Publications

Displaying 1 - 100 of 140
  • Alhama, R. G., Rowland, C. F., & Kidd, E. (2020). Evaluating word embeddings for language acquisition. In E. Chersoni, C. Jacobs, Y. Oseki, L. Prévot, & E. Santus (Eds.), Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (pp. 38-42). Stroudsburg, PA, USA: Association for Computational Linguistics (ACL). doi:10.18653/v1/2020.cmcl-1.4.

    Abstract

    Continuous vector word representations (or
    word embeddings) have shown success in cap-turing semantic relations between words, as evidenced by evaluation against behavioral data of adult performance on semantic tasks (Pereira et al., 2016). Adult semantic knowl-edge is the endpoint of a language acquisition process; thus, a relevant question is whether these models can also capture emerging word
    representations of young language learners. However, the data for children’s semantic knowledge across development is scarce. In this paper, we propose to bridge this gap by using Age of Acquisition norms to evaluate word embeddings learnt from child-directed input. We present two methods that evaluate word embeddings in terms of (a) the semantic neighbourhood density of learnt words, and (b) con-
    vergence to adult word associations. We apply our methods to bag-of-words models, and find that (1) children acquire words with fewer semantic neighbours earlier, and (2) young learners only attend to very local context. These findings provide converging evidence for validity of our methods in understanding the prerequisite features for a distributional model of word learning.
  • Alibali, M. W., Kita, S., Bigelow, L. J., Wolfman, C. M., & Klein, S. M. (2001). Gesture plays a role in thinking for speaking. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité: Interactions et comportements multimodaux dans la communication. Actes du colloque ORAGE 2001 (pp. 407-410). Paris, France: Éditions L'Harmattan.
  • Ambridge, B., Rowland, C. F., Theakston, A. L., & Twomey, K. E. (2020). Introduction. In C. F. Rowland, A. L. Theakston, B. Ambridge, & K. E. Twomey (Eds.), Current Perspectives on Child Language Acquisition: How children use their environment to learn (pp. 1-7). Amsterdam: John Benjamins. doi:10.1075/tilar.27.int.
  • Ameka, F. K. (2001). Ideophones and the nature of the adjective word class in Ewe. In F. K. E. Voeltz, & C. Kilian-Hatz (Eds.), Ideophones (pp. 25-48). Amsterdam: Benjamins.
  • Ameka, F. K. (2001). Ewe. In J. Garry, & C. Rubino (Eds.), Facts about the world’s languages: An encyclopedia of the world's major languages past and present (pp. 207-213). New York: H.W. Wilson Press.
  • Amora, K. K., Garcia, R., & Gagarina, N. (2020). Tagalog adaptation of the Multilingual Assessment Instrument for Narratives: History, process and preliminary results. In N. Gagarina, & J. Lindgren (Eds.), New language versions of MAIN: Multilingual Assessment Instrument for Narratives – Revised (pp. 221-233).

    Abstract

    This paper briefly presents the current situation of bilingualism in the Philippines,
    specifically that of Tagalog-English bilingualism. More importantly, it describes the process of adapting the Multilingual Assessment Instrument for Narratives (LITMUS-MAIN) to Tagalog, the basis of Filipino, which is the country’s national language.
    Finally, the results of a pilot study conducted on Tagalog-English bilingual children and
    adults (N=27) are presented. The results showed that Story Structure is similar across the
    two languages and that it develops significantly with age.
  • Asano, Y., Yuan, C., Grohe, A.-K., Weber, A., Antoniou, M., & Cutler, A. (2020). Uptalk interpretation as a function of listening experience. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 735-739). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-150.

    Abstract

    The term “uptalk” describes utterance-final pitch rises that carry no sentence-structural information. Uptalk is usually dialectal or sociolectal, and Australian English (AusEng) is particularly known for this attribute. We ask here whether experience with an uptalk variety affects listeners’ ability to categorise rising pitch contours on the basis of the timing and height of their onset and offset. Listeners were two groups of English-speakers (AusEng, and American English), and three groups of listeners with L2 English: one group with Mandarin as L1 and experience of listening to AusEng, one with German as L1 and experience of listening to AusEng, and one with German as L1 but no AusEng experience. They heard nouns (e.g. flower, piano) in the framework “Got a NOUN”, each ending with a pitch rise artificially manipulated on three contrasts: low vs. high rise onset, low vs. high rise offset and early vs. late rise onset. Their task was to categorise the tokens as “question” or “statement”, and we analysed the effect of the pitch contrasts on their judgements. Only the native AusEng listeners were able to use the pitch contrasts systematically in making these categorisations.
  • Bauer, B. L. M. (2020). Appositive compounds in dialectal and sociolinguistic varieties of French. In M. Maiden, & S. Wolfe (Eds.), Variation and change in Gallo-Romance (pp. 326-346). Oxford: Oxford University Press.
  • De Boer, B., Thompson, B., Ravignani, A., & Boeckx, C. (2020). Analysis of mutation and fixation for language. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 56-58). Nijmegen: The Evolution of Language Conferences.
  • Bohnemeyer, J. (2001). Motionland films version 2: Referential communication task with motionland stimulus. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 97-99). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874623.

    Abstract

    How do languages express ideas of movement, and how do they package different components of moving, such as manner and path? This task supports detailed investigation of motion descriptions. The specific study goals are: (a) the coding of “via” grounds (i.e., ground objects which the figure moves along, over, around, through, past, etc.); (b) the coding of direction changes; (c) the spontaneous segmentation of complex motion scenarios; and (d) the gestural representation of motion paths. The stimulus set is 5 simple 3D animations (7-17 seconds long) that show a ball rolling through a landscape. The task is a director-matcher task for two participants. The director describes the path of the ball in each clip to the matcher, who is asked to trace the path with a pen in a 2D picture.

    Additional information

    2001_Motionland_films_v2.zip
  • Bohnemeyer, J., Eisenbeiss, S., & Narasimhan, B. (2001). Event triads. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 100-114). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874630.

    Abstract

    Judgments we make about how similar or different events are to each other can reveal the features we find useful in classifying the world. This task is designed to investigate how speakers of different languages classify events, and to examine how linguistic and gestural encoding relates to non-linguistic classification. Specifically, the task investigates whether speakers judge two events to be similar on the basis of (a) the path versus manner of motion, (b) sub-events versus larger complex events, (c) participant identity versus event identity, and (d) different participant roles. In the task, participants are asked to make similarity judgments concerning sets of 2D animation clips.
  • Bohnemeyer, J. (2001). A questionnaire on event integration. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 177-184). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Bohnemeyer, J., Bowerman, M., & Brown, P. (2001). Cut and break clips. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 90-96). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874626.

    Abstract

    How do different languages treat a particular semantic domain? It has already been established that languages have widely varied words for talking about “cutting” and “breaking” things: for example, English has a very general verb break, but K’iche’ Maya has many different ‘break’ verbs that are used for different kinds of objects (e.g., brittle, flexible, long). The aim of this task is to map out cross-linguistic lexicalisation patterns in the cutting/breaking domain. The stimuli comprise 61 short video clips that show one or two actors breaking various objects (sticks, carrots, pieces of cloth or string, etc.) using various instruments (a knife, a hammer, an axe, their hands, etc.), or situations in which various kinds of objects break spontaneously. The clips are used to elicit descriptions of actors’ actions and the state changes that the objects undergo.

    Additional information

    2001_Cut_and_break_clips.zip
  • Bohnemeyer, J. (2001). Toponym questionnaire. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 55-61). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874620.

    Abstract

    Place-names (toponyms) are at the intersection of spatial language, culture, and cognition. This questionnaire prepares the researcher to answer three overarching questions: how to formally identify place-names in the research language (i.e. according to morphological and syntactic criteria); what places place-names are employed to refer to (e.g. human settlements, landscape sites); and how places are semantically construed for this purpose. The questionnaire can in principle be answered using an existing database. However, additional elicitation with language consultants is recommended.
  • Bowerman, M., & Choi, S. (2001). Shaping meanings for language: Universal and language-specific in the acquisition of semantic categories. In M. Bowerman, & S. C. Levinson (Eds.), Language acquisition and conceptual development (pp. 475-511). Cambridge: Cambridge University Press.
  • Brown, P. (2001). Learning to talk about motion UP and DOWN in Tzeltal: Is there a language-specific bias for verb learning? In M. Bowerman, & S. C. Levinson (Eds.), Language acquisition and conceptual development (pp. 512-543). Cambridge: Cambridge University Press.

    Abstract

    The spatial vocabulary of the Mayan language Tzeltal is dominated by an Absolute system of spatial reckoning, whereby an "uphill/downhill" coordinate abstracted from the lay of the land is used to reckon spatial relationships on the horizontal in both small-scale and long distance space. This system is used in lieu of a Front/Back/Left/Right system which does not exist in this language. The spatial vocabulary dedicated to this system (which I refer to in general as the UP/DOWN vocabulary) includes intransitive motion verbs (roughly translatable as "ascend"/"descend"), their transitivized counterparts ("make it ascend/descend"), directional adverbs ("uphillwards"/"downhillwards"), and possessed relational nouns ("uphill/downhill in relation to it"). This same vocabulary applies to spatial relations on the vertical axis. Two seemingly contradictory observations about children's early meanings for the spatial verbs dedicated to this system motivate the proposal put forward in this paper. On the one hand, Tzeltal children's UP/DOWN vocabulary shows very early sensitivity to the semantic structure of the language they are learning: the meanings for these verbs are from the first usages attached to the slope of the land, and to particular places; there is no evidence of an initial preference for the vertical meaning. On the other hand, children's meanings remain for a long time too specific, and errors of interpretation/production (using the verbs to mean 'local slope of land' rather than 'overall N/S slope of land direction) are evident in verbal productions of some children as late as age 7 or 8. The proposal is made that the highly specific nature of Tzeltal verbs at the basic level influences the children's hypotheses about what kinds of meanings verbs can have.
  • Brown, P. (2001). Repetition. In K. Duranti (Ed.), Key terms in language and culture (pp. 219-222). Oxford: Blackwell.

    Abstract

    This is a reprint of the Brown 1999 article.
  • Brown, P. (2001). Politeness and language. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (pp. 11620-11624). Oxford: Elsevier Sciences.

    Abstract

    This is an encyclopedia entry surveying research and theoretical approaches to politeness phenomena in language usage.
  • Wu, D. H., & Bulut, T. (2020). The contribution of statistical learning to language and literacy acquisition. In K. D. Federmeier, & H. W. Huang (Eds.), Psychology of Learning and Motivation (pp. 283-318). doi:10.1016/bs.plm.2020.02.001.

    Abstract

    Acquisition and processing of written and spoken language is an impressive cognitive accomplishment considering the complexity of the tasks. While only humans seem to have evolved to the fullest extent the capacity that underpins these remarkable feats of development and civilization, the exact nature of such capacity has been subject to ongoing research. In this chapter, we focus on language competence and what makes it unique among the communication systems of different species. We then elaborate on the classical debate between nativist and environmentalist accounts of language acquisition, with reference to evidence for and against the critical period hypothesis. After introducing the regularity embedded in different languages and particularly in drastically different orthographies, we present behavioral and neurophysiological evidence for the sensitivity to systematic mapping between orthography and phonology. Because learning to read is to master such mapping, we assume that the ability to use statistical learning to appreciate the dependency among items would contribute to literacy acquisition. Empirical results from behavioral and neuroimaging experiments conducted in our and other laboratories provide support for the close link between statistical learning and literacy acquisition in native and foreign language. Such findings highlight the significance of domain-general statistical learning to domain-specific language acquisition, and point to an important direction for theories and practices of language education.

    Files private

    Request files
  • Burenhult, N. (2020). Foraging and the history of languages in the Malay Peninsula. In T. Güldemann, P. McConvell, & R. Rhodes (Eds.), The language of Hunter-Gatherers (pp. 164-197). Cambridge: Cambridge University Press.
  • Casillas, M., & Hilbrink, E. (2020). Communicative act development. In K. P. Schneider, & E. Ifantidou (Eds.), Developmental and Clinical Pragmatics (pp. 61-88). Berlin: De Gruyter Mouton.

    Abstract

    How do children learn to map linguistic forms onto their intended meanings? This chapter begins with an introduction to some theoretical and analytical tools used to study communicative acts. It then turns to communicative act development in spoken and signed language acquisition, including both the early scaffolding and production of communicative acts (both non-verbal and verbal) as well as their later links to linguistic development and Theory of Mind. The chapter wraps up by linking research on communicative act development to the acquisition of conversational skills, cross-linguistic and individual differences in communicative experience during development, and human evolution. Along the way, it also poses a few open questions for future research in this domain.
  • Chen, A., Rietveld, T., & Gussenhoven, C. (2001). Language-specific effects of pitch range on the perception of universal intonational meaning. In Eurospeech 2001 (pp. 1403-1406).
  • Chen, A., Rietveld, T., & Gussenhoven, C. (2001). Language-specific effects of pitch range on the perception of universal intonational meaning. In P. Dalsgaard, B. Lindberg, & H. Benner (Eds.), Proceedings of the 7th European Conference on Speech Communication and Technology, II (pp. 1403-1406). Aalborg: University of Aalborg.

    Abstract

    Two groups of listeners, with Dutch and British English as their native language judged stimuli in Dutch and British English, respectively, on the scales CONFIDENT vs. NOT CONFIDENT and FRIENDLY vs. NOT FRIENDLY, two meanings derived from Ohala's universal Frequency Code. The stimuli, which were lexically equivalent, were varied in pitch contour and pitch range. In both languages, the perceived degree of confidence decreases and that of friendliness increases when the pitch range is raised, as predicted by the Frequency Code. However, at identical pitch ranges, British English is perceived as more confident and more friendly than Dutch. We argue that this difference in degree of the use of the Frequency Code is due to the difference in the standard pitch ranges of Dutch and British English.
  • Cutler, A. (2001). Entries on: Acquisition of language by non-human primates; bilingualism; compound (linguistic); development of language-specific phonology; gender (linguistic); grammar; infant speech perception; language; lexicon; morphology; motor theory of speech perception; perception of second languages; phoneme; phonological store; phonology; prosody; sign language; slips of the tongue; speech perception; speech production; stress (linguistic); syntax; word recognition; words. In P. Winn (Ed.), Dictionary of biological psychology. London: Routledge.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2001). The roll of the silly ball. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 181-194). Cambridge, MA: MIT Press.
  • Dingemanse, M. (2020). Recruiting assistance and collaboration: A West-African corpus study. In S. Floyd, G. Rossi, & N. J. Enfield (Eds.), Getting others to do things: A pragmatic typology of recruitments (pp. 369-241). Berlin: Language Science Press. doi:10.5281/zenodo.4018388.

    Abstract

    Doing things for and with others is one of the foundations of human social life. This chapter studies a systematic collection of 207 requests for assistance and collaboration from a video corpus of everyday conversations in Siwu, a Kwa language of Ghana. A range of social action formats and semiotic resources reveals how language is adapted to the interactional challenges posed by recruiting assistance. While many of the formats bear a language-specific signature, their sequential and interactional properties show important commonalities across languages. Two tentative findings are put forward for further cross-linguistic examination: a “rule of three” that may play a role in the organisation of successive response pursuits, and a striking commonality in animal-oriented recruitments across languages that may be explained by convergent cultural evolution. The Siwu recruitment system emerges as one instance of a sophisticated machinery for organising collaborative action that transcends language and culture.
  • Dobel, C. E., Meyer, A. S., & Levelt, W. J. M. (2001). Registrierung von Augenbewegungen bei Studien zur Sprachproduktion. In A. Zimmer (Ed.), Experimentelle Psychologie. Proceedings of 43. Tagung experimentell arbeitender Psychologen (pp. 116-122). Lengerich, Germany: Pabst Science Publishers.
  • Doumas, L. A. A., Martin, A. E., & Hummel, J. E. (2020). Relation learning in a neurocomputational architecture supports cross-domain transfer. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 932-937). Montreal, QB: Cognitive Science Society.

    Abstract

    Humans readily generalize, applying prior knowledge to novel situations and stimuli. Advances in machine learning have begun to approximate and even surpass human performance, but these systems struggle to generalize what they have learned to untrained situations. We present a model based on wellestablished neurocomputational principles that demonstrates human-level generalisation. This model is trained to play one video game (Breakout) and performs one-shot generalisation to a new game (Pong) with different characteristics. The model
    generalizes because it learns structured representations that are functionally symbolic (viz., a role-filler binding calculus) from unstructured training data. It does so without feedback, and without requiring that structured representations are specified a priori. Specifically, the model uses neural co-activation to discover which characteristics of the input are invariant and to learn relational predicates, and oscillatory regularities in network firing to bind predicates to arguments. To our knowledge,
    this is the first demonstration of human-like generalisation in a machine system that does not assume structured representa-
    tions to begin with.
  • Enfield, N. J., Levinson, S. C., & Meira, S. (2001). Recognitional deixis. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 78-81). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874641.

    Abstract

    “Recognitional” words and constructions enshrine our systematic reliance on shared knowledge in dedicated morphological forms and usage patterns. For example, English has a large range of terms for use when a speaker cannot locate the word or name for something or someone (e.g., whatsit, what’s-his-name), but thinks that the interlocutor knows, or can easily work out, what the speaker is talking about. This task aims to identify and investigate these kinds of expressions in the research language, including their grammaticalised status, meaning, distribution, and productivity. The task consists of a questionnaire with examples of relevant hypothetical scenarios that can be used in eliciting the relevant terms. The researcher is then encouraged to pursue further questions in regard to these items.
  • Enfield, N. J. (2001). Body. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 62-77). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874633.

    Abstract

    This task investigates the extensional meaning of body part terms, in particular the terms for the upper and lower limbs. Two questions are addressed, namely (i) are the boundaries of these body parts universal, guided by proposed universals of object recognition? (ii) How can we compare the extensional meanings of body part terms within and across different systems of nomenclature? Consultants receive booklets with line drawings of a body and are asked to colour in specific parts of the body.
  • Enfield, N. J., & Bohnemeyer, J. (2001). Hidden colour-chips task: Demonstratives, attention, and interaction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 21-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874636.

    Abstract

    Demonstratives are typically described as encoding degrees of physical distance between the object referred to, and the speaker or addressee. For example, this in English is used to talk about things that are physically near the speaker, and that for things that are not. But is this how speakers really choose between these words in actual talk? This task aims to generate spontaneous language data concerning deixis, gesture, and demonstratives, and to investigate the significance of different factors (e.g., physical distance, attention) in demonstrative selection. In the presence of one consultant (the “memoriser”), sixteen colour chips are hidden under objects in a specified array. Another consultant enters the area and asks the memoriser to recount the locations of the chips. The task is designed to create a situation where the speaker genuinely attempts to manipulate the addressee’s attention on objects in the immediate physical space.
  • Enfield, N. J. (2001). Linguistic evidence for a Lao perspective on facial expression of emotion. In J. Harkins, & A. Wierzbicka (Eds.), Emotions in crosslinguistic perspective (pp. 149-166). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2001). On genetic and areal linguistics in Mainland South-East Asia: Parallel polyfunctionality of ‘acquire’. In A. Y. Aikhenvald, & R. M. Dixon (Eds.), Areal diffusion and genetic inheritance: Problems in comparative linguistics (pp. 255-290). Oxford University Press.
  • Enfield, N. J., & Dunn, M. (2001). Supplements to the Wilkins 1999 demonstrative questionnaire. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 82-84). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874638.
  • Ergin, R., Raviv, L., Senghas, A., Padden, C., & Sandler, W. (2020). Community structure affects convergence on uniform word orders: Evidence from emerging sign languages. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 84-86). Nijmegen: The Evolution of Language Conferences.
  • Fernald, A., McRoberts, G. W., & Swingley, D. (2001). Infants' developing competence in recognizing and understanding words in fluent speech. In J. Weissenborn, & B. Höhle (Eds.), Approaches to Bootstrapping: Phonological, lexical, syntactic and neurophysiological aspects of early language acquisition. Volume 1 (pp. 97-123). Amsterdam: Benjamins.
  • Fisher, S. E., & Smith, S. (2001). Progress towards the identification of genes influencing developmental dyslexia. In A. Fawcett (Ed.), Dyslexia: Theory and good practice (pp. 39-64). London: Whurr.
  • Fox, E. (2020). Literary Jerry and justice. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen. Nijmegen: Max Planck Institute for Psycholinguistics.
  • Frost, R. L. A., & Monaghan, P. (2020). Insights from studying statistical learning. In C. F. Rowland, A. L. Theakston, B. Ambridge, & K. E. Twomey (Eds.), Current Perspectives on Child Language Acquisition: How children use their environment to learn (pp. 65-89). Amsterdam: John Benjamins. doi:10.1075/tilar.27.03fro.

    Abstract

    Acquiring language is notoriously complex, yet for the majority of children this feat is accomplished with remarkable ease. Usage-based accounts of language acquisition suggest that this success can be largely attributed to the wealth of experience with language that children accumulate over the course of language acquisition. One field of research that is heavily underpinned by this principle of experience is statistical learning, which posits that learners can perform powerful computations over the distribution of information in a given input, which can help them to discern precisely how that input is structured, and how it operates. A growing body of work brings this notion to bear in the field of language acquisition, due to a developing understanding of the richness of the statistical information contained in speech. In this chapter we discuss the role that statistical learning plays in language acquisition, emphasising the importance of both the distribution of information within language, and the situation in which language is being learnt. First, we address the types of statistical learning that apply to a range of language learning tasks, asking whether the statistical processes purported to support language learning are the same or distinct across different tasks in language acquisition. Second, we expand the perspective on what counts as environmental input, by determining how statistical learning operates over the situated learning environment, and not just sequences of sounds in utterances. Finally, we address the role of variability in children’s input, and examine how statistical learning can accommodate (and perhaps even exploit) this during language acquisition.
  • Güldemann, T., & Hammarström, H. (2020). Geographical axis effects in large-scale linguistic distributions. In M. Crevels, & P. Muysken (Eds.), Language Dispersal, Diversification, and Contact. Oxford: Oxford University Press.
  • Gullberg, M., & Holmqvist, K. (2001). Eye tracking and the perception of gestures in face-to-face interaction vs on screen. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité (2001) (pp. 381-384). Paris, France: Editions Harmattan.
  • Hagoort, P., & Ramsey, N. (2001). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (Eds.), Het brein te kijk (pp. 39-67). Lisse: Swets & Zeitlinger.
  • Hagoort, P. (2001). De verbeelding aan de macht: Hoe het menselijk taalvermogen zichtbaar wordt in de (beeld) analyse van hersenactiviteit. In J. Joosse (Ed.), Biologie en psychologie: Naar vruchtbare kruisbestuivingen (pp. 41-60). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Hagoort, P. (2020). Taal. In O. Van den Heuvel, Y. Van der Werf, B. Schmand, & B. Sabbe (Eds.), Leerboek neurowetenschappen voor de klinische psychiatrie (pp. 234-239). Amsterdam: Boom Uitgevers.
  • Harmon, Z., & Kapatsinski, V. (2020). The best-laid plan of mice and men: Competition between top-down and preceding-item cues in plan execution. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 1674-1680). Montreal, QB: Cognitive Science Society.

    Abstract

    There is evidence that the process of executing a planned utterance involves the use of both preceding-context and top-down cues. Utterance-initial words are cued only by the top-down plan. In contrast, non-initial words are cued both by top-down cues and preceding-context cues. Co-existence of both cue types raises the question of how they interact during learning. We argue that this interaction is competitive: items that tend to be preceded by predictive preceding-context cues are harder to activate from the plan without this predictive context. A novel computational model of this competition is developed. The model is tested on a corpus of repetition disfluencies and shown to account for the influences on patterns of restarts during production. In particular, this model predicts a novel Initiation Effect: following an interruption, speakers re-initiate production from words that tend to occur in utterance-initial position, even when they are not initial in the interrupted utterance.
  • Hashemzadeh, M., Kaufeld, G., White, M., Martin, A. E., & Fyshe, A. (2020). From language to language-ish: How brain-like is an LSTM representation of nonsensical language stimuli? In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 645-655). Association for Computational Linguistics.

    Abstract

    The representations generated by many mod-
    els of language (word embeddings, recurrent
    neural networks and transformers) correlate
    to brain activity recorded while people read.
    However, these decoding results are usually
    based on the brain’s reaction to syntactically
    and semantically sound language stimuli. In
    this study, we asked: how does an LSTM (long
    short term memory) language model, trained
    (by and large) on semantically and syntac-
    tically intact language, represent a language
    sample with degraded semantic or syntactic
    information? Does the LSTM representation
    still resemble the brain’s reaction? We found
    that, even for some kinds of nonsensical lan-
    guage, there is a statistically significant rela-
    tionship between the brain’s activity and the
    representations of an LSTM. This indicates
    that, at least in some instances, LSTMs and the
    human brain handle nonsensical data similarly.
  • De Heer Kloots, M., Carlson, D., Garcia, M., Kotz, S., Lowry, A., Poli-Nardi, L., de Reus, K., Rubio-García, A., Sroka, M., Varola, M., & Ravignani, A. (2020). Rhythmic perception, production and interactivity in harbour and grey seals. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 59-62). Nijmegen: The Evolution of Language Conferences.
  • Hellwig, F. M., & Lüpke, F. (2001). Caused positions. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 126-128). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874644.

    Abstract

    What kinds of resources to languages have for describing location and position? For some languages, verbs have an important role to play in describing different kinds of situations (e.g., whether a bottle is standing or lying on the table). This task is designed to examine the use of positional verbs in locative constructions, with respect to the presence or absence of a human “positioner”. Participants are asked to describe video clips showing locative states that occur spontaneously, or because of active interference from a person. The task follows on from two earlier tools for the elicitation of static locative descriptions (BowPed and the Ameka picture book task). A number of additional variables (e.g. canonical v. non-canonical orientation of the figure) are also targeted in the stimuli set.

    Additional information

    2001_Caused_positions.zip
  • Hoeksema, N., Villanueva, S., Mengede, J., Salazar-Casals, A., Rubio-García, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2020). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 162-164). Nijmegen: The Evolution of Language Conferences.
  • Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences.
  • Janse, E. (2001). Comparing word-level intelligibility after linear vs. non-linear time-compression. In Proceedings of the VIIth European Conference on Speech Communication and Technology Eurospeech (pp. 1407-1410).
  • Kastens, K. (2020). The Jerome Bruner Library treasure. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 29-34). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Khoe, Y. H., Tsoukala, C., Kootstra, G. J., & Frank, S. L. (2020). Modeling cross-language structural priming in sentence production. In T. C. Stewart (Ed.), Proceedings of the 18th Annual Meeting of the International Conference on Cognitive Modeling (pp. 131-137). University Park, PA, USA: The Penn State Applied Cognitive Science Lab.

    Abstract

    A central question in the psycholinguistic study of multilingualism is how syntax is shared across languages. We implement a model to investigate whether error-based implicit learning can provide an account of cross-language structural priming. The model is based on the Dual-path model of
    sentence-production (Chang, 2002). We implement our model using the Bilingual version of Dual-path (Tsoukala, Frank, & Broersma, 2017). We answer two main questions: (1) Can structural priming of active and passive constructions occur between English and Spanish in a bilingual version of the Dual-
    path model? (2) Does cross-language priming differ quantitatively from within-language priming in this model? Our results show that cross-language priming does occur in the model. This finding adds to the viability of implicit learning as an account of structural priming in general and cross-language
    structural priming specifically. Furthermore, we find that the within-language priming effect is somewhat stronger than the cross-language effect. In the context of mixed results from
    behavioral studies, we interpret the latter finding as an indication that the difference between cross-language and within-
    language priming is small and difficult to detect statistically.
  • Kidd, E., Bigood, A., Donnelly, S., Durrant, S., Peter, M. S., & Rowland, C. F. (2020). Individual differences in first language acquisition and their theoretical implications. In C. F. Rowland, A. L. Theakston, B. Ambridge, & K. E. Twomey (Eds.), Current Perspectives on Child Language Acquisition: How children use their environment to learn (pp. 189-219). Amsterdam: John Benjamins. doi:10.1075/tilar.27.09kid.

    Abstract

    Much of Lieven’s pioneering work has helped move the study of individual differences to the centre of child language research. The goal of the present chapter is to illustrate how the study of individual differences provides crucial insights into the language acquisition process. In part one, we summarise some of the evidence showing how pervasive individual differences are across the whole of the language system; from gestures to morphosyntax. In part two, we describe three causal factors implicated in explaining individual differences, which, we argue, must be built into any theory of language acquisition (intrinsic differences in the neurocognitive learning mechanisms, the child’s communicative environment, and developmental cascades in which each new linguistic skill that the child has to acquire depends critically on the prior acquisition of foundational abilities). In part three, we present an example study on the role of the speed of linguistic processing on vocabulary development, which illustrates our approach to individual differences. The results show evidence of a changing relationship between lexical processing speed and vocabulary over developmental time, perhaps as a result of the changing nature of the structure of the lexicon. The study thus highlights the benefits of an individual differences approach in building, testing, and constraining theories of language acquisition.
  • Kidd, E., Bavin, E. L., & Rhodes, B. (2001). Two-year-olds' knowledge of verbs and argument structures. In M. Almgren, A. Barreña, M.-J. Ezeuzabarrena, I. Idiazabal, & B. MacWhinney (Eds.), Research on child language acquisition: Proceedings of the 8th Conference of the International Association for the Study of Child language (pp. 1368-1382). Sommerville: Cascadilla Press.
  • Kita, S., Danziger, E., & Stolz, C. (2001). Cultural specificity of spatial schemas, as manifested in spontaneous gestures. In M. Gattis (Ed.), Spatial Schemas and Abstract Thought (pp. 115-146). Cambridge, MA, USA: MIT Press.
  • Kita, S. (2001). Locally-anchored spatial gestures, version 2: Historical description of the local environment as a gesture elicitation task. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 132-135). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874647.

    Abstract

    Gesture is an integral part of face-to-face communication, and provides a rich area for cross-cultural comparison. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. For example, such gestures may point to a location or a thing, trace the shape of a path, or indicate the direction of a particular area. The goal of this task is to elicit locally-anchored spatial gestures across different cultures. The task follows an interview format, where one participant prompts another to talk in detail about a specific area that the main speaker knows well. The data can be used for additional purposes such as the investigation of demonstratives.
  • Kita, S. (2001). Recording recommendations for gesture studies. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 130-131). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (1969). Bibliographie zur maschinellen syntaktischen Analyse. In H. Eggers, & R. Dietrich (Eds.), Elektronische Syntaxanalyse der deutschen Gegenwartssprache (pp. 165-177). Tübingen: Niemeyer.
  • Klein, W. (2001). Das Ende vor Augen: Deutsch als Wissenschaftssprache. In F. Debus, F. Kollmann, & U. Pörken (Eds.), Deutsch als Wissenschaftssprache im 20. Jahrhundert (pp. 289-293). Mainz: Akademie der Wissenschaften und der Literatur.
  • Klein, W. (2001). Deiktische Orientierung. In M. Haspelmath, E. König, W. Oesterreicher, & W. Raible (Eds.), Sprachtypologie und sprachliche Universalien: Vol. 1/1 (pp. 575-590). Berlin: de Gruyter.
  • Klein, W. (2001). Elementary forms of linguistic organisation. In S. Ward, & J. Trabant (Eds.), The origins of language (pp. 81-102). Berlin: Mouton de Gruyter.
  • Klein, W. (2001). Die Linguistik ist anders geworden. In S. Anschütz, S. Kanngießer, & G. Rickheit (Eds.), A Festschrift for Manfred Briegel: Spektren der Linguistik (pp. 51-72). Wiesbaden: Deutscher Universitätsverlag.
  • Klein, W. (1967). Einführende Bibliographie zu "Mathematik und Dichtung". In H. Kreuzer, & R. Gunzenhäuser (Eds.), Mathematik und Dichtung (pp. 347-359). München: Nymphenburger.
  • Klein, W. (2001). Lexicology and lexicography. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 13 (pp. 8764-8768). Amsterdam: Elsevier Science.
  • Klein, W. (2001). Second language acquisition. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 20 (pp. 13768-13771). Amsterdam: Elsevier science.
  • Klein, W. (2001). Time and again. In C. Féry, & W. Sternefeld (Eds.), Audiatur vox sapientiae: A festschrift for Arnim von Stechow (pp. 267-286). Berlin: Akademie Verlag.
  • Klein, W. (1969). Zum Begriff der syntaktischen Analyse. In H. Eggers, & R. Dietrich (Eds.), Elektronische Syntaxanalyse der deutschen Gegenwartssprache (pp. 20-37). Tübingen: Niemeyer.
  • Klein, W. (2001). Typen und Konzepte des Spracherwerbs. In L. Götze, G. Helbig, G. Henrici, & H. Krumm (Eds.), Deutsch als Fremdsprache (pp. 604-616). Berlin: de Gruyter.
  • Lattenkamp, E. Z., Linnenschmidt, M., Mardus, E., Vernes, S. C., Wiegrebe, L., & Schutte, M. (2020). Impact of auditory feedback on bat vocal development. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 249-251). Nijmegen: The Evolution of Language Conferences.
  • Lausberg, H., & Kita, S. (2001). Hemispheric specialization in nonverbal gesticulation investigated in patients with callosal disconnection. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité: Interactions et comportements multimodaux dans la communication. Actes du colloque ORAGE 2001 (pp. 266-270). Paris, France: Éditions L'Harmattan.
  • Lei, L., Raviv, L., & Alday, P. M. (2020). Using spatial visualizations and real-world social networks to understand language evolution and change. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 252-254). Nijmegen: The Evolution of Language Conferences.
  • Levelt, W. J. M. (1969). Semantic features: A psychological model and its mathematical analysis. In Heymans Bulletins Psychologische instituten R.U. Groningen, HB-69-45.
  • Levelt, W. J. M. (2001). The architecture of normal spoken language use. In G. Gupta (Ed.), Cognitive science: Issues and perspectives (pp. 457-473). New Delhi: Icon Publications.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (1969). Psycholinguistiek. In Winkler-Prins [Suppl.] (pp. A756-A757).
  • Levelt, W. J. M. (2001). Relations between speech production and speech perception: Some behavioral and neurological observations. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honour of Jacques Mehler (pp. 241-256). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2020). The alpha and omega of Jerome Bruner's contributions to the Max Planck Institute for Psycholinguistics. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 11-18). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    Presentation of the official opening of the Jerome Bruner Library, January 8th, 2020
  • Levelt, W. J. M., & Plomp, K. (1968). The appreciation of musical intervals. In J. M. M. Aler (Ed.), Proceedings of the fifth International Congress of Aesthetics, Amsterdam 1964 (pp. 901-904). The Hague: Mouton.
  • Levinson, S. C. (2001). Motion Verb Stimulus (Moverb) version 2. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 9-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513706.

    Abstract

    How do languages express ideas of movement, and how do they package different components of this domain, such as manner and path of motion? This task uses one large set of stimuli to gain knowledge of certain key aspects of motion verb meanings in the target language, and expands the investigation beyond simple verbs (e.g., go) to include the semantics of motion predications complete with adjuncts (e.g., go across something). Consultants are asked to view and briefly describe 96 animations of a few seconds each. The task is designed to get linguistic elicitations of motion predications under contrastive comparison with other animations in the same set. Unlike earlier tasks, the stimuli focus on inanimate moving items or “figures” (in this case, a ball).
  • Levinson, S. C. (2001). Covariation between spatial language and cognition. In M. Bowerman, & S. C. Levinson (Eds.), Language acquisition and conceptual development (pp. 566-588). Cambridge: Cambridge University Press.
  • Levinson, S. C., Kita, S., & Ozyurek, A. (2001). Demonstratives in context: Comparative handicrafts. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 52-54). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874663.

    Abstract

    Demonstratives (e.g., words such as this and that in English) pivot on relationships between the item being talked about, and features of the speech act situation (e.g., where the speaker and addressee are standing or looking). However, they are only rarely investigated multi-modally, in natural language contexts. This task is designed to build a video corpus of cross-linguistically comparable discourse data for the study of “deixis in action”, while simultaneously supporting the investigation of joint attention as a factor in speaker selection of demonstratives. In the task, two or more speakers are asked to discuss and evaluate a group of similar items (e.g., examples of local handicrafts, tools, produce) that are placed within a relatively defined space (e.g., on a table). The task can additionally provide material for comparison of pointing gesture practices.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2001). “Time and space” questionnaire for “space in thinking” subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 14-20). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Levinson, S. C. (2001). Maxim. In S. Duranti (Ed.), Key terms in language and culture (pp. 139-142). Oxford: Blackwell.
  • Levinson, S. C., Enfield, N. J., & Senft, G. (2001). Kinship domain for 'space in thinking' subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 85-88). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874655.
  • Levinson, S. C., & Wittenburg, P. (2001). Language as cultural heritage - Promoting research and public awareness on the Internet. In J. Renn (Ed.), ECHO - An Infrastructure to Bring European Cultural Heritage Online (pp. 104-111). Berlin: Max Planck Institute for the History of Science.

    Abstract

    The ECHO proposal aims to bring to life the cultural heritage of Europe, through internet technology that encourages collaboration across the Humanities disciplines which interpret it – at the same time making all this scholarship accessible to the citizens of Europe. An essential part of the cultural heritage of Europe is the diverse set of languages used on the continent, in their historical, literary and spoken forms. Amongst these are the ‘hidden languages’ used by minorities but of wide interest to the general public. We take the 18 Sign Languages of the EEC – the natural languages of the deaf - as an example. Little comparative information about these is available, despite their special scientific importance, the widespread public interest and the policy implications. We propose a research project on these languages based on placing fully annotated digitized moving images of each of these languages on the internet. This requires significant development of multi-media technology which would allow distributed annotation of a central corpus, together with the development of special search techniques. The technology would have widespread application to all cultural performances recorded as sound plus moving images. Such a project captures in microcosm the essence of the ECHO proposal: cultural heritage is nothing without the humanities research which contextualizes and gives it comparative assessment; by marrying information technology to humanities research, we can bring these materials to a wider public while simultaneously boosting Europe as a research area.
  • Levinson, S. C., Kita, S., & Enfield, N. J. (2001). Locally-anchored narrative. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 147). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874660.

    Abstract

    As for 'Locally-anchored spatial gestures task, version 2', a major goal of this task is to elicit locally-anchored spatial gestures across different cultures. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. Rather than set up an interview situation, this task involves recording informal, animated narrative delivered to a native-speaker interlocutor. Locally-anchored gestures produced in such narrative are roughly comparable to those collected in the interview task. The data collected can also be used to investigate a wide range of other topics.
  • Levinson, S. C. (2001). Space: Linguistic expression. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 22 (pp. 14749-14752). Oxford: Pergamon.
  • Levinson, S. C. (2001). Place and space in the sculpture of Anthony Gormley - An anthropological perspective. In S. D. McElroy (Ed.), Some of the facts (pp. 68-109). St Ives: Tate Gallery.
  • Levinson, S. C. (2001). Pragmatics. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 17 (pp. 11948-11954). Oxford: Pergamon.
  • Levinson, S. C., & Enfield, N. J. (2001). Preface and priorities. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levshina, N. (2020). How tight is your language? A semantic typology based on Mutual Information. In K. Evang, L. Kallmeyer, R. Ehren, S. Petitjean, E. Seyffarth, & D. Seddah (Eds.), Proceedings of the 19th International Workshop on Treebanks and Linguistic Theories (pp. 70-78). Düsseldorf, Germany: Association for Computational Linguistics. doi:10.18653/v1/2020.tlt-1.7.

    Abstract

    Languages differ in the degree of semantic flexibility of their syntactic roles. For example, Eng-
    lish and Indonesian are considered more flexible with regard to the semantics of subjects,
    whereas German and Japanese are less flexible. In Hawkins’ classification, more flexible lan-
    guages are said to have a loose fit, and less flexible ones are those that have a tight fit. This
    classification has been based on manual inspection of example sentences. The present paper
    proposes a new, quantitative approach to deriving the measures of looseness and tightness from
    corpora. We use corpora of online news from the Leipzig Corpora Collection in thirty typolog-
    ically and genealogically diverse languages and parse them syntactically with the help of the
    Universal Dependencies annotation software. Next, we compute Mutual Information scores for
    each language using the matrices of lexical lemmas and four syntactic dependencies (intransi-
    tive subjects, transitive subject, objects and obliques). The new approach allows us not only to
    reproduce the results of previous investigations, but also to extend the typology to new lan-
    guages. We also demonstrate that verb-final languages tend to have a tighter relationship be-
    tween lexemes and syntactic roles, which helps language users to recognize thematic roles early
    during comprehension.

    Additional information

    full text via ACL website
  • MacDonald, K., Räsänen, O., Casillas, M., & Warlaumont, A. S. (2020). Measuring prosodic predictability in children’s home language environments. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 695-701). Montreal, QB: Cognitive Science Society.

    Abstract

    Children learn language from the speech in their home environment. Recent work shows that more infant-directed speech
    (IDS) leads to stronger lexical development. But what makes IDS a particularly useful learning signal? Here, we expand on an attention-based account first proposed by Räsänen et al. (2018): that prosodic modifications make IDS less predictable, and thus more interesting. First, we reproduce the critical finding from Räsänen et al.: that lab-recorded IDS pitch is less predictable compared to adult-directed speech (ADS). Next, we show that this result generalizes to the home language environment, finding that IDS in daylong recordings is also less predictable than ADS but that this pattern is much less robust than for IDS recorded in the lab. These results link experimental work on attention and prosodic modifications of IDS to real-world language-learning environments, highlighting some challenges of scaling up analyses of IDS to larger datasets that better capture children’s actual input.
  • Yu, J., Mailhammer, R., & Cutler, A. (2020). Vocabulary structure affects word recognition: Evidence from German listeners. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 474-478). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-97.

    Abstract

    Lexical stress is realised similarly in English, German, and
    Dutch. On a suprasegmental level, stressed syllables tend to be
    longer and more acoustically salient than unstressed syllables;
    segmentally, vowels in unstressed syllables are often reduced.
    The frequency of unreduced unstressed syllables (where only
    the suprasegmental cues indicate lack of stress) however,
    differs across the languages. The present studies test whether
    listener behaviour is affected by these vocabulary differences,
    by investigating German listeners’ use of suprasegmental cues
    to lexical stress in German and English word recognition. In a
    forced-choice identification task, German listeners correctly
    assigned single-syllable fragments (e.g., Kon-) to one of two
    words differing in stress (KONto, konZEPT). Thus, German
    listeners can exploit suprasegmental information for
    identifying words. German listeners also performed above
    chance in a similar task in English (with, e.g., DIver, diVERT),
    i.e., their sensitivity to these cues also transferred to a nonnative
    language. An English listener group, in contrast, failed
    in the English fragment task. These findings mirror vocabulary
    patterns: German has more words with unreduced unstressed
    syllables than English does.
  • McQueen, J. M., Norris, D., & Cutler, A. (2001). Can lexical knowledge modulate prelexical representations over time? In R. Smits, J. Kingston, T. Neary, & R. Zondervan (Eds.), Proceedings of the workshop on Speech Recognition as Pattern Classification (SPRAAC) (pp. 145-150). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    The results of a study on perceptual learning are reported. Dutch subjects made lexical decisions on a list of words and nonwords. Embedded in the list were either [f]- or [s]-final words in which the final fricative had been replaced by an ambiguous sound, midway between [f] and [s]. One group of listeners heard ambiguous [f]- final Dutch words like [kara?] (based on karaf, carafe) and unambiguous [s]-final words (e.g., karkas, carcase). A second group heard the reverse (e.g., ambiguous [karka?] and unambiguous karaf). After this training phase, listeners labelled ambiguous fricatives on an [f]- [s] continuum. The subjects who had heard [?] in [f]- final words categorised these fricatives as [f] reliably more often than those who had heard [?] in [s]-final words. These results suggest that speech recognition is dynamic: the system adjusts to the constraints of each particular listening situation. The lexicon can provide this adjustment process with a training signal.
  • McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In C. Gussenhoven, & A. Chen (Eds.), The Oxford handbook of language prosody (pp. 509-521). Oxford: Oxford University Press.

    Abstract

    This chapter outlines a Bayesian model of spoken-word recognition and reviews how
    prosody is part of that model. The review focuses on the information that assists the lis­
    tener in recognizing the prosodic structure of an utterance and on how spoken-word
    recognition is also constrained by prior knowledge about prosodic structure. Recognition
    is argued to be a process of perceptual inference that ensures that listening is robust to
    variability in the speech signal. In essence, the listener makes inferences about the seg­
    mental content of each utterance, about its prosodic structure (simultaneously at differ­
    ent levels in the prosodic hierarchy), and about the words it contains, and uses these in­
    ferences to form an utterance interpretation. Four characteristics of the proposed
    prosody-enriched recognition model are discussed: parallel uptake of different informa­
    tion types, high contextual dependency, adaptive processing, and phonological abstrac­
    tion. The next steps that should be taken to develop the model are also discussed.
  • Meira, S., & Levinson, S. C. (2001). Topological tasks: General introduction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 29-51). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874665.
  • Mengede, J., Devanna, P., Hörpel, S. G., Firzla, U., & Vernes, S. C. (2020). Studying the genetic bases of vocal learning in bats. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 280-282). Nijmegen: The Evolution of Language Conferences.
  • Misersky, J., & Redl, T. (2020). A psycholinguistic view on stereotypical and grammatical gender: The effects and remedies. In C. D. J. Bulten, C. F. Perquin-Deelen, M. H. Sinninghe Damsté, & K. J. Bakker (Eds.), Diversiteit. Een multidisciplinaire terreinverkenning (pp. 237-255). Deventer: Wolters Kluwer.

Share this page