Publications

Displaying 201 - 227 of 227
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Shao, Z., & Meyer, A. S. (2018). Word priming and interference paradigms. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 111-129). Hoboken: Wiley.
  • Skiba, R. (2003). Computer Analysis: Corpus based language research. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgil (Eds.), Handbook ''Sociolinguistics'' (2nd ed.) (pp. 1250-1260). Berlin: de Gruyter.
  • Speed, L. J., Wnuk, E., & Majid, A. (2018). Studying psycholinguistics out of the lab. In A. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 190-207). Hoboken: Wiley.

    Abstract

    Traditional psycholinguistic studies take place in controlled experimental labs and typically involve testing undergraduate psychology or linguistics students. Investigating psycholinguistics in this manner calls into question the external validity of findings, that is, the extent to which research findings generalize across languages and cultures, as well as ecologically valid settings. Here we consider three ways in which psycholinguistics can be taken out of the lab. First, researchers can conduct cross-cultural fieldwork in diverse languages and cultures. Second, they can conduct online experiments or experiments in institutionalized public spaces (e.g., museums) to obtain large, diverse participant samples. And, third, researchers can perform studies in more ecologically valid settings, to increase the real-world generalizability of findings. By moving away from the traditional lab setting, psycholinguists can enrich their understanding of language use in all its rich and diverse contexts.
  • Stivers, T., Enfield, N. J., & Levinson, S. C. (2007). Person reference in interaction. In N. J. Enfield, & T. Stivers (Eds.), Person reference in interaction: Linguistic, cultural, and social perspectives (pp. 1-20). Cambridge: Cambridge University Press.
  • Stivers, T. (2007). Alternative recognitionals in person reference. In N. Enfield, & T. Stivers (Eds.), Person reference in interaction: Linguistic, cultural, and social perspectives (pp. 73-96). Cambridge: Cambridge University Press.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Trilsbeek, P., & Wittenburg, P. (2007). "Los acervos lingüísticos digitales y sus desafíos". In J. Haviland, & F. Farfán (Eds.), Bases de la documentacíon lingüística (pp. 359-385). Mexico: Instituto Nacional de Lenguas Indígenas.

    Abstract

    This chapter describes the challenges that modern digital language archives are faced with. One essential aspect of such an archive is to have a rich metadata catalog such that the archived resources can be easily discovered. The challenge of the archive is to obtain these rich metadata descriptions from the depositors without creating too much overhead for them. The rapid changes in storage technology, file formats and encoding standards make it difficult to build a long-lasting repository, therefore archives need to be set up in such a way that a straightforward and automated migration process to newer technology is possible whenever certain technology becomes obsolete. Other problems arise from the fact that there are many different groups of users of the archive, each of them with their own specific expectations and demands. Often conflicts exist between the requirements for different purposes of the archive, e.g. between long-term preservation of the data versus direct access to the resources via the web. The task of the archive is to come up with a technical solution that works well for most usage scenarios.
  • Tufvesson, S. (2007). Expressives. In A. Majid (Ed.), Field Manual Volume 10 (pp. 53-58). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492919.
  • Udden, J., & Männel, C. (2018). Artificial grammar learning and its neurobiology in relation to language processing and development. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 755-783). Oxford: Oxford University Press.

    Abstract

    The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.
  • Ünal, E., & Papafragou, A. (2018). Evidentials, information sources and cognition. In A. Y. Aikhenvald (Ed.), The Oxford Handbook of Evidentiality (pp. 175-184). Oxford University Press.
  • Ünal, E., & Papafragou, A. (2018). The relation between language and mental state reasoning. In J. Proust, & M. Fortier (Eds.), Metacognitive diversity: An interdisciplinary approach (pp. 153-169). Oxford: Oxford University Press.
  • Van Alphen, P. M. (2007). Prevoicing in Dutch initial plosives: Production, perception, and word recognition. In J. van de Weijer, & E. van der Torre (Eds.), Voicing in Dutch (pp. 99-124). Amsterdam: Benjamins.

    Abstract

    Prevoicing is the presence of vocal fold vibration during the closure of initial voiced plosives (negative VOT). The presence or absence of prevoicing is generally used to describe the voicing distinction in Dutch initial plosives. However, a phonetic study showed that prevoicing is frequently absent in Dutch. This article discusses the role of prevoicing in the production and perception of Dutch plosives. Furthermore, two cross-modal priming experiments are presented that examined the effect of prevoicing variation on word recognition. Both experiments showed no difference between primes with 12, 6 or 0 periods of prevoicing, even though a third experiment indicated that listeners could discriminate these words. These results are discussed in light of another priming experiment that did show an effect of the absence of prevoicing, but only when primes had a voiceless word competitor. Phonetic detail appears to influence lexical access only when it helps to distinguish between lexical candidates.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Wilkins, D., Kita, S., & Enfield, N. J. (2007). 'Ethnography of pointing' - field worker's guide. In A. Majid (Ed.), Field Manual Volume 10 (pp. 89-95). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492922.

    Abstract

    Pointing gestures are recognised to be a primary manifestation of human social cognition and communicative capacity. The goal of this task is to collect empirical descriptions of pointing practices in different cultural settings.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page