Publications

Displaying 1 - 100 of 848
  • Acerbi, A., Van Leeuwen, E. J. C., Haun, D. B. M., & Tennie, C. (2016). Conformity cannot be identified based on population-level signatures. Scientific Reports, 6: 36068. doi:10.1038/srep36068.

    Abstract

    Conformist transmission, defined as a disproportionate likelihood to copy the majority, is considered a potent mechanism underlying the emergence and stabilization of cultural diversity. However, ambiguity within and across disciplines remains as to how to identify conformist transmission empirically. In most studies, a population level outcome has been taken as the benchmark to evidence conformist transmission: a sigmoidal relation between individuals’ probability to copy the majority and the proportional majority size. Using an individual-based model, we show that, under ecologically plausible conditions, this sigmoidal relation can also be detected without equipping individuals with a conformist bias. Situations in which individuals copy randomly from a fixed subset of demonstrators in the population, or in which they have a preference for one of the possible variants, yield similar sigmoidal patterns as a conformist bias would. Our findings warrant a revisiting of studies that base their conformist transmission conclusions solely on the sigmoidal curve. More generally, our results indicate that population level outcomes interpreted as conformist transmission could potentially be explained by other individual-level strategies, and that more empirical support is needed to prove the existence of an individual-level conformist bias in human and other animals.
  • Acerbi, A., Van Leeuwen, E. J. C., Haun, D. B. M., & Tennie, C. (2018). Reply to 'Sigmoidal acquisition curves are good indicators of conformist transmission'. Scientific Reports, 8(1): 14016. doi:10.1038/s41598-018-30382-0.

    Abstract

    In the Smaldino et al. study ‘Sigmoidal Acquisition Curves are Good Indicators of Conformist Transmission’, our original findings regarding the conditional validity of using population-level sigmoidal acquisition curves as means to evidence individual-level conformity are contested. We acknowledge the identification of useful nuances, yet conclude that our original findings remain relevant for the study of conformist learning mechanisms. Replying to: Smaldino, P. E., Aplin, L. M. & Farine, D. R. Sigmoidal Acquisition Curves Are Good Indicators of Conformist Transmission. Sci. Rep. 8, https://doi.org/10.1038/s41598-018-30248-5 (2018).
  • Adams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S. and 322 moreAdams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beiser, A., Bernard, M., Bis, J. C., Blanken, L. M. E., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chauhan, G., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., Den Braber, A., Doan, N. T., Ehrlich, S., Filippi, I., Ge, T., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Greven, C. U., Grimm, O., Griswold, M. E., Guadalupe, T., Hass, J., Haukvik, U. K., Hilal, S., Hofer, E., Höhn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Karbalai, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee–, P. H., Liao, J., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A., Matarin, M., Mather, K. A., Mattheisen, M., Mazoyer, B., McKay, D. R., McWhirter, R., Milaneschi, Y., Muetzel, R. L., Muñoz Maniega, S., Nho, K., Nugent, A. C., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pappa, I., Pirpamer, L., Pudas, S., Pütz, B., Rajan, K. B., Ramasamy, A., Richards, J. S., Risacher, S. L., Roiz-Santiañez, R., Rommelse, N., Rose, E. J., Royle, N. A., Rundek, T., Sämann, P. G., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Thomson, R., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Vaidya, D., Van der Grond, J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., VanErp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Woldehawariat, G., Wolf, C., Wolfers, T., Xu, B., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Aggarwal, N. T., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, J. T., Becker, D. M., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Chen, C., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Erk, S., Espeseth, T., Evans, D. A., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Grabe, H. J., Green, R. C., Gruber, O., Guelfi, S., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Ikram, M. K., Jack Jr, C. R., Jenkinson, M., Johnson, R., Jönsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Launer, L. J., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Longstreth Jr, W. T., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Srikanth, V., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Tiemeier, H., Toga, A. W., Traynor, B., Troncoso, J., Turner, J. A., Tzourio, C., Uitterlinden, A. G., Valdés Hernández, M. C., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Duijn, C. M., Van Haren, N. E. M., Van 't Ent, D., Van Tol, M.-J., Vardarajan, B. N., Veltman, D. J., Vernooij, M. W., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. E., Weinberger, D. R., Weiner, M. W., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., the Alzheimer's Disease Neuroimaging Initiative, EPIGEN, IMAGEN, SYS, Deary, I. J., DeCarli, C., Schmidt, H., Martin, N. G., De Craen, A. J. M., Wright, M. J., Gudnason, V., Schumann, G., Fornage, M., Franke, B., Debette, S., Medland, S. E., Ikram, M. A., & Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 19, 1569-1582. doi:10.1038/nn.4398.

    Abstract

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late
    life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438
    adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were
    also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.
    We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic
    background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial
    volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes
    involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial
    volume and provide genetic support for theories on brain reserve and brain overgrowth.
  • Aebi, M., Van Donkelaar, M. M. J., Poelmans, G., Buitelaar, J. K., Sonuga-Barke, E. J., Stringaris, A., Consortium, I., Faraone, S. V., Franke, B., Steinhausen, H. C., & van Hulzen, K. J. (2016). Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 573-88. doi:10.1002/ajmg.b.32346.

    Abstract

    Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention-deficit-hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5-HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome-wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for "parental ability to cope with disruptive behavior." None of the hypothesis-driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome-wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top-ranked genes functionally interact in a molecular landscape centered around Beta-catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. (c) 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
  • Akeret, K., Forkel, S. J., Buzzi, R. M., Vasella, F., Amrein, I., Colacicco, G., Regli, L., Serra, C., & Krayenbühl, N. (2022). Multimodal anatomy of the human forniceal commissure. Communications Biology, 5: 742. doi:10.1038/s42003-022-03692-3.

    Abstract

    Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multiplanar histological analysis to characterize this structure’s anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals.

    Additional information

    supplementary material
  • Alagöz, G., Molz, B., Eising, E., Schijven, D., Francks, C., Jason L., S., & Fisher, S. E. (2022). Using neuroimaging genomics to investigate the evolution of human brain structure. Proceedings of the National Academy of Sciences of the United States of America, 119(40): e2200638119. doi:10.1073/pnas.2200638119.

    Abstract

    Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.

    Additional information

    supplementary information
  • Aldosimani, M., Verdonschot, R. G., Iwamoto, Y., Nakazawa, M., Mallya, S. M., Kakimoto, N., Toyosawa, S., Kreiborg, S., & Murakami, S. (2022). Prognostic factors for lymph node metastasis from upper gingival carcinomas. Oral Radiology, 38(3), 389-396. doi:10.1007/s11282-021-00568-w.

    Abstract

    This study sought to identify tumor characteristics that associate with regional lymph node metastases in squamous cell carcinomas originating in the upper gingiva.
  • Alhama, R. G., & Zuidema, W. (2018). Pre-Wiring and Pre-Training: What Does a Neural Network Need to Learn Truly General Identity Rules? Journal of Artificial Intelligence Research, 61, 927-946. doi:10.1613/jair.1.11197.

    Abstract

    In an influential paper (“Rule Learning by Seven-Month-Old Infants”), Marcus, Vijayan, Rao and Vishton claimed that connectionist models cannot account for human success at learning tasks that involved generalization of abstract knowledge such as grammatical rules. This claim triggered a heated debate, centered mostly around variants of the Simple Recurrent Network model. In our work, we revisit this unresolved debate and analyze the underlying issues from a different perspective. We argue that, in order to simulate human-like learning of grammatical rules, a neural network model should not be used as a tabula rasa, but rather, the initial wiring of the neural connections and the experience acquired prior to the actual task should be incorporated into the model. We present two methods that aim to provide such initial state: a manipulation of the initial connections of the network in a cognitively plausible manner (concretely, by implementing a “delay-line” memory), and a pre-training algorithm that incrementally challenges the network with novel stimuli. We implement such techniques in an Echo State Network (ESN), and we show that only when combining both techniques the ESN is able to learn truly general identity rules. Finally, we discuss the relation between these cognitively motivated techniques and recent advances in Deep Learning.
  • Alispahic, S., Pellicano, E., Cutler, A., & Antoniou, M. (2022). Auditory perceptual learning in autistic adults. Autism Research, 15(8), 1495-1507. doi:10.1002/aur.2778.

    Abstract

    The automatic retuning of phoneme categories to better adapt to the speech of a novel talker has been extensively documented across various (neurotypical) populations, including both adults and children. However, no studies have examined auditory perceptual learning effects in populations atypical in perceptual, social, and language processing for communication, such as populations with autism. Employing a classic lexically-guided perceptual learning paradigm, the present study investigated perceptual learning effects in Australian English autistic and non-autistic adults. The findings revealed that automatic attunement to existing phoneme categories was not activated in the autistic group in the same manner as for non-autistic control subjects. Specifically, autistic adults were able to both successfully discern lexical items and to categorize speech sounds; however, they did not show effects of perceptual retuning to talkers. These findings may have implications for the application of current sensory theories (e.g., Bayesian decision theory) to speech and language processing by autistic individuals.
    Lay Summary

    Lexically guided perceptual learning assists in the disambiguation of speech from a novel talker. The present study established that while Australian English autistic adult listeners were able to successfully discern lexical items and categorize speech sounds in their native language, perceptual flexibility in updating speaker-specific phonemic knowledge when exposed to a novel talker was not available. Implications for speech and language processing by autistic individuals as well as current sensory theories are discussed.

    Additional information

    data
  • Alves, P. N., Forkel, S. J., Corbetta, M., & Thiebaut de Schotten, M. (2022). The subcortical and neurochemical organization of the ventral and dorsal attention networks. Communications Biology, 5: 1343. doi:10.1038/s42003-022-04281-0.

    Abstract

    Attention is a core cognitive function that filters and selects behaviourally relevant information in the environment. The cortical mapping of attentional systems identified two segregated networks that mediate stimulus-driven and goal-driven processes, the Ventral and the Dorsal Attention Networks (VAN, DAN). Deep brain electrophysiological recordings, behavioral data from phylogenetic distant species, and observations from human brain pathologies challenge purely corticocentric models. Here, we used advanced methods of functional alignment applied to resting-state functional connectivity analyses to map the subcortical architecture of the Ventral and Dorsal Attention Networks. Our investigations revealed the involvement of the pulvinar, the superior colliculi, the head of caudate nuclei, and a cluster of brainstem nuclei relevant to both networks. These nuclei are densely connected structural network hubs, as revealed by diffusion-weighted imaging tractography. Their projections establish interrelations with the acetylcholine nicotinic receptor as well as dopamine and serotonin transporters, as demonstrated in a spatial correlation analysis with a normative atlas of neurotransmitter systems. This convergence of functional, structural, and neurochemical evidence provides a comprehensive framework to understand the neural basis of attention across different species and brain diseases.
  • Ambridge, B., Bidgood, A., Pine, J. M., & Rowland, C. F. (2016). Is Passive Syntax Semantically Constrained? Evidence From Adult Grammaticality Judgment and Comprehension Studies. Cognitive Science, 40, 1435-1459. doi:10.1111/cogs.12277.

    Abstract

    To explain the phenomenon that certain English verbs resist passivization (e.g., *£5 was cost by the book), Pinker (1989) proposed a semantic constraint on the passive in the adult grammar: The greater the extent to which a verb denotes an action where a patient is affected or acted upon, the greater the extent to which it is compatible with the passive. However, a number of comprehension and production priming studies have cast doubt upon this claim, finding no difference between highly affecting agent-patient/theme-experiencer passives (e.g., Wendy was kicked/frightened by Bob) and non-actional experiencer theme passives (e.g., Wendy was heard by Bob). The present study provides evidence that a semantic constraint is psychologically real, and is readily observed when more fine-grained independent and dependent measures are used (i.e., participant ratings of verb semantics, graded grammaticality judgments, and reaction time in a forced-choice picture-matching comprehension task). We conclude that a semantic constraint on the passive must be incorporated into accounts of the adult grammar.

    Additional information

    cogs12277-sup-0001-DataS1-S2.docx
  • Ameka, F. K. (1987). A comparative analysis of linguistic routines in two languages: English and Ewe. Journal of Pragmatics, 11(3), 299-326. doi:10.1016/0378-2166(87)90135-4.

    Abstract

    It is very widely acknowledged that linguistic routines are not only embodiments of the sociocultural values of speech communities that use them, but their knowledge and appropriate use also form an essential part of a speaker's communicative/pragmatic competence. Despite this, many studies concentrate more on describing the use of routines rather than explaining the socio-cultural aspects of their meaning and the way they affect their use. It is the contention of this paper that there is the need to go beyond descriptions to explanations and explications of the use and meaning of routines that are culturally and socially revealing. This view is illustrated by a comparative analysis of functionally equivalent formulaic expressions in English and Ewe. The similarities are noted and the differences explained in terms of the socio-cultural traditions associated with the respective languages. It is argued that insights gained from such studies are valuable for crosscultural understanding and communication as well as for second language pedagogy.
  • Andreu-Bernabeu, A., Diaz-Caneja, C. M., Costas, J., De Hoyos, L., Stella, C., Gurriaran, X., Alloza, C., Fañanás, L., Bobes, J., Gonzalez-Pinto, A., Crespo-Facorro, B., Martorell, L., Vilella, E., Muntane, G., Nacher, J., Molto, M. D., Aguilar, E. J., Parellada, M., Arango, C., & González-Peñas, J. (2022). Polygenic contribution to the relationship of loneliness and social isolation with schizophrenia. Nature Communications, 13: 51. doi:10.1038/s41467-021-27598-6.

    Abstract

    Previous research suggests an association of loneliness and social isolation (LNL-ISO) with schizophrenia. Here, we demonstrate a LNL-ISO polygenic score contribution to schizophrenia risk in an independent case-control sample (N = 3,488). We then subset schizophrenia predisposing variation based on its effect on LNL-ISO. We find that genetic variation with concordant effects in both phenotypes shows significant SNP-based heritability enrichment, higher polygenic contribution in females, and positive covariance with mental disorders such as depression, anxiety, attention-deficit hyperactivity disorder, alcohol dependence, and autism. Conversely, genetic variation with discordant effects only contributes to schizophrenia risk in males and is negatively correlated with those disorders. Mendelian randomization analyses demonstrate a plausible bi-directional causal relationship between LNL-ISO and schizophrenia, with a greater effect of LNL-ISO liability on schizophrenia than vice versa. These results illustrate the genetic footprint of LNL-ISO on schizophrenia.

    Additional information

    supplementary information
  • Anijs, M., Devanna, P., & Vernes, S. C. (2022). ARHGEF39, a gene implicated in developmental language disorder, activates RHOA and is involved in cell de-adhesion and neural progenitor cell proliferation. Frontiers in Molecular Neuroscience, 15: 941494. doi:10.3389/fnmol.2022.941494.

    Abstract

    ARHGEF39 was previously implicated in developmental language disorder (DLD) via a functional polymorphism that can disrupt post-transcriptional regulation by microRNAs. ARHGEF39 is part of the family of Rho guanine nucleotide exchange factors (RhoGEFs) that activate small Rho GTPases to regulate a wide variety of cellular processes. However, little is known about the function of ARHGEF39, or how its function might contribute to neurodevelopment or related disorders. Here, we explore the molecular function of ARHGEF39 and show that it activates the Rho GTPase RHOA and that high ARHGEF39 expression in cell cultures leads to an increase of detached cells. To explore its role in neurodevelopment, we analyse published single cell RNA-sequencing data and demonstrate that ARHGEF39 is a marker gene for proliferating neural progenitor cells and that it is co-expressed with genes involved in cell division. This suggests a role for ARHGEF39 in neurogenesis in the developing brain. The co-expression of ARHGEF39 with other RHOA-regulating genes supports RHOA as substrate of ARHGEF39 in neural cells, and the involvement of RHOA in neuropsychiatric disorders highlights a potential link between ARHGEF39 and neurodevelopment and disorder. Understanding the GTPase substrate, co-expression network, and processes downstream of ARHGEF39 provide new avenues for exploring the mechanisms by which altered expression levels of ARHGEF39 may contribute to neurodevelopment and associated disorders.

    Additional information

    tables figures
  • Araújo, S., Faísca, L., Reis, A., Marques, J. F., & Petersson, K. M. (2016). Visual naming deficits in dyslexia: An ERP investigation of different processing domains. Neuropsychologia, 91, 61-76. doi:10.1016/j.neuropsychologia.2016.07.007.

    Abstract

    Naming speed deficits are well documented in developmental dyslexia, expressed by slower naming times and more errors in response to familiar items. Here we used event-related potentials (ERPs) to examine at what processing level the deficits in dyslexia emerge during a discrete-naming task. Dyslexic and skilled adult control readers performed a primed object-naming task, in which the relationship between the prime and the target was manipulated along perceptual, semantic and phonological dimensions. A 3×2 design that crossed Relationship Type (Visual, Phonemic Onset, and Semantic) with Relatedness (Related and Unrelated) was used. An attenuated N/P190 – indexing early visual processing – and N300 – which index late visual processing – was observed to pictures preceded by perceptually related (vs. unrelated) primes in the control but not in the dyslexic group. These findings suggest suboptimal processing in early stages of object processing in dyslexia, when integration and mapping of perceptual information to a more form-specific percept in memory take place. On the other hand, both groups showed an N400 effect associated with semantically related pictures (vs. unrelated), taken to reflect intact integration of semantic similarities in both dyslexic and control readers. We also found an electrophysiological effect of phonological priming in the N400 range – that is, an attenuated N400 to objects preceded by phonemic related primes vs. unrelated – while it showed a more widespread distributed and more pronounced over the right hemisphere in the dyslexics. Topographic differences between groups might have originated from a word form encoding process with different characteristics in dyslexics compared to control readers.
  • Arshamian, A., Iravani, B., Majid, A., & Lundström, J. N. (2018). Respiration modulates olfactory memory consolidation in humans. The Journal of Neuroscience, 38(48), 10286-10294. doi:10.1523/JNEUROSCI.3360-17.2018.

    Abstract

    In mammals, respiratory-locked hippocampal rhythms are implicated in the scaffolding and transfer of information between sensory and memory networks. These oscillations are entrained by nasal respiration and driven by the olfactory bulb. They then travel to the piriform cortex where they propagate further downstream to the hippocampus and modulate neural processes critical for memory formation. In humans, bypassing nasal airflow through mouth-breathing abolishes these rhythms and impacts encoding as well as recognition processes thereby reducing memory performance. It has been hypothesized that similar behavior should be observed for the consolidation process, the stage between encoding and recognition, were memory is reactivated and strengthened. However, direct evidence for such an effect is lacking in human and non-human animals. Here we tested this hypothesis by examining the effect of respiration on consolidation of episodic odor memory. In two separate sessions, female and male participants encoded odors followed by a one hour awake resting consolidation phase where they either breathed solely through their nose or mouth. Immediately after the consolidation phase, memory for odors was tested. Recognition memory significantly increased during nasal respiration compared to mouth respiration during consolidation. These results provide the first evidence that respiration directly impacts consolidation of episodic events, and lends further support to the notion that core cognitive functions are modulated by the respiratory cycle.
  • Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.

    Abstract

    Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed.
  • Aschrafi, A., Verheijen, J., Gordebeke, P. M., Olde Loohuis, N. F., Menting, K., Jager, A., Palkovits, M., Geenen, B., Kos, A., Martens, G. J. M., Glennon, J. C., Kaplan, B. B., Gaszner, B., & Kozicz, T. (2016). MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression. Journal of Psychiatry & Neuroscience, 41(5), 342-354. doi:10.1503/jpn.150154.

    Abstract

    Background: Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger-Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain’s response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNAs), which are vital fine-tuners of gene expression during the brain’s response to stress, have the capacity to modulate Ucn1 expression. Methods: Computational analysis revealed that the Ucn1 3’ untranslated region contained a conserved binding site for miR-326. We examined miR-326 and Ucn1 levels in the EWcp of depressed suicide completers. In addition, we evaluated miR-326 and Ucn1 levels in the serum and the EWcp of a chronic variable mild stress (CVMS) rat model of behavioural despair and after recovery from CVMS, respectively. Gain and loss of miR-326 function experiments examined the regulation of Ucn1 by this miRNA in cultured midbrain neurons. Results: We found reduced miR-326 levels concomitant with elevated Ucn1 levels in the EWcp of depressed suicide completers as well as in the EWcp of CVMS rats. In CVMS rats fully recovered from stress, both serum and EWcp miR-326 levels rebounded to nonstressed levels. While downregulation of miR-326 levels in primary midbrain neurons enhanced Ucn1 expression levels, miR-326 overexpression selectively reduced the levels of this neuropeptide. Limitations: This study lacked experiments showing that in vivo alteration of miR-326 levels alleviate depression-like behaviours. We show only correlative data for miR-325 and cocaine- and amphetamine-regulated transcript levels in the EWcp. Conclusion: We identified miR-326 dysregulation in depressed suicide completers and characterized this miRNA as an upstream regulator of the Ucn1 neuropeptide expression in midbrain neurons. © 2016 Joule Inc. or its licensors.
  • Backus, A., Schoffelen, J.-M., Szebényi, S., Hanslmayr, S., & Doeller, C. (2016). Hippocampal-prefrontal theta oscillations support memory integration. Current Biology, 26, 450-457. doi:10.1016/j.cub.2015.12.048.

    Abstract

    Integration of separate memories forms the basis of inferential reasoning - an essential cognitive process that enables complex behavior. Considerable evidence suggests that both hippocampus and medial prefrontal cortex (mPFC) play a crucial role in memory integration. Although previous studies indicate that theta oscillations facilitate memory processes, the electrophysiological mechanisms underlying memory integration remain elusive. To bridge this gap, we recorded magnetoencephalography data while participants performed an inference task and employed novel source reconstruction techniques to estimate oscillatory signals from the hippocampus. We found that hippocampal theta power during encoding predicts subsequent memory integration. Moreover, we observed increased theta coherence between hippocampus and mPFC. Our results suggest that integrated memory representations arise through hippocampal theta oscillations, possibly reflecting dynamic switching between encoding and retrieval states, and facilitating communication with mPFC. These findings have important implications for our understanding of memory-based decision making and knowledge acquisition
  • Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. PLoS Biology, 20(7): e3001713. doi:10.1371/journal.pbio.3001713.

    Abstract

    Human language stands out in the natural world as a biological signal that uses a structured system to combine the meanings of small linguistic units (e.g., words) into larger constituents (e.g., phrases and sentences). However, the physical dynamics of speech (or sign) do not stand in a one-to-one relationship with the meanings listeners perceive. Instead, listeners infer meaning based on their knowledge of the language. The neural readouts of the perceptual and cognitive processes underlying these inferences are still poorly understood. In the present study, we used scalp electroencephalography (EEG) to compare the neural response to phrases (e.g., the red vase) and sentences (e.g., the vase is red), which were close in semantic meaning and had been synthesized to be physically indistinguishable. Differences in structure were well captured in the reorganization of neural phase responses in delta (approximately <2 Hz) and theta bands (approximately 2 to 7 Hz),and in power and power connectivity changes in the alpha band (approximately 7.5 to 13.5 Hz). Consistent with predictions from a computational model, sentences showed more power, more power connectivity, and more phase synchronization than phrases did. Theta–gamma phase–amplitude coupling occurred, but did not differ between the syntactic structures. Spectral–temporal response function (STRF) modeling revealed different encoding states for phrases and sentences, over and above the acoustically driven neural response. Our findings provide a comprehensive description of how the brain encodes and separates linguistic structures in the dynamics of neural responses. They imply that phase synchronization and strength of connectivity are readouts for the constituent structure of language. The results provide a novel basis for future neurophysiological research on linguistic structure representation in the brain, and, together with our simulations, support time-based binding as a mechanism of structure encoding in neural dynamics.
  • Bak, T., Long, M., Vega-Mendoza, M., & Sorace, A. (2016). Novelty, Challenge, and Practice: The Impact of Intensive Language Learning on Attentional Functions. PLoS One, 11(4): e0153485. doi:10.1371/journal.pone.0153485.

    Abstract

    We examined 33 participants of a one-week Scottish Gaelic course and compared them to 34 controls: 16 active controls who participated in courses of comparable duration and intensity but not involving foreign language learning and 18 passive controls who followed their usual routines. Participants completed auditory tests of attentional inhibition and switching. There was no difference between the groups in any measures at the beginning of the course. At the end of the course, a significant improvement in attention switching was observed in the language group (p < .001) but not the control group (p = .127), independent of the age of participants (18–78 years). Half of the language participants (n = 17) were retested nine months after their course. All those who practiced Gaelic 5 hours or more per week improved from their baseline performance. In contrast, those who practiced 4 hours or fewer showed an inconsistent pattern: some improved while others stayed the same or deteriorated. Our results suggest that even a short period of intensive language learning can modulate attentional functions and that all age groups can benefit from this effect. Moreover, these short-term effects can be maintained through continuous practice.
  • Bakker-Marshall, I., Takashima, A., Schoffelen, J.-M., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2018). Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation. Journal of Cognitive Neuroscience, 30(5), 621-633. doi:10.1162/jocn_a_01240.

    Abstract

    Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286–1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG.
  • Baranova, J., & Dingemanse, M. (2016). Reasons for requests. Discourse Studies, 18(6), 641-675. doi:10.1177/1461445616667154.

    Abstract

    Reasons play an important role in social interaction. We study reasons-giving in the context of request sequences in Russian. By contrasting request sequences with and without reasons, we are able to shed light on the interactional work people do when they provide reasons or ask for them. In a systematic collection of request sequences in everyday conversation (N = 158), we find reasons in a variety of sequential positions, showing the various points at which participants may orient to the need for a reason. Reasons may be left implicit (as in many minimal requests that are readily complied with), or they can be made explicit. Participants may make reasons explicit either as part of the initial formulation of a request or in an interactionally contingent way. Across sequential positions, we show that reasons for requests recurrently deal with three possible issues: (1) providing information when a request is underspecified, (2) managing relationships between the requester and requestee and (3) explicating ancillary actions implemented by a request. By spelling out information normally left to presuppositions and implicatures, reasons make requests more understandable and help participants to navigate the social landscape of asking assistance from others.
  • Barendse, M. T., Ligtvoet, R., Timmerman, M. E., & Oort, F. J. (2016). Model fit after pairwise maximum likelihood. Frontiers in Psychology, 7: 528. doi:10.3389/fpsyg.2016.00528.

    Abstract

    Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response patterns is computationally very intensive, the sum of the log–likelihoods of the bivariate response patterns is maximized instead. Little is yet known about how to assess model fit when the analysis is based on such a pairwise maximum likelihood (PML) of two–way contingency tables. We propose new fit criteria for the PML method and conduct a simulation study to evaluate their performance in model selection. With large sample sizes (500 or more), PML performs as well the robust weighted least squares analysis of polychoric correlations.
  • Barış Demiral, Ş., Gambi, C., Nieuwland, M. S., & Pickering, M. J. (2016). Neural correlates of verbal joint action: ERPs reveal common perception and action systems in a shared-Stroop task. Brain Research, 1649, 79-89. doi:10.1016/j.brainres.2016.08.025.

    Abstract

    Recent social-cognitive research suggests that the anticipation of co-actors' actions influences people's mental representations. However, the precise nature of such representations is still unclear. In this study we investigated verbal joint representations in a delayed Stroop paradigm, where each participant responded to one color after a short delay. Participants either performed the task as a single actor (single-action, Experiment 1), or they performed it together (joint-action, Experiment 2). We investigated effects of co-actors' actions on the ERP components associated with perceptual conflict (Go N2) and response selection (P3b). Compared to single-action, joint-action reduced the N2 amplitude congruency effect when participants had to respond (Go trials), indicating that representing a co-actor's utterance helped to dissociate action codes and attenuated perceptual conflict for the responding participant. Yet, on NoGo trials the centro-parietal P3 (P3b) component amplitude increased for joint-action, suggesting that participants mapped the stimuli onto the co-actor's upcoming response as if it were their own response. We conclude that people represent others' utterances similarly to the way they represent their own utterances, and that shared perception-action codes for self and others can sometimes reduce, rather than enhance, perceptual conflict.
  • Barthel, M., Sauppe, S., Levinson, S. C., & Meyer, A. S. (2016). The timing of utterance planning in task-oriented dialogue: Evidence from a novel list-completion paradigm. Frontiers in Psychology, 7: 1858. doi:10.3389/fpsyg.2016.01858.

    Abstract

    In conversation, interlocutors rarely leave long gaps between turns, suggesting that next speak- ers begin to plan their turns while listening to the previous speaker. The present experiment used analyses of speech onset latencies and eye-movements in a task-oriented dialogue paradigm to investigate when speakers start planning their response. Adult German participants heard a confederate describe sets of objects in utterances that either ended in a noun (e.g. Ich habe eine Tür und ein Fahrrad (‘I have a door and a bicycle’)) or a verb form (Ich habe eine Tür und ein Fahrrad besorgt (‘I have gotten a door and a bicycle’)), while the presence or absence of the final verb either was or was not predictable from the preceding sentence structure. In response, participants had to name any unnamed objects they could see in their own display in utterances such as Ich habe ein Ei (‘I have an egg’). The main question was when participants started to plan their response. The results are consistent with the view that speakers begin to plan their turn as soon as sufficient information is available to do so, irrespective of further incoming words.
  • Bast, B. J., Oonk, L. C., De Nil, L., Eising, E., Koenraads, S. P., Bouwen, J., & Franken, M.-C. (2022). Ontwikkeling van stotteren: Inleiding tot een praktijkmodel. Stem- Spraak- en Taalpathologie, 27, 1-7. doi:10.21827/32.8310/2022-1.

    Abstract

    Dit artikel is de inleiding op het direct hierna volgende (Oonk e.a. 2022) waar een nieuw praktijkmodel over het ontstaan en ontwikkeling van stotteren wordt voorgesteld.

    In de dagelijkse praktijk van vooral Nederlandstalige logopedisten (-stottertherapeuten) is tot nu toe veel gebruik gemaakt van het klinische werkmodel van Bertens (1994; 2017). Dit model gaat uit van een primaire neuromusculaire timingsstoornis, welke zich niet alleen uit in het spreken, maar ook in algemene zin aanwezig is. Dit model echter, is aan revisie toe. Volgens de recente literatuur is de algemene aard van die timingstoornis niet bewezen, en zijn er veel vroegere (meer primaire) factoren aantoonbaar van belang bij het ontstaan van stotteren, met name in de genetica en in de neurologie. In dit artikel wordt deze literatuur kort samengevat, alsmede worden enkele recente modellen omschreven. Met name regulatie en terugkoppeling krijgen in recente modellen meer aandacht. Er is geen volledigheid nagestreefd, maar dit artikel is meer een tutoriale opmaat voor het hierna te presenteren model.
    (This article serves as an introduction to the accompanying paper, in which a new clinical
    model of the origin and development of stuttering is presented (Oonk e.a., 2022).
    In their clinical practice, Dutch speech language pathologists still tend to use the
    clinical model proposed by Bertens (1994; 2017). This model explains stuttering as de-
    veloping from a primary neuromuscular timing deficit, which manifests itself not only
    in speech, but in more general behaviour as well. In our opinion, this model needs to be
    updated and revised based on current scientific and clinical knowledge. There is littleevidence for the general timing deficit in Bertens’ model and, moreover, several more
    fundamental factors, especially those related to genetics and neural processes, that have
    an important role in the onset of stuttering have been reported. This paper provides a
    review and summary of these recent data, and several newer models are described. An
    important aspect of these models is the importance given to processes of regulation
    and feedback. An exhaustive overview of the existing literature has not been strived for
    but it is hoped that this paper will serve as a useful introduction to the clinical model
    presented in the accompanying paper.)
  • Bastos, A. M., & Schoffelen, J.-M. (2016). A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in Systems Neuroscience, 9: 175. doi:10.3389/fnsys.2015.00175.

    Abstract

    Oscillatory neuronal activity may provide a mechanism for dynamic network coordination. Rhythmic neuronal interactions can be quantified using multiple metrics, each with their own advantages and disadvantages. This tutorial will review and summarize current analysis methods used in the field of invasive and non-invasive electrophysiology to study the dynamic connections between neuronal populations. First, we review metrics for functional connectivity, including coherence, phase synchronization, phase-slope index, and Granger causality, with the specific aim to provide an intuition for how these metrics work, as well as their quantitative definition. Next, we highlight a number of interpretational caveats and common pitfalls that can arise when performing functional connectivity analysis, including the common reference problem, the signal to noise ratio problem, the volume conduction problem, the common input problem, and the sample size bias problem. These pitfalls will be illustrated by presenting a set of MATLAB-scripts, which can be executed by the reader to simulate each of these potential problems. We discuss how these issues can be addressed using current methods.
  • Bauer, B. L. M. (2016). [Review of the book Social variation and the Latin language by James N. Adams]. Folia Linguistica Historica, 37, 315-326. doi:10.1515/flih-2016-0010.
  • Bauer, B. L. M. (1987). L’évolution des structures morphologiques et syntaxiques du latin au français. Travaux de linguistique, 14-15, 95-107.
  • Bauer, B. L. M., & Mota, M. (2018). On language, cognition, and the brain: An interview with Peter Hagoort. Sobre linguagem, cognição e cérebro: Uma entrevista com Peter Hagoort. Revista da Anpoll, (45), 291-296. doi:10.18309/anp.v1i45.1179.

    Abstract

    Managing Director of the Max Planck Institute for Psycholinguistics, founding Director of the Donders Centre for Cognitive Neuroimaging (DCCN, 1999), and professor of Cognitive Neuroscience at Radboud University, all located in Nijmegen, the Netherlands, PETER HAGOORT examines how the brain controls language production and comprehension. He was one of the first to integrate psychological theory and models from neuroscience in an attempt to understand how the human language faculty is instantiated in the brain.
  • Bavin, E. L., Prendergast, L. A., Kidd, E., Baker, E., & Dissanayake, C. (2016). Online processing of sentences containing noun modification in young children with high-functioning autism. International Journal of Language & Communication Disorders, 51(2), 137-147. doi:10.1111/1460-6984.12191.

    Abstract

    Background: There is variability in the language of children with autism, even those who are high functioning. However, little is known about how they process language structures in real time, including how they handle potential ambiguity, and whether they follow referential constraints. Previous research with older autism spectrum disorder (ASD) participants has shown that these individuals can use context to access rapidly the meaning of ambiguous words. The severity of autism has also been shown to influence the speed in which children with ASD access lexical information. Aims: To understand more about how children with ASD process language in real time (i.e., as it unfolds). The focus was the integration of information and use of referential constraints to identify a referent named in a sentence. Methods & Procedures: We used an eye-tracking task to compare performance between young, high-functioning children with autism (HFA) and children with typical development (TD). A large sample of 5–9-year-old children (mean age = 6;8 years), 48 with HFA and 56 with TD participated; all were attending mainstream schools. For each item participants were shown a display of four images that differed in two dimensions. Each sentence contained an adjective and noun that restricted the choice from four to two (the target and competitor), followed by a prepositional phrase (e.g., the blue square with dots); this added modifying information to provide a unique description of the target. We calculated looking time at the target, the competitor and the two distractors for each 200 ms time interval as children processed the sentence and looked at the display. Generalized estimating equations were used to carry out repeated-measures analyses on the proportion of looking time to target and competitor and time to fixate to target. Outcomes & Results: Children in both groups (HFA and TD) looked at the target and competitor more than at the distractors following the adjective and noun and following the modifying information in the prepositional phrase more at the target. However, the HFA group was significantly slower in both phases and looked proportionally less at the target. Across the sample, IQ and language did not affect the results; however, age and attention had an impact. The older children showed an advantage in processing the information as did the children with higher attention scores. Conclusions & Implications: The HFA group took longer than the TD group to integrate the disambiguating information provided in the course of processing a sentence and integrate it with the visual information, indicating that for the ASD group incremental processing was not as advanced as for children with ASD, and they were less sensitive to referential conventions. Training for young children with ASD on the use of referential conventions and available contextual clues may be of benefit to them in understanding the language they hear.
  • Bavin, E. L., Kidd, E., Prendergast, L. A., & Baker, E. K. (2016). Young Children with ASD Use Lexical and Referential Information During On-line Sentence Processing. Frontiers in Psychology, 7: 171. doi:10.3389/fpsyg.2016.00171.

    Abstract

    Research with adults and older children indicates that verb biases are strong influences on listeners’ interpretations when processing sentences, but they can be overruled. In this paper, we ask two questions: (i) are children with Autism Spectrum Disorder (ASD) who are high functioning sensitive to verb biases like their same age typically developing peers?, and (ii) do young children with ASD and young children with typical development (TD) override strong verb biases to consider alternative interpretations of ambiguous sentences? Participants were aged 5–9 years (mean age 6.65 years): children with ASD who were high functioning and children with TD. In task 1, biasing and neutral verbs were included (e.g., eat cake versus move cake). In task 2, the focus was on whether the prepositional phrase occurring with an instrument biasing verb (e.g., ‘Chop the tree with the axe’) was interpreted as an instrument even if the named item was an implausible instrument (e.g., candle in ‘Cut the cake with the candle’). Overall, the results showed similarities between groups but the ASD group was generally slower. In task 1, both groups looked at the named object faster in the biasing than the non-biasing condition, and in the biasing condition the ASD group looked away from the target more quickly than the TD group. In task 2, both groups identified the target in the prepositional phrase. They were more likely to override the verb instrument bias and consider the alternative (modification) interpretation in the implausible condition (e.g., looking at the picture of a cake with a candle on it’). Our findings indicate that children of age 5 years and above can use context to override verb biases. Additionally, an important component of the sentence processing mechanism is largely intact for young children with ASD who are high functioning. Like children with TD, they draw on verb semantics and plausibility in integrating information. However, they are likely to be slower in processing the language they hear. Based on previous findings of associations between processing speed and cognitive functioning, the implication is that their understanding will be negatively affected, as will their academic outcomes.
  • Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 37(5), 1788-1800. doi:10.1002/hbm.23136.

    Abstract

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations.
  • Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2018). Mapping of Human FOXP2 Enhancers Reveals Complex Regulation. Frontiers in Molecular Neuroscience, 11: 47. doi:10.3389/fnmol.2018.00047.

    Abstract

    Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators – FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2. Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders.
  • Beckmann, N. S., Indefrey, P., & Petersen, W. (2018). Words count, but thoughts shift: A frame-based account to conceptual shifts in noun countability. Voprosy Kognitivnoy Lingvistiki (Issues of Cognitive Linguistics ), 2, 79-89. doi:10.20916/1812-3228-2018-2-79-89.

    Abstract

    The current paper proposes a frame-based account to conceptual shifts in the countability do-main. We interpret shifts in noun countability as syntactically driven metonymy. Inserting a noun in an incongruent noun phrase, that is combining it with a determiner of the other countability class, gives rise to a re-interpretation of the noun referent. We assume lexical entries to be three-fold frame com-plexes connecting conceptual knowledge representations with language-specific form representations via a lemma level. Empirical data from a lexical decision experiment are presented, that support the as-sumption of such a lemma level connecting perceptual input of linguistic signs to conceptual knowledge.
  • Belpaeme, T., Vogt, P., Van den Berghe, R., Bergmann, K., Göksun, T., De Haas, M., Kanero, J., Kennedy, J., Küntay, A. C., Oudgenoeg-Paz, O., Papadopoulos, F., Schodde, T., Verhagen, J., Wallbridge, C. D., Willemsen, B., De Wit, J., Geçkin, V., Hoffmann, L., Kopp, S., Krahmer, E. and 4 moreBelpaeme, T., Vogt, P., Van den Berghe, R., Bergmann, K., Göksun, T., De Haas, M., Kanero, J., Kennedy, J., Küntay, A. C., Oudgenoeg-Paz, O., Papadopoulos, F., Schodde, T., Verhagen, J., Wallbridge, C. D., Willemsen, B., De Wit, J., Geçkin, V., Hoffmann, L., Kopp, S., Krahmer, E., Mamus, E., Montanier, J.-M., Oranç, C., & Pandey, A. K. (2018). Guidelines for designing social robots as second language tutors. International Journal of Social Robotics, 10(3), 325-341. doi:10.1007/s12369-018-0467-6.

    Abstract

    In recent years, it has been suggested that social robots have potential as tutors and educators for both children and adults. While robots have been shown to be effective in teaching knowledge and skill-based topics, we wish to explore how social robots can be used to tutor a second language to young children. As language learning relies on situated, grounded and social learning, in which interaction and repeated practice are central, social robots hold promise as educational tools for supporting second language learning. This paper surveys the developmental psychology of second language learning and suggests an agenda to study how core concepts of second language learning can be taught by a social robot. It suggests guidelines for designing robot tutors based on observations of second language learning in human–human scenarios, various technical aspects and early studies regarding the effectiveness of social robots as second language tutors.
  • Benítez-Burraco, A., & Dediu, D. (2018). Ancient DNA and language evolution: A special section. Journal of Language Evolution, 3(1), 47-48. doi:10.1093/jole/lzx024.
  • Bentum, M., Ten Bosch, L., Van den Bosch, A., & Ernestus, M. (2022). Speech register influences listeners’ word expectations. Brain and Language, 235: 105197. doi:10.1016/j.bandl.2022.105197.

    Abstract

    We utilized the N400 effect to investigate the influence of speech register on predictive language processing. Participants listened to long stretches (4 – 15 min) of naturalistic speech from different registers (dialogues, news broadcasts, and read-aloud books), totalling approximately 50,000 words, while the EEG signal was recorded. We estimated the surprisal of words in the speech materials with the aid of a statistical language model in such a manner that it reflected different predictive processing strategies; generic, register-specific, or recency-based. The N400 amplitude was best predicted with register-specific word surprisal, indicating that the statistics of the wider context (i.e., register) influences predictive language processing. Furthermore, adaptation to speech register cannot merely be explained by recency effects; instead, listeners adapt their word anticipations to the presented speech register.
  • Bentz, C., Dediu, D., Verkerk, A., & Jäger, G. (2018). The evolution of language families is shaped by the environment beyond neutral drift. Nature Human Behaviour, 2, 816-821. doi:10.1038/s41562-018-0457-6.

    Abstract

    There are more than 7,000 languages spoken in the world today1. It has been argued that the natural and social environment of languages drives this diversity. However, a fundamental question is how strong are environmental pressures, and does neutral drift suffice as a mechanism to explain diversification? We estimate the phylogenetic signals of geographic dimensions, distance to water, climate and population size on more than 6,000 phylogenetic trees of 46 language families. Phylogenetic signals of environmental factors are generally stronger than expected under the null hypothesis of no relationship with the shape of family trees. Importantly, they are also—in most cases—not compatible with neutral drift models of constant-rate change across the family tree branches. Our results suggest that language diversification is driven by further adaptive and non-adaptive pressures. Language diversity cannot be understood without modelling the pressures that physical, ecological and social factors exert on language users in different environments across the globe.
  • Bergmann, C., Dimitrova, N., Alaslani, K., Almohammadi, A., Alroqi, H., Aussems, S., Barokova, M., Davies, C., Gonzalez-Gomez, N., Gibson, S. P., Havron, N., Horowitz-Kraus, T., Kanero, J., Kartushina, N., Keller, C., Mayor, J., Mundry, R., Shinskey, J., & Mani, N. (2022). Young children’s screen time during the first COVID-19 lockdown in 12 countries. Scientific Reports, 12: 2015. doi:10.1038/s41598-022-05840-5.

    Abstract

    Older children with online schooling requirements, unsurprisingly, were reported to have increased screen time during the first COVID-19 lockdown in many countries. Here, we ask whether younger children with no similar online schooling requirements also had increased screen time during lockdown. We examined children’s screen time during the first COVID-19 lockdown in a large cohort (n = 2209) of 8-to-36-month-olds sampled from 15 labs across 12 countries. Caregivers reported that toddlers with no online schooling requirements were exposed to more screen time during lockdown than before lockdown. While this was exacerbated for countries with longer lockdowns, there was no evidence that the increase in screen time during lockdown was associated with socio-demographic variables, such as child age and socio-economic status (SES). However, screen time during lockdown was negatively associated with SES and positively associated with child age, caregiver screen time, and attitudes towards children’s screen time. The results highlight the impact of the COVID-19 lockdown on young children’s screen time.

    Additional information

    supplemental information
  • Bergmann, C., & Cristia, A. (2018). Environmental influences on infants’ native vowel discrimination: The case of talker number in daily life. Infancy, 23(4), 484-501. doi:10.1111/infa.12232.

    Abstract

    Both quality and quantity of speech from the primary caregiver have been found to impact language development. A third aspect of the input has been largely ignored: the number of talkers who provide input. Some infants spend most of their waking time with only one person; others hear many different talkers. Even if the very same words are spoken the same number of times, the pronunciations can be more variable when several talkers pronounce them. Is language acquisition affected by the number of people who provide input? To shed light on the possible link between how many people provide input in daily life and infants’ native vowel discrimination, three age groups were tested: 4-month-olds (before attunement to native vowels), 6-month-olds (at the cusp of native vowel attunement) and 12-month-olds (well attuned to the native vowel system). No relationship was found between talker number and native vowel discrimination skills in 4- and 6-month-olds, who are overall able to discriminate the vowel contrast. At 12 months, we observe a small positive relationship, but further analyses reveal that the data are also compatible with the null hypothesis of no relationship. Implications in the context of infant language acquisition and cognitive development are discussed.
  • Bergmann, C., & Cristia, A. (2016). Development of infants' segmentation of words from native speech: a meta-analytic approach. Developmental Science, 19(6), 901-917. doi:10.1111/desc.12341.

    Abstract

    nfants start learning words, the building blocks of language, at least by 6 months. To do so, they must be able to extract the phonological form of words from running speech. A rich literature has investigated this process, termed word segmentation. We addressed the fundamental question of how infants of different ages segment words from their native language using a meta-analytic approach. Based on previous popular theoretical and experimental work, we expected infants to display familiarity preferences early on, with a switch to novelty preferences as infants become more proficient at processing and segmenting native speech. We also considered the possibility that this switch may occur at different points in time as a function of infants' native language and took into account the impact of various task- and stimulus-related factors that might affect difficulty. The combined results from 168 experiments reporting on data gathered from 3774 infants revealed a persistent familiarity preference across all ages. There was no significant effect of additional factors, including native language and experiment design. Further analyses revealed no sign of selective data collection or reporting. We conclude that models of infant information processing that are frequently cited in this domain may not, in fact, apply in the case of segmenting words from native speech.

    Additional information

    desc12341-sup-0001-sup_material.doc
  • Bergmann, C., Tsuji, S., Piccinini, P. E., Lewis, M. L., Braginsky, M. B., Frank, M. C., & Cristia, A. (2018). Promoting replicability in developmental research through meta-analyses: Insights from language acquisition research. Child Development, 89(6), 1996-2009. doi:10.1111/cdev.13079.

    Abstract

    Previous work suggests key factors for replicability, a necessary feature for theory
    building, include statistical power and appropriate research planning. These factors are examined by analyzing a collection of 12 standardized meta-analyses on language development between birth and 5 years. With a median effect size of Cohen's d= 0.45 and typical sample size of 18 participants, most research is underpowered (range: 6%-99%;
    median 44%); and calculating power based on seminal publications is not a suitable strategy.
    Method choice can be improved, as shown in analyses on exclusion rates and effect size as a
    function of method. The article ends with a discussion on how to increase replicability in both language acquisition studies specifically and developmental research more generally.
  • Berkers, R. M. W. J., Ekman, M., van Dongen, E. V., Takashima, A., Barth, M., Paller, K. A., & Fernández, G. (2018). Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization. Scientific Reports, 8: 16958. doi:10.1038/s41598-018-35287-6.

    Abstract

    Memory reprocessing following acquisition enhances memory consolidation. Specifically, neural activity during encoding is thought to be ‘replayed’ during subsequent slow-wave sleep. Such memory replay is thought to contribute to the functional reorganization of neural memory traces. In particular, memory replay may facilitate the exchange of information across brain regions by inducing a reconfiguration of connectivity across the brain. Memory reactivation can be induced by external cues through a procedure known as “targeted memory reactivation”. Here, we analysed data from a published study with auditory cues used to reactivate visual object-location memories during slow-wave sleep. We characterized effects of memory reactivation on brain network connectivity using graph-theory. We found that cue presentation during slow-wave sleep increased global network integration of occipital cortex, a visual region that was also active during retrieval of object locations. Although cueing did not have an overall beneficial effect on the retention of cued versus uncued associations, individual differences in overnight memory stabilization were related to enhanced network integration of occipital cortex. Furthermore, occipital cortex displayed enhanced connectivity with mnemonic regions, namely the hippocampus, parahippocampal gyrus, thalamus and medial prefrontal cortex during cue sound presentation. Together, these results suggest a neural mechanism where cue-induced replay during sleep increases integration of task-relevant perceptual regions with mnemonic regions. This cross-regional integration may be instrumental for the consolidation and long-term storage of enduring memories.

    Additional information

    41598_2018_35287_MOESM1_ESM.doc
  • Besharati, S., Forkel, S. J., Kopelman, M., Solms, M., Jenkinson, P., & Fotopoulou, A. (2016). Mentalizing the body: Spatial and social cognition in anosognosia for hemiplegia. Brain, 139(3), 971-985. doi:10.1093/brain/awv390.

    Abstract

    Following right-hemisphere damage, a specific disorder of motor awareness can occur called anosognosia for hemiplegia, i.e. the denial of motor deficits contralateral to a brain lesion. The study of anosognosia can offer unique insights into the neurocognitive basis of awareness. Typically, however, awareness is assessed as a first person judgement and the ability of patients to think about their bodies in more ‘objective’ (third person) terms is not directly assessed. This may be important as right-hemisphere spatial abilities may underlie our ability to take third person perspectives. This possibility was assessed for the first time in the present study. We investigated third person perspective taking using both visuospatial and verbal tasks in right-hemisphere stroke patients with anosognosia ( n = 15) and without anosognosia ( n = 15), as well as neurologically healthy control subjects ( n = 15). The anosognosic group performed worse than both control groups when having to perform the tasks from a third versus a first person perspective. Individual analysis further revealed a classical dissociation between most anosognosic patients and control subjects in mental (but not visuospatial) third person perspective taking abilities. Finally, the severity of unawareness in anosognosia patients was correlated to greater impairments in such third person, mental perspective taking abilities (but not visuospatial perspective taking). In voxel-based lesion mapping we also identified the lesion sites linked with such deficits, including some brain areas previously associated with inhibition, perspective taking and mentalizing, such as the inferior and middle frontal gyri, as well as the supramarginal and superior temporal gyri. These results suggest that neurocognitive deficits in mental perspective taking may contribute to anosognosia and provide novel insights regarding the relation between self-awareness and social cognition.
  • Bignardi, G., Chamberlain, R., Kevenaar, S. T., Tamimy, Z., & Boomsma, D. I. (2022). On the etiology of aesthetic chills: A behavioral genetic study. Scientific Reports, 12: 3247. doi:10.1038/s41598-022-07161-z.

    Abstract

    Aesthetic chills, broadly defined as a somatic marker of peak emotional-hedonic responses, are experienced by individuals across a variety of human cultures. Yet individuals vary widely in the propensity of feeling them. These individual differences have been studied in relation to demographics, personality, and neurobiological and physiological factors, but no study to date has explored the genetic etiological sources of variation. To partition genetic and environmental sources of variation in the propensity of feeling aesthetic chills, we fitted a biometrical genetic model to data from 14127 twins (from 8995 pairs), collected by the Netherlands Twin Register. Both genetic and unique environmental factors accounted for variance in aesthetic chills, with heritability estimated at .36 ([.33, .39] 95% CI). We found females more prone than males to report feeling aesthetic chills. However, a test for genotype x sex interaction did not show evidence that heritability differs between sexes. We thus show that the propensity of feeling aesthetic chills is not shaped by nurture alone, but it also reflects underlying genetic propensities.Competing Interest StatementThe authors have declared no competing interest.

    Additional information

    Link to Preprint on BioRxiv
  • Birchall, J., Dunn, M., & Greenhill, S. J. (2016). A combined comparative and phylogenetic analysis of the Chapacuran language family. International Journal of American Linguistics, 82(3), 255-284. doi:10.1086/687383.

    Abstract

    The Chapacuran language family, with three extant members and nine historically attested lects, has yet to be classified following modern standards in historical linguistics. This paper presents an internal classification of these languages by combining both the traditional comparative method (CM) and Bayesian phylogenetic inference (BPI). We identify multiple systematic sound correspondences and 285 cognate sets of basic vocabulary using the available documentation. These allow us to reconstruct a large portion of the Proto-Chapacuran phonemic inventory and identify tentative major subgroupings. The cognate sets form the input for the BPI analysis, which uses a stochastic Continuous-Time Markov Chain to model the change of these cognate sets over time. We test various models of lexical substitution and evolutionary clocks, and use ethnohistorical information and data collection dates to calibrate the resulting trees. The CM and BPI analyses produce largely congruent results, suggesting a division of the family into three different clades.

    Additional information

    Appendix
  • Bobb, S., Huettig, F., & Mani, N. (2016). Predicting visual information during sentence processing: Toddlers activate an object's shape before it is mentioned. Journal of Experimental Child Psychology, 151, 51-64. doi:10.1016/j.jecp.2015.11.002.

    Abstract

    We examined the contents of language-mediated prediction in toddlers by investigating the extent to which toddlers are sensitive to visual-shape representations of upcoming words. Previous studies with adults suggest limits to the degree to which information about the visual form of a referent is predicted during language comprehension in low constraint sentences. 30-month-old toddlers heard either contextually constraining sentences or contextually neutral sentences as they viewed images that were either identical or shape related to the heard target label. We observed that toddlers activate shape information of upcoming linguistic input in contextually constraining semantic contexts: Hearing a sentence context that was predictive of the target word activated perceptual information that subsequently influenced visual attention toward shape-related targets. Our findings suggest that visual shape is central to predictive language processing in toddlers.
  • Bocanegra, B. R., Poletiek, F. H., & Zwaan, R. A. (2022). Language concatenates perceptual features into representations during comprehension. Journal of Memory and Language, 127: 104355. doi:10.1016/j.jml.2022.104355.

    Abstract

    Although many studies have investigated the activation of perceptual representations during language comprehension, to our knowledge only one previous study has directly tested how perceptual features are combined into representations during comprehension. In their classic study, Potter and Faulconer [(1979). Understanding noun phrases. Journal of Verbal Learning and Verbal Behavior, 18, 509–521.] investigated the perceptual representation of adjective-noun combinations. However, their non-orthogonal design did not allow the differentiation between conjunctive vs. disjunctive representations. Using randomized orthogonal designs, we observe evidence for disjunctive perceptual representations when participants represent feature combinations simultaneously (in several experiments; N = 469), and we observe evidence for conjunctive perceptual representations when participants represent feature combinations sequentially (In several experiments; N = 628). Our findings show that the generation of conjunctive representations during comprehension depends on the concatenation of linguistic cues, and thus suggest the construction of elaborate perceptual representations may critically depend on language.
  • De Boer, B., & Thompson, B. (2018). Biology-culture co-evolution in finite populations. Scientific Reports, 8: 1209. doi:10.1038/s41598-017-18928-0.

    Abstract

    Language is the result of two concurrent evolutionary processes: Biological and cultural inheritance. An influential evolutionary hypothesis known as the moving target problem implies inherent limitations on the interactions between our two inheritance streams that result from a difference in pace: The speed of cultural evolution is thought to rule out cognitive adaptation to culturally evolving aspects of language. We examine this hypothesis formally by casting it as as a problem of adaptation in time-varying environments. We present a mathematical model of biology-culture co-evolution in finite populations: A generalisation of the Moran process, treating co-evolution as coupled non-independent Markov processes, providing a general formulation of the moving target hypothesis in precise probabilistic terms. Rapidly varying culture decreases the probability of biological adaptation. However, we show that this effect declines with population size and with stronger links between biology and culture: In realistically sized finite populations, stochastic effects can carry cognitive specialisations to fixation in the face of variable culture, especially if the effects of those specialisations are amplified through cultural evolution. These results support the view that language arises from interactions between our two major inheritance streams, rather than from one primary evolutionary process that dominates another. © 2018 The Author(s).

    Additional information

    41598_2017_18928_MOESM1_ESM.pdf
  • De Boer, E., Ockeloen, C. W., Kampen, R. A., Hampstead, J. E., Dingemans, A. J. M., Rots, D., Lütje, L., Ashraf, T., Baker, R., Barat-Houari, M., Angle, B., Chatron, N., Denommé-Pichon, A.-S., Devinsky, O., Dubourg, C., Elmslie, F., Elloumi, H. Z., Faivre, L., Fitzgerald-Butt, S., Geneviève, D. and 30 moreDe Boer, E., Ockeloen, C. W., Kampen, R. A., Hampstead, J. E., Dingemans, A. J. M., Rots, D., Lütje, L., Ashraf, T., Baker, R., Barat-Houari, M., Angle, B., Chatron, N., Denommé-Pichon, A.-S., Devinsky, O., Dubourg, C., Elmslie, F., Elloumi, H. Z., Faivre, L., Fitzgerald-Butt, S., Geneviève, D., Goos, J. A. C., Helm, B. M., Kini, U., Lasa-Aranzasti, A., Lesca, G., Lynch, S. A., Mathijssen, I. M. J., McGowan, R., Monaghan, K. G., Odent, S., Pfundt, R., Putoux, A., Van Reeuwijk, J., Santen, G. W. E., Sasaki, E., Sorlin, A., Van der Spek, P. J., Stegmann, A. P. A., Swagemakers, S. M. A., Valenzuela, I., Viora-Dupont, E., Vitobello, A., Ware, S. M., Wéber, M., Gilissen, C., Low, K. J., Fisher, S. E., Vissers, L. E. L. M., Wong, M. M. K., & Kleefstra, T. (2022). Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein. Genetics in Medicine, 24(10), 2051-2064. doi:10.1016/j.gim.2022.06.007.

    Abstract

    Purpose

    Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants.
    Methods

    We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments.
    Results

    We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity.
    Conclusion

    Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.
  • Bögels, S., Casillas, M., & Levinson, S. C. (2018). Planning versus comprehension in turn-taking: Fast responders show reduced anticipatory processing of the question. Neuropsychologia, 109, 295-310. doi:10.1016/j.neuropsychologia.2017.12.028.

    Abstract

    Rapid response latencies in conversation suggest that responders start planning before the ongoing turn is finished. Indeed, an earlier EEG study suggests that listeners start planning their responses to questions as soon as they can (Bögels, S., Magyari, L., & Levinson, S. C. (2015). Neural signatures of response planning occur midway through an incoming question in conversation. Scientific Reports, 5, 12881). The present study aimed to (1) replicate this early planning effect and (2) investigate whether such early response planning incurs a cost on participants’ concurrent comprehension of the ongoing turn. During the experiment participants answered questions from a confederate partner. To address aim (1), the questions were designed such that response planning could start either early or late in the turn. Our results largely replicate Bögels et al. (2015) showing a large positive ERP effect and an oscillatory alpha/beta reduction right after participants could have first started planning their verbal response, again suggesting an early start of response planning. To address aim (2), the confederate's questions also contained either an expected word or an unexpected one to elicit a differential N400 effect, either before or after the start of response planning. We hypothesized an attenuated N400 effect after response planning had started. In contrast, the N400 effects before and after planning did not differ. There was, however, a positive correlation between participants' response time and their N400 effect size after planning had started; quick responders showed a smaller N400 effect, suggesting reduced attention to comprehension and possibly reduced anticipatory processing. We conclude that early response planning can indeed impact comprehension processing.

    Additional information

    mmc1.pdf
  • Boraud, T., & Forkel, S. J. (2022). Paul Broca: from fame to shame? Brain, 145(3), 801-804. doi:10.1093/brain/awab444.

    Abstract

    In 2016, the University of Bordeaux ran a competition within the local neuroscience community to find a
    name for its new neuroscience building. The name of Paul Broca, who was born nearby in 1824, was chosen
    in honour of his origins and his contributions to neuroscience. Recently, however, a debate has been ignited
    about the appropriateness of this choice, given Broca’s endorsement of physiological anthropology. At a time
    when academic institutions worldwide are revising their curricula to better reflect the contributions of pre-
    viously overlooked groups, how should we respond when the views of the ‘founding fathers’ of neurology
    clash with those of society today?

    Additional information

    supplementary figure
  • Bornkessel-Schlesewsky, I., Alday, P. M., & Schlesewsky, M. (2016). A modality-independent, neurobiological grounding for the combinatory capacity of the language-ready brain: Comment on “Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain” by Michael A. Arbib. Physics of Life Reviews, 16, 55-57. doi:10.1016/j.plrev.2016.01.003.
  • Bosker, H. R. (2022). Evidence for selective adaptation and recalibration in the perception of lexical stress. Language and Speech, 65(2), 472-490. doi:10.1177/00238309211030307.

    Abstract

    Individuals vary in how they produce speech. This variability affects both the segments (vowels and consonants) and the suprasegmental properties of their speech (prosody). Previous literature has demonstrated that listeners can adapt to variability in how different talkers pronounce the segments of speech. This study shows that listeners can also adapt to variability in how talkers produce lexical stress. Experiment 1 demonstrates a selective adaptation effect in lexical stress perception: repeatedly hearing Dutch trochaic words biased perception of a subsequent lexical stress continuum towards more iamb responses. Experiment 2 demonstrates a recalibration effect in lexical stress perception: when ambiguous suprasegmental cues to lexical stress were disambiguated by lexical orthographic context as signaling a trochaic word in an exposure phase, Dutch participants categorized a subsequent test continuum as more trochee-like. Moreover, the selective adaptation and recalibration effects generalized to novel words, not encountered during exposure. Together, the experiments demonstrate that listeners also flexibly adapt to variability in the suprasegmental properties of speech, thus expanding our understanding of the utility of listener adaptation in speech perception. Moreover, the combined outcomes speak for an architecture of spoken word recognition involving abstract prosodic representations at a prelexical level of analysis.
  • Bosker, H. R., & Ghitza, O. (2018). Entrained theta oscillations guide perception of subsequent speech: Behavioral evidence from rate normalization. Language, Cognition and Neuroscience, 33(8), 955-967. doi:10.1080/23273798.2018.1439179.

    Abstract

    This psychoacoustic study provides behavioral evidence that neural entrainment in the theta range (3-9 Hz) causally shapes speech perception. Adopting the ‘rate normalization’ paradigm (presenting compressed carrier sentences followed by uncompressed target words), we show that uniform compression of a speech carrier to syllable rates inside the theta range influences perception of subsequent uncompressed targets, but compression outside theta range does not. However, the influence of carriers – compressed outside theta range – on target perception is salvaged when carriers are ‘repackaged’ to have a packet rate inside theta. This suggests that the brain can only successfully entrain to syllable/packet rates within theta range, with a causal influence on the perception of subsequent speech, in line with recent neuroimaging data. Thus, this study points to a central role for sustained theta entrainment in rate normalization and contributes to our understanding of the functional role of brain oscillations in speech perception.
  • Bosker, H. R. (2018). Putting Laurel and Yanny in context. The Journal of the Acoustical Society of America, 144(6), EL503-EL508. doi:10.1121/1.5070144.

    Abstract

    Recently, the world’s attention was caught by an audio clip that was perceived as “Laurel” or “Yanny”. Opinions were sharply split: many could not believe others heard something different from their perception. However, a crowd-source experiment with >500 participants shows that it is possible to make people hear Laurel, where they previously heard Yanny, by manipulating preceding acoustic context. This study is not only the first to reveal within-listener variation in Laurel/Yanny percepts, but also to demonstrate contrast effects for global spectral information in larger frequency regions. Thus, it highlights the intricacies of human perception underlying these social media phenomena.
  • Bosker, H. R., & Cooke, M. (2018). Talkers produce more pronounced amplitude modulations when speaking in noise. The Journal of the Acoustical Society of America, 143(2), EL121-EL126. doi:10.1121/1.5024404.

    Abstract

    Speakers adjust their voice when talking in noise (known as Lombard speech), facilitating speech comprehension. Recent neurobiological models of speech perception emphasize the role of amplitude modulations in speech-in-noise comprehension, helping neural oscillators to ‘track’ the attended speech. This study tested whether talkers produce more pronounced amplitude modulations in noise. Across four different corpora, modulation spectra showed greater power in amplitude modulations below 4 Hz in Lombard speech compared to matching plain speech. This suggests that noise-induced speech contains more pronounced amplitude modulations, potentially helping the listening brain to entrain to the attended talker, aiding comprehension.
  • Bowerman, M. (1973). [Review of Lois Bloom, Language development: Form and function in emerging grammars (MIT Press 1970)]. American Scientist, 61(3), 369-370.
  • Boyce, J. O., Jackson, V. E., Van Reyk, O., Parker, R., Vogel, A. P., Eising, E., Horton, S. E., Gillespie, N. A., Scheffer, I. E., Amor, D. J., Hildebrand, M. S., Fisher, S. E., Martin, N. G., Reilly, S., Bahlo, M., & Morgan, A. T. (2022). Self-reported impact of developmental stuttering across the lifespan. Developmental Medicine & Child Neurology, 64(10), 1297-1306. doi:10.1111/dmcn.15211.

    Abstract

    Aim

    To examine the phenomenology of stuttering across the lifespan in the largest prospective cohort to date.
    Method

    Participants aged 7 years and older with a history of developmental stuttering were recruited. Self-reported phenotypic data were collected online including stuttering symptomatology, co-occurring phenotypes, genetic predisposition, factors associated with stuttering severity, and impact on anxiety, education, and employment.
    Results

    A total of 987 participants (852 adults: 590 males, 262 females, mean age 49 years [SD = 17 years 10 months; range = 18–93 years] and 135 children: 97 males, 38 females, mean age 11 years 4 months [SD = 3 years; range = 7–17 years]) were recruited. Stuttering onset occurred at age 3 to 6 years in 64.0%. Blocking (73.2%) was the most frequent phenotype; 75.9% had sought stuttering therapy and 15.5% identified as having recovered. Half (49.9%) reported a family history. There was a significant negative correlation with age for both stuttering frequency and severity in adults. Most were anxious due to stuttering (90.4%) and perceived stuttering as a barrier to education and employment outcomes (80.7%).
    Interpretation

    The frequent persistence of stuttering and the high proportion with a family history suggest that stuttering is a complex trait that does not often resolve, even with therapy. These data provide new insights into the phenotype and prognosis of stuttering, information that is critically needed to encourage the development of more effective speech therapies.
  • Bramão, I., Reis, A., Petersson, K. M., & Faísca, L. (2016). Knowing that strawberries are red and seeing red strawberries: The interaction between surface colour and colour knowledge information. Journal of Cognitive Psychology, 28(6), 641-657. doi:10.1080/20445911.2016.1182171.

    Abstract

    his study investigates the interaction between surface and colour knowledge information during object recognition. In two different experiments, participants were instructed to decide whether two presented stimuli belonged to the same object identity. On the non-matching trials, we manipulated the shape and colour knowledge information activated by the two stimuli by creating four different stimulus pairs: (1) similar in shape and colour (e.g. TOMATO–APPLE); (2) similar in shape and dissimilar in colour (e.g. TOMATO–COCONUT); (3) dissimilar in shape and similar in colour (e.g. TOMATO–CHILI PEPPER) and (4) dissimilar in both shape and colour (e.g. TOMATO–PEANUT). The object pictures were presented in typical and atypical colours and also in black-and-white. The interaction between surface and colour knowledge showed to be contingent upon shape information: while colour knowledge is more important for recognising structurally similar shaped objects, surface colour is more prominent for recognising structurally dissimilar shaped objects.
  • Brand, S., & Ernestus, M. (2018). Listeners’ processing of a given reduced word pronunciation variant directly reflects their exposure to this variant: evidence from native listeners and learners of French. Quarterly Journal of Experimental Psychology, 71(5), 1240-1259. doi:10.1080/17470218.2017.1313282.

    Abstract

    n casual conversations, words often lack segments. This study investigates whether listeners rely on their experience with reduced word pronunciation variants during the processing of single segment reduction. We tested three groups of listeners in a lexical decision experiment with French words produced either with or without word-medial schwa (e.g., /ʀəvy/ and /ʀvy/ for revue). Participants also rated the relative frequencies of the two pronunciation variants of the words. If the recognition accuracy and reaction times for a given listener group correlate best with the frequencies of occurrence holding for that given listener group, recognition is influenced by listeners’ exposure to these variants. Native listeners' relative frequency ratings correlated well with their accuracy scores and RTs. Dutch advanced learners' accuracy scores and RTs were best predicted by their own ratings. In contrast, the accuracy and RTs from Dutch beginner learners of French could not be predicted by any relative frequency rating; the rating task was probably too difficult for them. The participant groups showed behaviour reflecting their difference in experience with the pronunciation variants. Our results strongly suggest that listeners store the frequencies of occurrence of pronunciation variants, and consequently the variants themselves
  • Brand, J., Monaghan, P., & Walker, P. (2018). The changing role of sound‐symbolism for small versus large vocabularies. Cognitive Science, 42(S2), 578-590. doi:10.1111/cogs.12565.

    Abstract

    Natural language contains many examples of sound‐symbolism, where the form of the word carries information about its meaning. Such systematicity is more prevalent in the words children acquire first, but arbitrariness dominates during later vocabulary development. Furthermore, systematicity appears to promote learning category distinctions, which may become more important as the vocabulary grows. In this study, we tested the relative costs and benefits of sound‐symbolism for word learning as vocabulary size varies. Participants learned form‐meaning mappings for words which were either congruent or incongruent with regard to sound‐symbolic relations. For the smaller vocabulary, sound‐symbolism facilitated learning individual words, whereas for larger vocabularies sound‐symbolism supported learning category distinctions. The changing properties of form‐meaning mappings according to vocabulary size may reflect the different ways in which language is learned at different stages of development.

    Additional information

    https://git.io/v5BXJ
  • Brehm, L., Cho, P. W., Smolensky, P., & Goldrick, M. A. (2022). PIPS: A parallel planning model of sentence production. Cognitive Science, 46(2): e13079. doi:10.1111/cogs.13079.

    Abstract

    Subject–verb agreement errors are common in sentence production. Many studies have used experimental paradigms targeting the production of subject–verb agreement from a sentence preamble (The key to the cabinets) and eliciting verb errors (… *were shiny). Through reanalysis of previous data (50 experiments; 102,369 observations), we show that this paradigm also results in many errors in preamble repetition, particularly of local noun number (The key to the *cabinet). We explore the mechanisms of both errors in parallelism in producing syntax (PIPS), a model in the Gradient Symbolic Computation framework. PIPS models sentence production using a continuous-state stochastic dynamical system that optimizes grammatical constraints (shaped by previous experience) over vector representations of symbolic structures. At intermediate stages in the computation, grammatical constraints allow multiple competing parses to be partially activated, resulting in stable but transient conjunctive blend states. In the context of the preamble completion task, memory constraints reduce the strength of the target structure, allowing for co-activation of non-target parses where the local noun controls the verb (notional agreement and locally agreeing relative clauses) and non-target parses that include structural constituents with contrasting number specifications (e.g., plural instead of singular local noun). Simulations of the preamble completion task reveal that these partially activated non-target parses, as well the need to balance accurate encoding of lexical and syntactic aspects of the prompt, result in errors. In other words: Because sentence processing is embedded in a processor with finite memory and prior experience with production, interference from non-target production plans causes errors.
  • Brehm, L., & Alday, P. M. (2022). Contrast coding choices in a decade of mixed models. Journal of Memory and Language, 125: 104334. doi:10.1016/j.jml.2022.104334.

    Abstract

    Contrast coding in regression models, including mixed-effect models, changes what the terms in the model mean.
    In particular, it determines whether or not model terms should be interpreted as main effects. This paper
    highlights how opaque descriptions of contrast coding have affected the field of psycholinguistics. We begin with
    a reproducible example in R using simulated data to demonstrate how incorrect conclusions can be made from
    mixed models; this also serves as a primer on contrast coding for statistical novices. We then present an analysis
    of 3384 papers from the field of psycholinguistics that we coded based upon whether a clear description of
    contrast coding was present. This analysis demonstrates that the majority of the psycholinguistic literature does
    not transparently describe contrast coding choices, posing an important challenge to reproducibility and replicability in our field.
  • He, J., Brehm, L., & Zhang, Q. (2022). Dissociation of writing processes: A functional magnetic resonance imaging study on the neural substrates for the handwritten production of Chinese characters. Journal of Cognitive Neuroscience, 34(12), 2320-2340. doi:10.1162/jocn_a_01911.

    Abstract

    Writing is an important way to communicate in everyday life because it can convey information over time and space, but its neural substrates remain poorly known. Although the neural basis of written language production has been investigated in alphabetic scripts, it has rarely been examined in nonalphabetic languages such as Chinese. The present functional magnetic resonance imaging study explored the neural substrates of handwritten word production in Chinese and identified the brain regions sensitive to the psycholinguistic factors of word frequency and syllable frequency. To capture this, we contrasted neural activation in “writing” with “speaking plus drawing” and “watching plus drawing.” Word frequency (high, low) and syllable frequency (high, low) of the picture names were manipulated. Contrasts between the tasks showed that writing Chinese characters was mainly associated with brain activation in the left frontal and parietal cortex, whereas orthographic processing and the motor procedures necessary for handwritten production were also related to activation in the right frontal and parietal cortex as well as right putamen/thalamus. These results demonstrate that writing Chinese characters requires activation in bilateral cortical regions and the right putamen/thalamus. Our results also revealed no brain activation associated with the main effects of word frequency and syllable frequency as well as their interaction, which implies that word frequency and syllable frequency may not affect the writing of Chinese characters on a neural level.
  • Brehm, L., & Goldrick, M. (2016). Empirical and conceptual challenges for neurocognitive theories of language production. Language, Cognition and Neuroscience, 31(4), 504-507. doi:10.1080/23273798.2015.1110604.
  • Broersma, M., Carter, D., & Acheson, D. J. (2016). Cognate costs in bilingual speech production: Evidence from language switching. Frontiers in Psychology, 7: 1461. doi:10.3389/fpsyg.2016.01461.

    Abstract

    This study investigates cross-language lexical competition in the bilingual mental lexicon. It provides evidence for the occurrence of inhibition as well as the commonly reported facilitation during the production of cognates (words with similar phonological form and meaning in two languages) in a mixed picture naming task by highly proficient Welsh-English bilinguals. Previous studies have typically found cognate facilitation. It has previously been proposed (with respect to non-cognates) that cross-language inhibition is limited to low-proficient bilinguals; therefore, we tested highly proficient, early bilinguals. In a mixed naming experiment (i.e., picture naming with language switching), 48 highly proficient, early Welsh-English bilinguals named pictures in Welsh and English, including cognate and non-cognate targets. Participants were English-dominant, Welsh-dominant, or had equal language dominance. The results showed evidence for cognate inhibition in two ways. First, both facilitation and inhibition were found on the cognate trials themselves, compared to non-cognate controls, modulated by the participants' language dominance. The English-dominant group showed cognate inhibition when naming in Welsh (and no difference between cognates and controls when naming in English), and the Welsh-dominant and equal dominance groups generally showed cognate facilitation. Second, cognate inhibition was found as a behavioral adaptation effect, with slower naming for non-cognate filler words in trials after cognates than after non-cognate controls. This effect was consistent across all language dominance groups and both target languages, suggesting that cognate production involved cognitive control even if this was not measurable in the cognate trials themselves. Finally, the results replicated patterns of symmetrical switch costs, as commonly reported for balanced bilinguals. We propose that cognate processing might be affected by two different processes, namely competition at the lexical-semantic level and facilitation at the word form level, and that facilitation at the word form level might (sometimes) outweigh any effects of inhibition at the lemma level. In sum, this study provides evidence that cognate naming can cause costs in addition to benefits. The finding of cognate inhibition, particularly for the highly proficient bilinguals tested, provides strong evidence for the occurrence of lexical competition across languages in the bilingual mental lexicon.
  • Brouwer, R. M., Klein, M., Grasby, K. L., Schnack, H. G., Jahanshad, N., Teeuw, J., Thomopoulos, S. I., Sprooten, E., Franz, C. E., Gogtay, N., Kremen, W. S., Panizzon, M. S., Olde Loohuis, L. M., Whelan, C. D., Aghajani, M., Alloza, C., Alnæs, D., Artiges, E., Ayesa-Arriola, R., Barker, G. J. and 180 moreBrouwer, R. M., Klein, M., Grasby, K. L., Schnack, H. G., Jahanshad, N., Teeuw, J., Thomopoulos, S. I., Sprooten, E., Franz, C. E., Gogtay, N., Kremen, W. S., Panizzon, M. S., Olde Loohuis, L. M., Whelan, C. D., Aghajani, M., Alloza, C., Alnæs, D., Artiges, E., Ayesa-Arriola, R., Barker, G. J., Bastin, M. E., Blok, E., Bøen, E., Breukelaar, I. A., Bright, J. K., Buimer, E. E. L., Bülow, R., Cannon, D. M., Ciufolini, S., Crossley, N. A., Damatac, C. G., Dazzan, P., De Mol, C. L., De Zwarte, S. M. C., Desrivières, S., Díaz-Caneja, C. M., Doan, N. T., Dohm, K., Fröhner, J. H., Goltermann, J., Grigis, A., Grotegerd, D., Han, L. K. M., Harris, M. A., Hartman, C. A., Heany, S. J., Heindel, W., Heslenfeld, D. J., Hohmann, S., Ittermann, B., Jansen, P. R., Janssen, J., Jia, T., Jiang, J., Jockwitz, C., Karali, T., Keeser, D., Koevoets, M. G. J. C., Lenroot, R. K., Malchow, B., Mandl, R. C. W., Medel, V., Meinert, S., Morgan, C. A., Mühleisen, T. W., Nabulsi, L., Opel, N., Ortiz-García de la Foz, V., Overs, B. J., Paillère Martinot, M.-L., Redlich, R., Marques, T. R., Repple, J., Roberts, G., Roshchupkin, G. V., Setiaman, N., Shumskaya, E., Stein, F., Sudre, G., Takahashi, S., Thalamuthu, A., Tordesillas-Gutiérrez, D., Van der Lugt, A., Van Haren, N. E. M., Wardlaw, J. M., Wen, W., Westeneng, H.-J., Wittfeld, K., Zhu, A. H., Zugman, A., Armstrong, N. J., Bonfiglio, G., Bralten, J., Dalvie, S., Davies, G., Di Forti, M., Ding, L., Donohoe, G., Forstner, A. J., Gonzalez-Peñas, J., Guimaraes, J. P. O. F. T., Homuth, G., Hottenga, J.-J., Knol, M. J., Kwok, J. B. J., Le Hellard, S., Mather, K. A., Milaneschi, Y., Morris, D. W., Nöthen, M. M., Papiol, S., Rietschel, M., Santoro, M. L., Steen, V. M., Stein, J. L., Streit, F., Tankard, R. M., Teumer, A., Van 't Ent, D., Van der Meer, D., Van Eijk, K. R., Vassos, E., Vázquez-Bourgon, J., Witt, S. H., the IMAGEN Consortium, Adams, H. H. H., Agartz, I., Ames, D., Amunts, K., Andreassen, O. A., Arango, C., Banaschewski, T., Baune, B. T., Belangero, S. I., Bokde, A. L. W., Boomsma, D. I., Bressan, R. A., Brodaty, H., Buitelaar, J. K., Cahn, W., Caspers, S., Cichon, S., Crespo Facorro, B., Cox, S. R., Dannlowski, U., Elvsåshagen, T., Espeseth, T., Falkai, P. G., Fisher, S. E., Flor, H., Fullerton, J. M., Garavan, H., Gowland, P. A., Grabe, H. J., Hahn, T., Heinz, A., Hillegers, M., Hoare, J., Hoekstra, P. J., Ikram, M. A., Jackowski, A. P., Jansen, A., Jönsson, E. G., Kahn, R. S., Kircher, T., Korgaonkar, M. S., Krug, A., Lemaitre, H., Malt, U. F., Martinot, J.-L., McDonald, C., Mitchell, P. B., Muetzel, R. L., Murray, R. M., Nees, F., Nenadic, I., Oosterlaan, J., Ophoff, R. A., Pan, P. M., Penninx, B. W. J. H., Poustka, L., Sachdev, P. S., Salum, G. A., Schofield, P. R., Schumann, G., Shaw, P., Sim, K., Smolka, M. N., Stein, D. J., Trollor, J., Van den Berg, L. H., Veldink, J. H., Walter, H., Westlye, L. T., Whelan, R., White, T., Wright, M. J., Medland, S. E., Franke, B., Thompson, P. M., & Hulshoff Pol, H. E. (2022). Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 25, 421-432. doi:10.1038/s41593-022-01042-4.

    Abstract

    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.
  • Brouwer, S., Akkermans, N., Hendriks, L., Van Uden, H., & Wilms, V. (2022). “Lass frooby noo!” the interference of song lyrics and meaning on speech intelligibility. Journal of Experimental Psychology: Applied, 28(3), 576-588. doi:10.1037/xap0000368.

    Abstract

    This study examined whether song lyrics and their semantic meaning interfere with speech intelligibility. In three experiments, a total of 108 native Dutch participants listened to Dutch target sentences in the presence of three versions of the pop songs Last Friday Night (T.G.I.F.) (Experiment 1) or Hot N Cold (Experiment 2a and 2b) by singer Katy Perry at different signal-to-noise ratios. The versions consisted of the original English songs, the karaoke versions of the songs without lyrics, and anomalous versions of the songs in the fictional language Simlish, which was created for the video game The Sims. The songs were played in chronological (Experiments 1 and 2a) or in random order (Experiment 2b). Participants’ task was to type the target sentence they had heard. In all experiments, speech intelligibility was better in nonlyrical (karaoke) than lyrical music (English and Simlish). In addition, listeners performed better in lyrics without semantic meaning (Simlish) than with semantic meaning (English). Finally, speech intelligibility was better when the song in the background was played in chronological rather than in random order. These findings aid in understanding the mechanisms involved during speech-in-music intelligibility.
  • Bulut, T. (2022). Meta-analytic connectivity modeling of the left and right inferior frontal gyri. Cortex, 155, 107-131. doi:10.1016/j.cortex.2022.07.003.

    Abstract

    Background

    Neurocognitive models of language processing highlight the role of the left inferior frontal gyrus (IFG) in the functional network underlying language. Furthermore, neuroscience research has shown that IFG is not a uniform region anatomically, cytoarchitectonically or functionally. However, no previous study explored the language-related functional connectivity patterns of IFG subdivisions using a meta-analytic connectivity modeling (MACM) approach.
    Purpose

    The present MACM study aimed to identify language-related coactivation patterns of the left and right IFG subdivisions.
    Method

    Six regions of interest (ROIs) were defined using a probabilistic brain atlas corresponding to pars opercularis, pars triangularis and pars orbitalis of IFG in both hemispheres. The ROIs were used to search the BrainMap functional database to identify neuroimaging experiments with healthy, right-handed participants reporting language-related activations in each ROI. Activation likelihood estimation analyses were then performed on the foci extracted from the identified studies to compute functional convergence for each ROI, which was also contrasted with the other ROIs within the same hemisphere.
    Results

    A primarily left-lateralized functional network was revealed for the left and right IFG subdivisions. The left-hemispheric ROIs exhibited more robust coactivation than the right-hemispheric ROIs. Particularly, the left pars opercularis was associated with the most extensive coactivation pattern involving bilateral frontal, bilateral parietal, left temporal, left subcortical, and right cerebellar regions, while the left pars triangularis and orbitalis revealed a predominantly left-lateralized involvement of frontotemporal regions.
    Conclusion

    The findings align with the neurocognitive models of language processing that propose a division of labor among the left IFG subdivisions and their respective functional networks. Also, the opercular part of left IFG stands out as a major hub in the language network with connections to diverse cortical, subcortical and cerebellar structures.
  • Bulut, T., Cheng, S. K., Xu, K. Y., Hung, D. L., & Wu, D. H. (2018). Is there a processing preference for object relative clauses in Chinese? Evidence from ERPs. Frontiers in Psychology, 9: 995. doi:10.3389/fpsyg.2018.00995.

    Abstract

    A consistent finding across head-initial languages, such as English, is that subject relative clauses (SRCs) are easier to comprehend than object relative clauses (ORCs). However, several studies in Mandarin Chinese, a head-final language, revealed the opposite pattern, which might be modulated by working memory (WM) as suggested by recent results from self-paced reading performance. In the present study, event-related potentials (ERPs) were recorded when participants with high and low WM spans (measured by forward digit span and operation span tests) read Chinese ORCs and SRCs. The results revealed an N400-P600 complex elicited by ORCs on the relativizer, whose magnitude was modulated by the WM span. On the other hand, a P600 effect was elicited by SRCs on the head noun, whose magnitude was not affected by the WM span. These findings paint a complex picture of relative clause processing in Chinese such that opposing factors involving structural ambiguities and integration of filler-gap dependencies influence processing dynamics in Chinese relative clauses.
  • Bulut, T. (2022). Neural correlates of morphological processing: An activation likelihood estimation meta-analysis. Cortex, 151, 49-69. doi:10.1016/j.cortex.2022.02.010.

    Abstract

    Background

    Morphemes are the smallest building blocks of language that convey meaning or function. A controversial issue in psycho- and neurolinguistics is whether morphologically complex words consisting of multiple morphemes are processed in a combinatorial manner and, if so, which brain regions underlie this process. Relatively less is known about the neural underpinnings of morphological processing compared to other aspects of grammatical competence such as syntax.

    Purpose
    The present study aimed to shed light on the neural correlates of morphological processing by examining functional convergence for inflectional morphology reported in previous neuroimaging studies.

    Method
    A systematic literature search was performed on PubMed with search terms related to morphological complexity and neuroimaging. 16 studies (279 subjects) comparing regular inflection with stems or irregular inflection met the inclusion and exclusion criteria and were subjected to a series of activation likelihood estimation meta-analyses.

    Results
    Significant functional convergence was found in several mainly left frontal regions for processing inflectional morphology. Specifically, the left inferior frontal gyrus (LIFG) was found to be consistently involved in morphological complexity. Diagnostic analyses revealed that involvement of posterior LIFG was robust against potential publication bias and over-influence of individual studies. Furthermore, LIFG involvement was maintained in meta-analyses of subsets of experiments that matched phonological complexity between conditions, although diagnostic analyses suggested that this conclusion may be premature.

    Conclusion
    The findings provide evidence for combinatorial processing of morphologically complex words and inform psycholinguistic accounts of complex word processing. Furthermore, they highlight the role of LIFG in processing inflectional morphology, in addition to syntactic processing as has been emphasized in previous research. In particular, posterior LIFG seems to underlie grammatical functions encompassing inflectional morphology and syntax.

    Additional information

    Supplementary information Open Data

    Files private

    Request files
  • Byers-Heinlein, K., Bergmann, C., & Savalei, V. (2022). Six solutions for more reliable infant research. Infant and Child Development, 31(5): e2296. doi:10.1002/icd.2296.

    Abstract

    Infant research is often underpowered, undermining the robustness and replicability of our findings. Improving the reliability of infant studies offers a solution for increasing statistical power independent of sample size. Here, we discuss two senses of the term reliability in the context of infant research: reliable (large) effects and reliable measures. We examine the circumstances under which effects are strongest and measures are most reliable and use synthetic datasets to illustrate the relationship between effect size, measurement reliability, and statistical power. We then present six concrete solutions for more reliable infant research: (a) routinely estimating and reporting the effect size and measurement reliability of infant tasks, (b) selecting the best measurement tool, (c) developing better infant paradigms, (d) collecting more data points per infant, (e) excluding unreliable data from the analysis, and (f) conducting more sophisticated data analyses. Deeper consideration of measurement in infant research will improve our ability to study infant development.
  • Byun, K.-S., Roberts, S. G., De Vos, C., Zeshan, U., & Levinson, S. C. (2022). Distinguishing selection pressures in an evolving communication system: Evidence from colournaming in 'cross signing'. Frontiers in Communication, 7: 1024340. doi:10.3389/fcomm.2022.1024340.

    Abstract

    Cross-signing—the emergence of an interlanguage between users of different sign languages—offers a rare chance to examine the evolution of a natural communication system in real time. To provide an insight into this process, we analyse an annotated video corpus of 340 minutes of interaction between signers of different language backgrounds on their first meeting and after living with each other for several weeks. We focus on the evolution of shared color terms and examine the role of different selectional pressures, including frequency, content, coordination and interactional context. We show that attentional factors in interaction play a crucial role. This suggests that understanding meta-communication is critical for explaining the cultural evolution of linguistic systems.
  • Byun, K.-S., De Vos, C., Bradford, A., Zeshan, U., & Levinson, S. C. (2018). First encounters: Repair sequences in cross-signing. Topics in Cognitive Science, 10(2), 314-334. doi:10.1111/tops.12303.

    Abstract

    Most human communication is between people who speak or sign the same languages. Nevertheless, communication is to some extent possible where there is no language in common, as every tourist knows. How this works is of some theoretical interest (Levinson 2006). A nice arena to explore this capacity is when deaf signers of different languages meet for the first time, and are able to use the iconic affordances of sign to begin communication. Here we focus on Other-Initiated Repair (OIR), that is, where one signer makes clear he or she does not understand, thus initiating repair of the prior conversational turn. OIR sequences are typically of a three-turn structure (Schegloff 2007) including the problem source turn (T-1), the initiation of repair (T0), and the turn offering a problem solution (T+1). These sequences seem to have a universal structure (Dingemanse et al. 2013). We find that in most cases where such OIR occur, the signer of the troublesome turn (T-1) foresees potential difficulty, and marks the utterance with 'try markers' (Sacks & Schegloff 1979, Moerman 1988) which pause to invite recognition. The signers use repetition, gestural holds, prosodic lengthening and eyegaze at the addressee as such try-markers. Moreover, when T-1 is try-marked this allows for faster response times of T+1 with respect to T0. This finding suggests that signers in these 'first encounter' situations actively anticipate potential trouble and, through try-marking, mobilize and facilitate OIRs. The suggestion is that heightened meta-linguistic awareness can be utilized to deal with these problems at the limits of our communicational ability.
  • Cao, Y., Oostenveld, R., Alday, P. M., & Piai, V. (2022). Are alpha and beta oscillations spatially dissociated over the cortex in context‐driven spoken‐word production? Psychophysiology, 59(6): e13999. doi:10.1111/psyp.13999.

    Abstract

    Decreases in oscillatory alpha- and beta-band power have been consistently found in spoken-word production. These have been linked to both motor preparation and conceptual-lexical retrieval processes. However, the observed power decreases have a broad frequency range that spans two “classic” (sensorimotor) bands: alpha and beta. It remains unclear whether alpha- and beta-band power decreases contribute independently when a spoken word is planned. Using a re-analysis of existing magnetoencephalography data, we probed whether the effects in alpha and beta bands are spatially distinct. Participants read a sentence that was either constraining or non-constraining toward the final word, which was presented as a picture. In separate blocks participants had to name the picture or score its predictability via button press. Irregular-resampling auto-spectral analysis (IRASA) was used to isolate the oscillatory activity in the alpha and beta bands from the background 1-over-f spectrum. The sources of alpha- and beta-band oscillations were localized based on the participants’ individualized peak frequencies. For both tasks, alpha- and beta-power decreases overlapped in left posterior temporal and inferior parietal cortex, regions that have previously been associated with conceptual and lexical processes. The spatial distributions of the alpha and beta power effects were spatially similar in these regions to the extent we could assess it. By contrast, for left frontal regions, the spatial distributions differed between alpha and beta effects. Our results suggest that for conceptual-lexical retrieval, alpha and beta oscillations do not dissociate spatially and, thus, are distinct from the classical sensorimotor alpha and beta oscillations.
  • Carota, F., Schoffelen, J.-M., Oostenveld, R., & Indefrey, P. (2022). The time course of language production as revealed by pattern classification of MEG sensor data. The Journal of Neuroscience, 42(29), 5745-5754. doi:10.1523/JNEUROSCI.1923-21.2022.

    Abstract

    Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production
  • Carota, F., Bozic, M., & Marslen-Wilson, W. (2016). Decompositional Representation of Morphological Complexity: Multivariate fMRI Evidence from Italian. Journal of Cognitive Neuroscience, 28(12), 1878-1896. doi:10.1162/jocn\_a\_01009.

    Abstract

    Derivational morphology is a cross-linguistically dominant mechanism for word formation, combining existing words with derivational affixes to create new word forms. However, the neurocognitive mechanisms underlying the representation and processing of such forms remain unclear. Recent cross-linguistic neuroimaging research suggests that derived words are stored and accessed as whole forms, without engaging the left-hemisphere perisylvian network associated with combinatorial processing of syntactically and inflectionally complex forms. Using fMRI with a “simple listening” no-task procedure, we reexamine these suggestions in the context of the root-based combinatorially rich Italian lexicon to clarify the role of semantic transparency (between the derived form and its stem) and affix productivity in determining whether derived forms are decompositionally represented and which neural systems are involved. Combined univariate and multivariate analyses reveal a key role for semantic transparency, modulated by affix productivity. Opaque forms show strong cohort competition effects, especially for words with nonproductive suffixes (ventura, “destiny”). The bilateral frontotemporal activity associated with these effects indicates that opaque derived words are processed as whole forms in the bihemispheric language system. Semantically transparent words with productive affixes (libreria, “bookshop”) showed no effects of lexical competition, suggesting morphologically structured co-representation of these derived forms and their stems, whereas transparent forms with nonproductive affixes (pineta, pine forest) show intermediate effects. Further multivariate analyses of the transparent derived forms revealed affix productivity effects selectively involving left inferior frontal regions, suggesting that the combinatorial and decompositional processes triggered by such forms can vary significantly across languages.
  • Carrion Castillo, A., van Bergen, E., Vino, A., van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531-541. doi:10.1111/gbb.12299.

    Abstract

    Recent genome wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In the present study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (p < 10−6 in the original studies) in a new independent population dataset from the Netherlands: known as FIOLA (Familial Influences On Literacy Abilities). This dataset comprised 483 children from 307 nuclear families, plus 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness, and rapid automatized naming. Two SNPs (rs12636438, rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations in respects such as the language of testing, the exact tests used, and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.
  • Carter, D. M., Broersma, M., Donnelly, K., & Konopka, A. E. (2018). Presenting the Bangor autoglosser and the Bangor automated clause-splitter. Digital Scholarship in the Humanities, 33(1), 21-28. doi:10.1093/llc/fqw065.

    Abstract

    Until recently, corpus studies of natural bilingual speech and, more specifically, codeswitching in bilingual speech have used a manual method of glossing, partof- speech tagging, and clause-splitting to prepare the data for analysis. In our article, we present innovative tools developed for the first large-scale corpus study of codeswitching triggered by cognates. A study of this size was only possible due to the automation of several steps, such as morpheme-by-morpheme glossing, splitting complex clauses into simple clauses, and the analysis of internal and external codeswitching through the use of database tables, algorithms, and a scripting language.
  • Carter, G., & Nieuwland, M. S. (2022). Predicting definite and indefinite referents during discourse comprehension: Evidence from event‐related potentials. Cognitive Science, 46(2): e13092. doi:10.1111/cogs.13092.

    Abstract

    Linguistic predictions may be generated from and evaluated against a representation of events and referents described in the discourse. Compatible with this idea, recent work shows that predictions about novel noun phrases include their definiteness. In the current follow-up study, we ask whether people engage similar prediction-related processes for definite and indefinite referents. This question is relevant for linguistic theories that imply a processing difference between definite and indefinite noun phrases, typically because definiteness is thought to require a uniquely identifiable referent in the discourse. We addressed this question in an event-related potential (ERP) study (N = 48) with preregistration of data acquisition, preprocessing, and Bayesian analysis. Participants read Dutch mini-stories with a definite or indefinite novel noun phrase (e.g., “het/een huis,” the/a house), wherein (in)definiteness of the article was either expected or unexpected and the noun was always strongly expected. Unexpected articles elicited enhanced N400s, but unexpectedly indefinite articles also elicited a positive ERP effect at frontal channels compared to expectedly indefinite articles. We tentatively link this effect to an antiuniqueness violation, which may force people to introduce a new referent over and above the already anticipated one. Interestingly, expectedly definite nouns elicited larger N400s than unexpectedly definite nouns (replicating a previous surprising finding) and indefinite nouns. Although the exact nature of these noun effects remains unknown, expectedly definite nouns may have triggered the strongest semantic activation because they alone refer to specific and concrete referents. In sum, results from both the articles and nouns clearly demonstrate that definiteness marking has a rapid effect on processing, counter to recent claims regarding definiteness processing.
  • Casillas, M., Bobb, S. C., & Clark, E. V. (2016). Turn taking, timing, and planning in early language acquisition. Journal of Child Language, 43, 1310-1337. doi:10.1017/S0305000915000689.

    Abstract

    Young children answer questions with longer delays than adults do, and they don't reach typical adult response times until several years later. We hypothesized that this prolonged pattern of delay in children's timing results from competing demands: to give an answer, children must understand a question while simultaneously planning and initiating their response. Even as children get older and more efficient in this process, the demands on them increase because their verbal responses become more complex. We analyzed conversational question-answer sequences between caregivers and their children from ages 1;8 to 3;5, finding that children (1) initiate simple answers more quickly than complex ones, (2) initiate simple answers quickly from an early age, and (3) initiate complex answers more quickly as they grow older. Our results suggest that children aim to respond quickly from the start, improving on earlier-acquired answer types while they begin to practice later-acquired, slower ones.

    Additional information

    S0305000915000689sup001.docx
  • Chabout, J., Sarkar, A., Patel, S., Radden, T., Dunson, D., Fisher, S. E., & Jarvis, E. (2016). A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice. Frontiers in Behavioral Neuroscience, 10: 197. doi:10.3389/fnbeh.2016.00197.

    Abstract

    Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.
  • Chan, A., Yang, W., Chang, F., & Kidd, E. (2018). Four-year-old Cantonese-speaking children's online processing of relative clauses: A permutation analysis. Journal of Child Language, 45(1), 174-203. doi:10.1017/s0305000917000198.

    Abstract


    We report on an eye-tracking study that investigated four-year-old Cantonese-speaking children's online processing of subject and object relative clauses (RCs). Children's eye-movements were recorded as they listened to RC structures identifying a unique referent (e.g. “Can you pick up the horse that pushed the pig?”). Two RC types, classifier (CL) and ge3 RCs, were tested in a between-participants design. The two RC types differ in their syntactic analyses and frequency of occurrence, providing an important point of comparison for theories of RC acquisition and processing. A permutation analysis showed that the two structures were processed differently: CL RCs showed a significant object-over-subject advantage, whereas ge3 RCs showed the opposite effect. This study shows that children can have different preferences even for two very similar RC structures within the same language, suggesting that syntactic processing preferences are shaped by the unique features of particular constructions both within and across different linguistic typologies.
  • Chen, C.-h., Zhang, Y., & Yu, C. (2018). Learning object names at different hierarchical levels using cross-situational statistics. Cognitive Science, 42(S2), 591-605. doi:10.1111/cogs.12516.

    Abstract

    Objects in the world usually have names at different hierarchical levels (e.g., beagle, dog, animal). This research investigates adults' ability to use cross-situational statistics to simultaneously learn object labels at individual and category levels. The results revealed that adults were able to use co-occurrence information to learn hierarchical labels in contexts where the labels for individual objects and labels for categories were presented in completely separated blocks, in interleaved blocks, or mixed in the same trial. Temporal presentation schedules significantly affected the learning of individual object labels, but not the learning of category labels. Learners' subsequent generalization of category labels indicated sensitivity to the structure of statistical input.
  • Chen, X., Hartsuiker, R. J., Muylle, M., Slim, M. S., & Zhang, C. (2022). The effect of animacy on structural Priming: A replication of Bock, Loebell and Morey (1992). Journal of Memory and Language, 127: 104354. doi:10.1016/j.jml.2022.104354.

    Abstract

    Bock et al. (1992) found that the binding of animacy features onto grammatical roles is susceptible to priming in sentence production. Moreover, this effect did not interact with structural priming. This finding supports an account according to which syntactic representations are insensitive to the consistency of animacy-to-structure mapping. This account has contributed greatly to the development of syntactic processing theories in language production. However, this study has never been directly replicated and the few related studies showed mixed results. A meta-analysis of these studies failed to replicate the findings of Bock et al. (1992). Therefore, we conducted a well-powered replication (n = 496) that followed the original study as closely as possible. We found an effect of structural priming and an animacy priming effect, replicating Bock et al.’s findings. In addition, we replicated Bock et al.’s (1992) observed null interaction between structural priming and animacy binding, which suggests that syntactic representations are indeed independent of semantic information about animacy.
  • Choi, J., Broersma, M., & Cutler, A. (2018). Phonetic learning is not enhanced by sequential exposure to more than one language. Linguistic Research, 35(3), 567-581. doi:10.17250/khisli.35.3.201812.006.

    Abstract

    Several studies have documented that international adoptees, who in early years have
    experienced a change from a language used in their birth country to a new language
    in an adoptive country, benefit from the limited early exposure to the birth language
    when relearning that language’s sounds later in life. The adoptees’ relearning advantages
    have been argued to be conferred by lasting birth-language knowledge obtained from
    the early exposure. However, it is also plausible to assume that the advantages may
    arise from adoptees’ superior ability to learn language sounds in general, as a result
    of their unusual linguistic experience, i.e., exposure to multiple languages in sequence
    early in life. If this is the case, then the adoptees’ relearning benefits should generalize
    to previously unheard language sounds, rather than be limited to their birth-language
    sounds. In the present study, adult Korean adoptees in the Netherlands and matched
    Dutch-native controls were trained on identifying a Japanese length distinction to which
    they had never been exposed before. The adoptees and Dutch controls did not differ
    on any test carried out before, during, or after the training, indicating that observed
    adoptee advantages for birth-language relearning do not generalize to novel, previously
    unheard language sounds. The finding thus fails to support the suggestion that
    birth-language relearning advantages may arise from enhanced ability to learn language
    sounds in general conferred by early experience in multiple languages. Rather, our
    finding supports the original contention that such advantages involve memory traces
    obtained before adoption
  • Chormai, P., Pu, Y., Hu, H., Fisher, S. E., Francks, C., & Kong, X. (2022). Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. NeuroImage, 262: 119534. doi:10.1016/j.neuroimage.2022.119534.

    Abstract

    Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobiological basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by self-reported direction of hand preference, and its variability related to brain structural and functional organization in the UK Biobank (N = 36,024). A multivariate machine learning approach with multi-modalities of brain imaging data was adopted, to reveal how well brain imaging features could predict individual's handedness (i.e., right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance in the prediction showed functional relevance to hand movement and several higher-level cognitive functions including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA polymorphisms to the imaging-derived handedness prediction score showed a significant heritability (h2=7.55%, p <0.001) that was similar to and slightly higher than that for the behavioural measure itself (h2=6.74%, p <0.001). The genetic correlation between the two was high (rg=0.71), suggesting that the imaging-derived score could be used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates of human handedness.

    Additional information

    supplementary material
  • Chu, M., & Kita, S. (2016). Co-thought and Co-speech Gestures Are Generated by the Same Action Generation Process. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(2), 257-270. doi:10.1037/xlm0000168.

    Abstract

    People spontaneously gesture when they speak (co-speech gestures) and when they solve problems silently (co-thought gestures). In this study, we first explored the relationship between these 2 types of gestures and found that individuals who produced co-thought gestures more frequently also produced co-speech gestures more frequently (Experiments 1 and 2). This suggests that the 2 types of gestures are generated from the same process. We then investigated whether both types of gestures can be generated from the representational use of the action generation process that also generates purposeful actions that have a direct physical impact on the world, such as manipulating an object or locomotion (the action generation hypothesis). To this end, we examined the effect of object affordances on the production of both types of gestures (Experiments 3 and 4). We found that individuals produced co-thought and co-speech gestures more often when the stimulus objects afforded action (objects with a smooth surface) than when they did not (objects with a spiky surface). These results support the action generation hypothesis for representational gestures. However, our findings are incompatible with the hypothesis that co-speech representational gestures are solely generated from the speech production process (the speech production hypothesis).
  • Clough, S., & Hilverman, C. (2018). Hand gestures and how they help children learn. Frontiers for Young Minds, 6: 29. doi:10.3389/frym.2018.00029.

    Abstract

    When we talk, we often make hand movements called gestures at the same time. Although just about everyone gestures when they talk, we usually do not even notice the gestures. Our hand gestures play an important role in helping us learn and remember! When we see other people gesturing when they talk—or when we gesture when we talk ourselves—we are more likely to remember the information being talked about than if gestures were not involved. Our hand gestures can even indicate when we are ready to learn new things! In this article, we explain how gestures can help learning. To investigate this, we studied children learning a new mathematical concept called equivalence. We hope that this article will help you notice when you, your friends and family, and your teachers are gesturing, and that it will help you understand how those gestures can help people learn.
  • Clough, S., Hilverman, C., Brown-Schmidt, S., & Duff, M. C. (2022). Evidence of audience design in amnesia: Adaptation in gesture but not speech. Brain Sciences, 12(8): 1082. doi:10.3390/brainsci12081082.

    Abstract

    Speakers design communication for their audience, providing more information in both speech and gesture when their listener is naive to the topic. We test whether the hippocampal declarative memory system contributes to multimodal audience design. The hippocampus, while traditionally linked to episodic and relational memory, has also been linked to the ability to imagine the mental states of others and use language flexibly. We examined the speech and gesture use of four patients with hippocampal amnesia when describing how to complete everyday tasks (e.g., how to tie a shoe) to an imagined child listener and an adult listener. Although patients with amnesia did not increase their total number of words and instructional steps for the child listener, they did produce representational gestures at significantly higher rates for the imagined child compared to the adult listener. They also gestured at similar frequencies to neurotypical peers, suggesting that hand gesture can be a meaningful communicative resource, even in the case of severe declarative memory impairment. We discuss the contributions of multiple memory systems to multimodal audience design and the potential of gesture to act as a window into the social cognitive processes of individuals with neurologic disorders.
  • Collins, J. (2016). The role of language contact in creating correlations between humidity and tone. Journal of Language Evolution, 46-52. doi:10.1093/jole/lzv012.
  • Connine, C. M., Clifton, Jr., C., & Cutler, A. (1987). Effects of lexical stress on phonetic categorization. Phonetica, 44, 133-146.
  • Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.

    Abstract

    It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language.
  • Coopmans, C. W., De Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology of Language, 3(3), 386-412. doi:10.1162/nol_a_00070.

    Abstract

    Recent research has established that cortical activity “tracks” the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.

    Additional information

    supplementary information
  • Coopmans, C. W., & Cohn, N. (2022). An electrophysiological investigation of co-referential processes in visual narrative comprehension. Neuropsychologia, 172: 108253. doi:10.1016/j.neuropsychologia.2022.108253.

    Abstract

    Visual narratives make use of various means to convey referential and co-referential meaning, so comprehenders
    must recognize that different depictions across sequential images represent the same character(s). In this study,
    we investigated how the order in which different types of panels in visual sequences are presented affects how
    the unfolding narrative is comprehended. Participants viewed short comic strips while their electroencephalo-
    gram (EEG) was recorded. We analyzed evoked and induced EEG activity elicited by both full panels (showing a
    full character) and refiner panels (showing only a zoom of that full panel), and took into account whether they
    preceded or followed the panel to which they were co-referentially related (i.e., were cataphoric or anaphoric).
    We found that full panels elicited both larger N300 amplitude and increased gamma-band power compared to
    refiner panels. Anaphoric panels elicited a sustained negativity compared to cataphoric panels, which appeared
    to be sensitive to the referential status of the anaphoric panel. In the time-frequency domain, anaphoric panels
    elicited reduced 8–12 Hz alpha power and increased 45–65 Hz gamma-band power compared to cataphoric
    panels. These findings are consistent with models in which the processes involved in visual narrative compre-
    hension partially overlap with those in language comprehension.
  • Corcoran, A. W., Alday, P. M., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2018). Toward a reliable, automated method of individual alpha frequency (IAF) quantification. Psychophysiology, 55(7): e13064. doi:10.1111/psyp.13064.

    Abstract

    Individual alpha frequency (IAF) is a promising electrophysiological marker of interindividual differences in cognitive function. IAF has been linked with trait-like differences in information processing and general intelligence, and provides an empirical basis for the definition of individualized frequency bands. Despite its widespread application, however, there is little consensus on the optimal method for estimating IAF, and many common approaches are prone to bias and inconsistency. Here, we describe an automated strategy for deriving two of the most prevalent IAF estimators in the literature: peak alpha frequency (PAF) and center of gravity (CoG). These indices are calculated from resting-state power spectra that have been smoothed using a Savitzky-Golay filter (SGF). We evaluate the performance characteristics of this analysis procedure in both empirical and simulated EEG data sets. Applying the SGF technique to resting-state data from n = 63 healthy adults furnished 61 PAF and 62 CoG estimates. The statistical properties of these estimates were consistent with previous reports. Simulation analyses revealed that the SGF routine was able to reliably extract target alpha components, even under relatively noisy spectral conditions. The routine consistently outperformed a simpler method of automated peak detection that did not involve spectral smoothing. The SGF technique is fast, open source, and available in two popular programming languages (MATLAB, Python), and thus can easily be integrated within the most popular M/EEG toolsets (EEGLAB, FieldTrip, MNE-Python). As such, it affords a convenient tool for improving the reliability and replicability of future IAF-related research.

    Additional information

    psyp13064-sup-0001-s01.docx
  • Corps, R. E., Brooke, C., & Pickering, M. (2022). Prediction involves two stages: Evidence from visual-world eye-tracking. Journal of Memory and Language, 122: 104298. doi:10.1016/j.jml.2021.104298.

    Abstract

    Comprehenders often predict what they are going to hear. But do they make the best predictions possible? We addressed this question in three visual-world eye-tracking experiments by asking when comprehenders consider perspective. Male and female participants listened to male and female speakers producing sentences (e.g., I would like to wear the nice…) about stereotypically masculine (target: tie; distractor: drill) and feminine (target: dress, distractor: hairdryer) objects. In all three experiments, participants rapidly predicted semantic associates of the verb. But participants also predicted consistently – that is, consistent with their beliefs about what the speaker would ultimately say. They predicted consistently from the speaker’s perspective in Experiment 1, their own perspective in Experiment 2, and the character’s perspective in Experiment 3. This consistent effect occurred later than the associative effect. We conclude that comprehenders consider perspective when predicting, but not from the earliest moments of prediction, consistent with a two-stage account.

    Additional information

    data and analysis scripts

Share this page