an effect on the perceived duration of vowels. For instance, vowels with high level pitch and vowels with falling contours sound longer than vowels with low level pitch. Depending on whether the
    comparison is between level pitches or between level and dynamic contours, these findings have been interpreted in two ways. For inter-level comparisons, where the duration results are the reverse of production results, a hypercorrection strategy in production has been proposed [1]. By contrast, for comparisons between level pitches and dynamic contours, the
    longer production data for dynamic contours have been held responsible. We report an experiment with Dutch and Chinese listeners which aimed to show that production data and perception data are each other’s opposites for high, low, falling and rising contours. We explain the results, which are consistent with earlier findings, in terms of the compensatory listening strategy of [2], arguing that the perception effects are due to a perceptual compensation of articulatory strategies and
    constraints, rather than that differences in production compensate for psycho-acoustic perception effects.
  • Gussenhoven, C., & Chen, A. (2000). Universal and language-specific effects in the perception of question intonation. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP) (pp. 91-94). Beijing: China Military Friendship Publish.

    Abstract

    Three groups of monolingual listeners, with Standard Chinese, Dutch and Hungarian as their native language, judged pairs of trisyllabic stimuli which differed only in their itch pattern. The segmental structure of the stimuli was made up by the experimenters and presented to subjects as being taken from a little-known language spoken on a South Pacific island. Pitch patterns consisted of a single rise-fall located on or near the second syllable. By and large, listeners selected the stimulus with the higher peak, the later eak, and the higher end rise as the one that signalled a question, regardless of language group. The result is argued to reflect innate, non-linguistic knowledge of the meaning of pitch variation, notably Ohala’s Frequency Code. A significant difference between groups is explained as due to the influence of the mother tongue.
  • Gussenhoven, C., & Chen, A. (2000). Universal and language-specific effects in the perception of question intonation. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP) (pp. 91-94).
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P., Ramsey, N. F., & Jensen, O. (2008). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (Eds.), Het brein te kijk: Verkenning van de cognitieve neurowetenschap (pp. 41-75). Amsterdam: Harcourt Assessment.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P. (2015). Het talige brein. In A. Aleman, & H. E. Hulshoff Pol (Eds.), Beeldvorming van het brein: Imaging voor psychiaters en psychologen (pp. 169-176). Utrecht: De Tijdstroom.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2015). Spiegelneuronen. In J. Brockmann (Ed.), Wetenschappelijk onkruid: 179 hardnekkige ideeën die vooruitgang blokkeren (pp. 455-457). Amsterdam: Maven Publishing.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P., & Poeppel, D. (2013). The infrastructure of the language-ready brain. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 233-255). Cambridge, MA: MIT Press.

    Abstract

    This chapter sketches in very general terms the cognitive architecture of both language comprehension and production, as well as the neurobiological infrastructure that makes the human brain ready for language. Focus is on spoken language, since that compares most directly to processing music. It is worth bearing in mind that humans can also interface with language as a cognitive system using sign and text (visual) as well as Braille (tactile); that is to say, the system can connect with input/output processes in any sensory modality. Language processing consists of a complex and nested set of subroutines to get from sound to meaning (in comprehension) or meaning to sound (in production), with remarkable speed and accuracy. The fi rst section outlines a selection of the major constituent operations, from fractionating the input into manageable units to combining and unifying information in the construction of meaning. The next section addresses the neurobiological infrastructure hypothesized to form the basis for language processing. Principal insights are summarized by building on the notion of “brain networks” for speech–sound processing, syntactic processing, and the construction of meaning, bearing in mind that such a neat three-way subdivision overlooks important overlap and shared mechanisms in the neural architecture subserving language processing. Finally, in keeping with the spirit of the volume, some possible relations are highlighted between language and music that arise from the infrastructure developed here. Our characterization of language and its neurobiological foundations is necessarily selective and brief. Our aim is to identify for the reader critical questions that require an answer to have a plausible cognitive neuroscience of language processing.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Hagoort, P. (2008). Über Broca, Gehirn und Bindung. In Jahrbuch 2008: Tätigkeitsberichte der Institute. München: Generalverwaltung der Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/306524/forschungsSchwerpunkt1?c=166434.

    Abstract

    Beim Sprechen und beim Sprachverstehen findet man die Wortbedeutung im Gedächtnis auf und kombiniert sie zu größeren Einheiten (Unifikation). Solche Unifikations-Operationen laufen auf unterschiedlichen Ebenen der Sprachverarbeitung ab. In diesem Beitrag wird ein Rahmen vorgeschlagen, in dem psycholinguistische Modelle mit neurobiologischer Sprachbetrachtung in Verbindung gebracht werden. Diesem Vorschlag zufolge spielt der linke inferiore frontale Gyrus (LIFG) eine bedeutende Rolle bei der Unifi kation
  • Hall-Lew, L., Fairs, A., & Lew, A. D. (2015). Tourists' Attitudes towards Linguistic Variation in Scotland. In E. Togersen, S. Hårstad, B. Maehlum, & U. Røyneland (Eds.), Language Variation - European Perspectives V (pp. 99-110). Amsterdam: Benjamins.

    Abstract

    This paper joins studies of linguistic variation (e.g. Labov 1972; Dubois & Horvath 2000) and discourse (e.g. Jaworski & Lawson 2005; Jaworski & Pritchard 2005; Thurlow & Jaworski 2010) that consider the intersection between language and tourism. By examining the language attitudes that tourists hold toward linguistic variability in their host community, we find that attitudes differ by context and with respect to tourists’ travel motivations. We suggest that these results are particularly likely in a context like Edinburgh, Scotland, where linguistic variation has an iconic link to place authenticity. We propose that the joint commodification of ‘intelligibility’ and ‘authenticity’ explains this variability. The results raise questions about how the commodity value of travel motivation and the associated context of language use influence language attitudes.
  • Hammarström, H., & O'Connor, L. (2013). Dependency sensitive typological distance. In L. Borin, & A. Saxena (Eds.), Approaches to measuring linguistic differences (pp. 337-360). Berlin: Mouton de Gruyter.
  • Hammarström, H. (2015). Glottolog: A free, online, comprehensive bibliography of the world's languages. In E. Kuzmin (Ed.), Proceedings of the 3rd International Conference on Linguistic and Cultural Diversity in Cyberspace (pp. 183-188). Moscow: UNESCO.
  • Hammarström, H. (2013). Noun class parallels in Kordofanian and Niger-Congo: Evidence of genealogical inheritance? In T. C. Schadeberg, & R. M. Blench (Eds.), Nuba Mountain Language Studies (pp. 549-570). Köln: Köppe.

Share this page