Publications

Displaying 1 - 100 of 199
  • Akita, K., & Dingemanse, M. (2019). Ideophones (Mimetics, Expressives). In Oxford Research Encyclopedia for Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.477.

    Abstract

    Ideophones, also termed “mimetics” or “expressives,” are marked words that depict sensory imagery. They are found in many of the world’s languages, and sizable lexical classes of ideophones are particularly well-documented in languages of Asia, Africa, and the Americas. Ideophones are not limited to onomatopoeia like meow and smack, but cover a wide range of sensory domains, such as manner of motion (e.g., plisti plasta ‘splish-splash’ in Basque), texture (e.g., tsaklii ‘rough’ in Ewe), and psychological states (e.g., wakuwaku ‘excited’ in Japanese). Across languages, ideophones stand out as marked words due to special phonotactics, expressive morphology including certain types of reduplication, and relative syntactic independence, in addition to production features like prosodic foregrounding and common co-occurrence with iconic gestures. Three intertwined issues have been repeatedly debated in the century-long literature on ideophones. (a) Definition: Isolated descriptive traditions and cross-linguistic variation have sometimes obscured a typologically unified view of ideophones, but recent advances show the promise of a prototype definition of ideophones as conventionalised depictions in speech, with room for language-specific nuances. (b) Integration: The variable integration of ideophones across linguistic levels reveals an interaction between expressiveness and grammatical integration, and has important implications for how to conceive of dependencies between linguistic systems. (c) Iconicity: Ideophones form a natural laboratory for the study of iconic form-meaning associations in natural languages, and converging evidence from corpus and experimental studies suggests important developmental, evolutionary, and communicative advantages of ideophones.
  • Bauer, B. L. M. (1997). Nominal syntax in Italic: A diachronic perspective. In Language change and functional explanations (pp. 273-301). Berlin: Mouton de Gruyter.
  • Bauer, B. L. M. (2016). The development of the comparative in Latin texts. In J. N. Adams, & N. Vincent (Eds.), Early and late Latin. Continuity or change? (pp. 313-339). Cambridge: Cambridge University Press.
  • Bickel, B. (1991). Der Hang zur Exzentrik - Annäherungen an das kognitive Modell der Relativkonstruktion. In W. Bisang, & P. Rinderknecht (Eds.), Von Europa bis Ozeanien - von der Antinomie zum Relativsatz (pp. 15-37). Zurich, Switzerland: Seminar für Allgemeine Sprachwissenschaft der Universität.
  • Blythe, J. (2018). Genesis of the trinity: The convergent evolution of trirelational kinterms. In P. McConvell, & P. Kelly (Eds.), Skin, kin and clan: The dynamics of social categories in Indigenous Australia (pp. 431-471). Canberra: ANU EPress.
  • Bock, K., & Levelt, W. J. M. (1994). Language production: Grammatical encoding. In M. A. Gernsbacher (Ed.), Handbook of Psycholinguistics (pp. 945-984). San Diego,: Academic Press.
  • Böttner, M. (1997). Natural Language. In C. Brink, W. Kahl, & G. Schmidt (Eds.), Relational Methods in computer science (pp. 229-249). Vienna, Austria: Springer-Verlag.
  • Bouman, M. A., & Levelt, W. J. M. (1994). Werner E. Reichardt: Levensbericht. In H. W. Pleket (Ed.), Levensberichten en herdenkingen 1993 (pp. 75-80). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Bowden, J. (1997). The meanings of Directionals in Taba. In G. Senft (Ed.), Referring to Space: Studies in Austronesian and Papuan Languages (pp. 251-268). New York, NJ: Oxford University Press.
  • Bowerman, M. (1975). Cross linguistic similarities at two stages of syntactic development. In E. Lenneberg, & E. Lenneberg (Eds.), Foundations of language development: A multidisciplinary approach (pp. 267-282). New York: Academic Press.
  • Bowerman, M. (1982). Reorganizational processes in lexical and syntactic development. In E. Wanner, & L. Gleitman (Eds.), Language acquisition: The state of the art (pp. 319-346). New York: Academic Press.
  • Bowerman, M. (1994). Learning a semantic system: What role do cognitive predispositions play? [Reprint]. In P. Bloom (Ed.), Language acquisition: Core readings (pp. 329-363). Cambridge, MA: MIT Press.

    Abstract

    Reprint from: Bowerman, M. (1989). Learning a semantic system: What role do cognitive predispositions play? In M.L. Rice & R.L Schiefelbusch (Ed.), The teachability of language (pp. 133-169). Baltimore: Paul H. Brookes.
  • Bowerman, M. (1982). Starting to talk worse: Clues to language acquisition from children's late speech errors. In S. Strauss (Ed.), U shaped behavioral growth (pp. 101-145). New York: Academic Press.
  • Brehm, L., & Goldrick, M. (2018). Connectionist principles in theories of speech production. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 372-397). Oxford: Oxford University Press.

    Abstract

    This chapter focuses on connectionist modeling in language production, highlighting how core principles of connectionism provide coverage for empirical observations about representation and selection at the phonological, lexical, and sentence levels. The first section focuses on the connectionist principles of localist representations and spreading activation. It discusses how these two principles have motivated classic models of speech production and shows how they cover results of the picture-word interference paradigm, the mixed error effect, and aphasic naming errors. The second section focuses on how newer connectionist models incorporate the principles of learning and distributed representations through discussion of syntactic priming, cumulative semantic interference, sequencing errors, phonological blends, and code-switching
  • Brown, P. (1997). Isolating the CVC root in Tzeltal Mayan: A study of children's first verbs. In E. V. Clark (Ed.), Proceedings of the 28th Annual Child Language Research Forum (pp. 41-52). Stanford, CA: CSLI/University of Chicago Press.

    Abstract

    How do children isolate the semantic package contained in verb roots in the Mayan language Tzeltal? One might imagine that the canonical CVC shape of roots characteristic of Mayan languages would make the job simple, but the root is normally preceded and followed by affixes which mask its identity. Pye (1983) demonstrated that, in Kiche' Mayan, prosodic salience overrides semantic salience, and children's first words in Kiche' are often composed of only the final (stressed) syllable constituted by the final consonant of the CVC root and a 'meaningless' termination suffix. Intonation thus plays a crucial role in early Kiche' morphological development. Tzeltal presents a rather different picture: The first words of children around the age of 1;6 are bare roots, children strip off all prefixes and suffixes which are obligatory in adult speech. They gradually add them, starting with the suffixes (which receive the main stress), but person prefixes are omitted in some contexts past a child's third birthday, and one obligatory aspectual prefix (x-) is systematically omitted by the four children in my longitudinal study even after they are four years old. Tzeltal children's first verbs generally show faultless isolation of the root. An account in terms of intonation or stress cannot explain this ability (the prefixes are not all syllables; the roots are not always stressed). This paper suggests that probable clues include the fact that the CVC root stays constant across contexts (with some exceptions) whereas the affixes vary, that there are some linguistic contexts where the root occurs without any prefixes (relatively frequent in the input), and that the Tzeltal discourse convention of responding by repeating with appropriate deictic alternation (e.g., "I see it." "Oh, you see it.") highlights the root.
  • Brown, P. (1991). Sind Frauen höflicher? Befunde aus einer Maya-Gemeinde. In S. Günther, & H. Kotthoff (Eds.), Von fremden Stimmen: Weibliches und männliches Sprechen im Kulturvergleich. Frankfurt am Main: Suhrkamp.

    Abstract

    This is a German translation of Brown 1980, How and why are women more polite: Some evidence from a Mayan community.
  • Brown, P., & Levinson, S. C. (2018). Tzeltal: The demonstrative system. In S. C. Levinson, S. Cutfield, M. Dunn, N. J. Enfield, & S. Meira (Eds.), Demonstratives in cross-linguistic perspective (pp. 150-177). Cambridge: Cambridge University Press.
  • Burenhult, N., & Kruspe, N. (2016). The language of eating and drinking: A window on Orang Asli meaning-making. In K. Endicott (Ed.), Malaysia’s original people: Past, present and future of the Orang Asli (pp. 175-199). Singapore: National University of Singapore Press.
  • Burenkova, O. V., & Fisher, S. E. (2019). Genetic insights into the neurobiology of speech and language. In E. Grigorenko, Y. Shtyrov, & P. McCardle (Eds.), All About Language: Science, Theory, and Practice. Baltimore, MD: Paul Brookes Publishing, Inc.
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Clark, E. V., & Casillas, M. (2016). First language acquisition. In K. Allen (Ed.), The Routledge Handbook of Linguistics (pp. 311-328). New York: Routledge.
  • Crago, M. B., Allen, S. E. M., & Hough-Eyamie, W. P. (1997). Exploring innateness through cultural and linguistic variation. In M. Gopnik (Ed.), The inheritance and innateness of grammars (pp. 70-90). New York City, NY, USA: Oxford University Press, Inc.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Cutler, A. (1991). Linguistic rhythm and speech segmentation. In J. Sundberg, L. Nord, & R. Carlson (Eds.), Music, language, speech and brain (pp. 157-166). London: Macmillan.
  • Cutler, A., & Farrell, J. (2018). Listening in first and second language. In J. I. Liontas (Ed.), The TESOL encyclopedia of language teaching. New York: Wiley. doi:10.1002/9781118784235.eelt0583.

    Abstract

    Listeners' recognition of spoken language involves complex decoding processes: The continuous speech stream must be segmented into its component words, and words must be recognized despite great variability in their pronunciation (due to talker differences, or to influence of phonetic context, or to speech register) and despite competition from many spuriously present forms supported by the speech signal. L1 listeners deal more readily with all levels of this complexity than L2 listeners. Fortunately, the decoding processes necessary for competent L2 listening can be taught in the classroom. Evidence-based methodologies targeted at the development of efficient speech decoding include teaching of minimal pairs, of phonotactic constraints, and of reduction processes, as well as the use of dictation and L2 video captions.
  • D'Avis, F.-J., & Gretsch, P. (1994). Variations on "Variation": On the Acquisition of Complementizers in German. In R. Tracy, & E. Lattey (Eds.), How Tolerant is Universal Grammar? (pp. 59-109). Tübingen, Germany: Max-Niemeyer-Verlag.
  • Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.

    Abstract

    This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language.
  • Dijkstra, T., & Kempen, G. (1997). Het taalgebruikersmodel. In H. Hulshof, & T. Hendrix (Eds.), De taalcentrale. Amsterdam: Bulkboek.
  • Dingemanse, M. (2019). 'Ideophone' as a comparative concept. In K. Akita, & P. Pardeshi (Eds.), Ideophones, Mimetics, and Expressives (pp. 13-33). Amsterdam: John Benjamins. doi:10.1075/ill.16.02din.

    Abstract

    This chapter makes the case for ‘ideophone’ as a comparative concept: a notion that captures a recurrent typological pattern and provides a template for understanding language-specific phenomena that prove similar. It revises an earlier definition to account for the observation that ideophones typically form an open lexical class, and uses insights from canonical typology to explore the larger typological space. According to the resulting definition, a canonical ideophone is a member of an open lexical class of marked words that depict sensory imagery. The five elements of this definition can be seen as dimensions that together generate a possibility space to characterise cross-linguistic diversity in depictive means of expression. This approach allows for the systematic comparative treatment of ideophones and ideophone-like phenomena. Some phenomena in the larger typological space are discussed to demonstrate the utility of the approach: phonaesthemes in European languages, specialised semantic classes in West-Chadic, diachronic diversions in Aslian, and depicting constructions in signed languages.
  • Dingemanse, M., Blythe, J., & Dirksmeyer, T. (2018). Formats for other-initiation of repair across languages: An exercise in pragmatic typology. In I. Nikolaeva (Ed.), Linguistic Typology: Critical Concepts in Linguistics. Vol. 4 (pp. 322-357). London: Routledge.

    Abstract

    In conversation, people regularly deal with problems of speaking, hearing, and understanding. We report on a cross-linguistic investigation of the conversational structure of other-initiated repair (also known as collaborative repair, feedback, requests for clarification, or grounding sequences). We take stock of formats for initiating repair across languages (comparable to English huh?, who?, y’mean X?, etc.) and find that different languages make available a wide but remarkably similar range of linguistic resources for this function. We exploit the patterned variation as evidence for several underlying concerns addressed by repair initiation: characterising trouble, managing responsibility, and handling knowledge. The concerns do not always point in the same direction and thus provide participants in interaction with alternative principles for selecting one format over possible others. By comparing conversational structures across languages, this paper contributes to pragmatic typology: the typology of systems of language use and the principles that shape them.
  • Dittmar, N., & Klein, W. (1975). Untersuchungen zum Pidgin-Deutsch spanischer und italienischer Arbeiter in der Bundesrepublik: Ein Arbeitsbericht. In A. Wierlacher (Ed.), Jahrbuch Deutsch als Fremdsprache (pp. 170-194). Heidelberg: Groos.
  • Doherty, M., & Klein, W. (Eds.). (1991). Übersetzung [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (84).
  • Eisner, F., & McQueen, J. M. (2018). Speech perception. In S. Thompson-Schill (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Volume 3: Language & thought (pp. 1-46). Hoboken: Wiley. doi:10.1002/9781119170174.epcn301.

    Abstract

    This chapter reviews the computational processes that are responsible for recognizing word forms in the speech stream. We outline the different stages in a processing hierarchy from the extraction of general acoustic features, through speech‐specific prelexical processes, to the retrieval and selection of lexical representations. We argue that two recurring properties of the system as a whole are abstraction and adaptability. We also present evidence for parallel processing of information on different timescales, more specifically that segmental material in the speech stream (its consonants and vowels) is processed in parallel with suprasegmental material (the prosodic structures of spoken words). We consider evidence from both psycholinguistics and neurobiology wherever possible, and discuss how the two fields are beginning to address common computational problems. The challenge for future research in speech perception will be to build an account that links these computational problems, through functional mechanisms that address them, to neurobiological implementation.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Ernestus, M. (2016). L'utilisation des corpus oraux pour la recherche en (psycho)linguistique. In M. Kilani-Schoch, C. Surcouf, & A. Xanthos (Eds.), Nouvelles technologies et standards méthodologiques en linguistique (pp. 65-93). Lausanne: Université de Lausanne.
  • Fisher, S. E. (2016). A molecular genetic perspective on speech and language. In G. Hickok, & S. Small (Eds.), Neurobiology of Language (pp. 13-24). Amsterdam: Elsevier. doi:10.1016/B978-0-12-407794-2.00002-X.

    Abstract

    The rise of genomic technologies has yielded exciting new routes for studying the biological foundations of language. Researchers have begun to identify genes implicated in neurodevelopmental disorders that disrupt speech and language skills. This chapter illustrates how such work can provide powerful entry points into the critical neural pathways using FOXP2 as an example. Rare mutations of this gene cause problems with learning to sequence mouth movements during speech, accompanied by wide-ranging impairments in language production and comprehension. FOXP2 encodes a regulatory protein, a hub in a network of other genes, several of which have also been associated with language-related impairments. Versions of FOXP2 are found in similar form in many vertebrate species; indeed, studies of animals and birds suggest conserved roles in the development and plasticity of certain sets of neural circuits. Thus, the contributions of this gene to human speech and language involve modifications of evolutionarily ancient functions.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Floyd, S. (2016). Insubordination in Interaction: The Cha’palaa counter-assertive. In N. Evans, & H. Wananabe (Eds.), Dynamics of Insubordination (pp. 341-366). Amsterdam: John Benjamins.

    Abstract

    In the Cha’palaa language of Ecuador the main-clause use of the otherwise non-finite morpheme -ba can be accounted for by a specific interactive practice: the ‘counter-assertion’ of statement or implicature of a previous conversational turn. Attention to the ways in which different constructions are deployed in such recurrent conversational contexts reveals a plausible account for how this type of dependent clause has come to be one of the options for finite clauses. After giving some background on Cha’palaa and placing ba clauses within a larger ecology of insubordination constructions in the language, this chapter uses examples from a video corpus of informal conversation to illustrate how interactive data provides answers that may otherwise be elusive for understanding how the different grammatical options for Cha’palaa finite verb constructions have been structured by insubordination
  • Floyd, S., & Norcliffe, E. (2016). Switch reference systems in the Barbacoan languages and their neighbors. In R. Van Gijn, & J. Hammond (Eds.), Switch Reference 2.0 (pp. 207-230). Amsterdam: Benjamins.

    Abstract

    This chapter surveys the available data on Barbacoan languages and their neighbors to explore a case study of switch reference within a single language family and in a situation of areal contact. To the extent possible given the available data, we weigh accounts appealing to common inheritance and areal convergence to ask what combination of factors led to the current state of these languages. We discuss the areal distribution of switch reference systems in the northwest Andean region, the different types of systems and degrees of complexity observed, and scenarios of contact and convergence, particularly in the case of Barbacoan and Ecuadorian Quechua. We then covers each of the Barbacoan languages’ systems (with the exception of Totoró, represented by its close relative Guambiano), identifying limited formal cognates, primarily between closely-related Tsafiki and Cha’palaa, as well as broader functional similarities, particularly in terms of interactions with topic/focus markers. n accounts for the current state of affairs with a complex scenario of areal prevalence of switch reference combined with deep structural family inheritance and formal re-structuring of the systems over time
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Gordon, P. C., Lowder, M. W., & Hoedemaker, R. S. (2016). Reading in normally aging adults. In H. Wright (Ed.), Cognitive-Linguistic Processes and Aging (pp. 165-192). Amsterdam: Benjamins. doi:10.1075/z.200.07gor.

    Abstract

    The activity of reading raises fundamental theoretical and practical questions about healthy cognitive aging. Reading relies greatly on knowledge of patterns of language and of meaning at the level of words and topics of text. Further, this knowledge must be rapidly accessed so that it can be coordinated with processes of perception, attention, memory and motor control that sustain skilled reading at rates of four-to-five words a second. As such, reading depends both on crystallized semantic intelligence which grows or is maintained through healthy aging, and on components of fluid intelligence which decline with age. Reading is important to older adults because it facilitates completion of everyday tasks that are essential to independent living. In addition, it entails the kind of active mental engagement that can preserve and deepen the cognitive reserve that may mitigate the negative consequences of age-related changes in the brain. This chapter reviews research on the front end of reading (word recognition) and on the back end of reading (text memory) because both of these abilities are surprisingly robust to declines associated with cognitive aging. For word recognition, that robustness is surprising because rapid processing of the sort found in reading is usually impaired by aging; for text memory, it is surprising because other types of episodic memory performance (e.g., paired associates) substantially decline in aging. These two otherwise quite different levels of reading comprehension remain robust because they draw on the knowledge of language that older adults gain through a life-time of experience with language.
  • Hagoort, P., & Brown, C. M. (1994). Brain responses to lexical ambiguity resolution and parsing. In C. Clifton Jr, L. Frazier, & K. Rayner (Eds.), Perspectives on sentence processing (pp. 45-81). Hilsdale NY: Lawrence Erlbaum Associates.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative method for studying human social interactions. This chapter describes and illustrates the basic methods of CA. We first situate the method by describing its sociological foundations, key areas of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is devoted to practical explanations of the typical conversation analytic process for collecting data and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative interrogative – using real data extracts as a demonstration of the method, explicitly laying out the relevant questions and considerations for every stage of an analysis. The chapter concludes with some discussion of quantitative approaches to conversational interaction, and links between CA and psycholinguistic concerns
  • Huettig, F., Kolinsky, R., & Lachmann, T. (Eds.). (2018). The effects of literacy on cognition and brain functioning [Special Issue]. Language, Cognition and Neuroscience, 33(3).
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Kempen, G. (1997). Taalpsychologie week. In Wetenschappelijke Scheurkalender 1998. Beek: Natuur & Techniek.

    Abstract

    [Seven one-page psycholinguistic sketches]
  • Kita, S. (1997). Miburi to Kotoba [gesture and speech]. In H. Kobayashi, & M. Sasaki (Eds.), Kodomotachi no gengokakutoku [Child language development] (pp. 68-84). Tokyo, Japan: Taishukan.
  • Klein, W. (1994). Für eine rein zeitliche Deutung von Tempus und Aspekt. In R. Baum (Ed.), Lingua et Traditio: Festschrift für Hans Helmut Christmann zum 65. Geburtstag (pp. 409-422). Tübingen: Narr.
  • Klein, W., & Dittmar, N. (Eds.). (1994). Interkulturelle Kommunikation [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (93).
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W. (1991). Seven trivia of language acquisition. In L. Eubank (Ed.), Point counterpoint: Universal grammar in the second language (pp. 49-70). Amsterdam: Benjamins.
  • Klein, W. (1997). On the "Imperfective paradox" and related problems. In M. Schwarz, C. Dürscheid, & K.-H. Ramers (Eds.), Sprache im Fokus: Festschrift für Heinz Vater (pp. 387-397). Tübingen: Niemeyer.
  • Klein, W. (1991). SLA theory: Prolegomena to a theory of language acquisition and implications for Theoretical Linguistics. In T. Huebner, & C. Ferguson (Eds.), Crosscurrents in second language acquisition and linguistic theories (pp. 169-194). Amsterdam: Benjamins.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W. (1994). Learning how to express temporality in a second language. In A. G. Ramat, & M. Vedovelli (Eds.), Società di linguistica Italiana, SLI 34: Italiano - lingua seconda/lingua straniera: Atti del XXVI Congresso (pp. 227-248). Roma: Bulzoni.
  • Klein, W. (1994). Keine Känguruhs zur Linken: Über die Variabilität von Raumvorstellungen und ihren Ausdruck in der Sprache. In H.-J. Kornadt, J. Grabowski, & R. Mangold-Allwinn (Eds.), Sprache und Kognition (pp. 163-182). Heidelberg, Berlin, Oxford: Spektrum.
  • Klein, W., & Nüse, R. (1997). La complexité du simple: L'éxpression de la spatialité dans le langage humain. In M. Denis (Ed.), Langage et cognition spatiale (pp. 1-23). Paris: Masson.
  • Klein, W. (Ed.). (1975). Sprache ausländischer Arbeiter [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (18).
  • Klein, W. (1975). Sprachliche Variation. In K. Stocker (Ed.), Taschenlexikon der Literatur- und Sprachdidaktik (pp. 557-561). Kronberg/Ts.: Scriptor.
  • Klein, W. (Ed.). (1997). Technologischer Wandel in den Philologien [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (106).
  • Klein, W. (1975). Über Peter Handkes "Kaspar" und einige Fragen der poetischen Kommunikation. In A. Van Kesteren, & H. Schmid (Eds.), Einführende Bibliographie zur modernen Dramentheorie (pp. 300-317). Kronberg/Ts.: Scriptor Verlag.
  • Klein, W. (1997). Und nur dieses allein haben wir. In D. Rosenstein, & A. Kreutz (Eds.), Begegnungen, Facetten eines Jahrhunderts (pp. 445-449). Siegen: Carl Boeschen Verlag.
  • Klein, W. (Ed.). (1982). Zweitspracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (45).
  • De Kovel, C. G. F., & Fisher, S. E. (2018). Molecular genetic methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 330-353). Hoboken: Wiley.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, W. J. M., & Kempen, G. (1975). Semantic and syntactic aspects of remembering sentences: A review of some recent continental research. In A. Kennedy, & W. Wilkes (Eds.), Studies in long term memory (pp. 201-216). New York: Wiley.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & De Swaan, A. (2016). Levensbericht Nico Frijda. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Levensberichten en herdenkingen 2016 (pp. 16-25). Amsterdam: KNAW.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M. (1997). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (CD-ROM edition). Amsterdam: Elsevier Science.
  • Levelt, W. J. M. (1975). Systems, skills and language learning. In A. Van Essen, & J. Menting (Eds.), The context of foreign language learning (pp. 83-99). Assen: Van Gorcum.
  • Levelt, W. J. M. (1994). The skill of speaking. In P. Bertelson, P. Eelen, & G. d'Ydewalle (Eds.), International perspectives on psychological science: Vol. 1. Leading themes (pp. 89-103). Hove: Erlbaum.
  • Levinson, S. C. (1982). Caste rank and verbal interaction in Western Tamilnadu. In D. B. McGilvray (Ed.), Caste ideology and interaction (pp. 98-203). Cambridge University Press.
  • Levinson, S. C. (1997). Deixis. In P. V. Lamarque (Ed.), Concise encyclopedia of philosophy of language (pp. 214-219). Oxford: Elsevier.
  • Levinson, S. C. (1991). Deixis. In W. Bright (Ed.), Oxford international encyclopedia of linguistics (pp. 343-344). Oxford University Press.
  • Levinson, S. C. (1994). Deixis. In R. E. Asher (Ed.), Encyclopedia of language and linguistics (pp. 853-857). Oxford: Pergamon Press.
  • Levinson, S. C. (1997). Contextualizing 'contextualization cues'. In S. Eerdmans, C. Prevignano, & P. Thibault (Eds.), Discussing communication analysis 1: John J. Gumperz (pp. 24-30). Lausanne: Beta Press.
  • Levinson, S. C. (1997). From outer to inner space: Linguistic categories and non-linguistic thinking. In J. Nuyts, & E. Pederson (Eds.), Language and conceptualization (pp. 13-45). Cambridge University Press.
  • Levinson, S. C. (2018). Introduction: Demonstratives: Patterns in diversity. In S. C. Levinson, S. Cutfield, M. Dunn, N. J. Enfield, & S. Meira (Eds.), Demonstratives in cross-linguistic perspective (pp. 1-42). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.

Share this page