Publications

Displaying 301 - 400 of 427
  • Ravignani, A. (2018). Darwin, sexual selection, and the origins of music. Trends in Ecology and Evolution, 33(10), 716-719. doi:10.1016/j.tree.2018.07.006.

    Abstract

    Humans devote ample time to produce and perceive music. How and why this behavioral propensity originated in our species is unknown. For centuries, speculation dominated the study of the evolutionary origins of musicality. Following Darwin’s early intuitions, recent empirical research is opening a new chapter to tackle this mystery.
  • Ravignani, A. (2018). Comment on “Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia” [J. Acoust. Soc. Am. 141, 1824-1834 (2017)]. The Journal of the Acoustical Society of America, 143, 504-508. doi:10.1121/1.5021770.

    Abstract

    In their recent article, Sabinsky and colleagues investigated heterogeneity in harbor seals' vocalizations. The authors found seasonal and geographical variation in acoustic parameters, warning readers that recording conditions might account for some of their results. This paper expands on the temporal aspect of the encountered heterogeneity in harbor seals' vocalizations. Temporal information is the least susceptible to variable recording conditions. Hence geographical and seasonal variability in roar timing constitutes the most robust finding in the target article. In pinnipeds, evidence of timing and rhythm in the millisecond range—as opposed to circadian and seasonal rhythms—has theoretical and interdisciplinary relevance. In fact, the study of rhythm and timing in harbor seals is particularly decisive to support or confute a cross-species hypothesis, causally linking the evolution of vocal production learning and rhythm. The results by Sabinsky and colleagues can shed light on current scientific questions beyond pinniped bioacoustics, and help formulate empirically testable predictions.
  • Ravignani, A., Chiandetti, C., & Gamba, M. (2018). L'evoluzione del ritmo. Le Scienze, (04 maggio 2018).
  • Ravignani, A., Thompson, B., Grossi, T., Delgado, T., & Kirby, S. (2018). Evolving building blocks of rhythm: How human cognition creates music via cultural transmission. Annals of the New York Academy of Sciences, 1423(1), 176-187. doi:10.1111/nyas.13610.

    Abstract

    Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits
    commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists
    focused onmusicality, namely the human biocognitive predispositions formusic, with an emphasis on cross-cultural
    similarities. Other scholars investigatedmusic, seen as a cultural product, focusing on the variation in worldmusical
    cultures.Recent experiments founddeep connections betweenmusicandmusicality, reconciling theseopposing views.
    Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music.
    Data from two experiments are analyzed using two complementary techniques. In the experiments, participants
    hear drumming patterns and imitate them. These patterns are then given to the same or another participant to
    imitate. The structure of these initially random patterns is tracked along experimental “generations.” Frequentist
    statistics show how participants’ biases are amplified by cultural transmission, making drumming patterns more
    structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model
    approximates the motif structures participants learned and created. Our data and models suggest that individual
    biases for musicality may shape the cultural transmission of musical rhythm.

    Additional information

    nyas13610-sup-0001-suppmat.pdf
  • Ravignani, A., Thompson, B., & Filippi, P. (2018). The evolution of musicality: What can be learned from language evolution research? Frontiers in Neuroscience, 12: 20. doi:10.3389/fnins.2018.00020.

    Abstract

    Language and music share many commonalities, both as natural phenomena and as subjects of intellectual inquiry. Rather than exhaustively reviewing these connections, we focus on potential cross-pollination of methodological inquiries and attitudes. We highlight areas in which scholarship on the evolution of language may inform the evolution of music. We focus on the value of coupled empirical and formal methodologies, and on the futility of mysterianism, the declining view that the nature, origins and evolution of language cannot be addressed empirically. We identify key areas in which the evolution of language as a discipline has flourished historically, and suggest ways in which these advances can be integrated into the study of the evolution of music.
  • Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC Research Notes, 11: 3. doi:10.1186/s13104-017-3107-6.

    Abstract

    Objectives: Timing and rhythm (i.e. temporal structure) are crucial, though historically neglected, dimensions of animal communication. When investigating these in non-human animals, it is often difficult to balance experimental control and ecological validity. Here I present the first step of an attempt to balance the two, focusing on the timing of vocal rhythms in a harbor seal pup (Phoca vitulina). Collection of this data had a clear aim: To find spontaneous vocal rhythms in this individual in order to design individually-adapted and ecologically-relevant stimuli for a later playback experiment. Data description: The calls of one seal pup were recorded. The audio recordings were annotated using Praat, a free software to analyze vocalizations in humans and other animals. The annotated onsets and offsets of vocalizations were then imported in a Python script. The script extracted three types of timing information: the duration of calls, the intervals between calls’ onsets, and the intervals between calls’ maximum-intensity peaks. Based on the annotated data, available to download, I provide simple descriptive statistics for these temporal measures, and compare their distributions.
  • Ravignani, A., & Verhoef, T. (2018). Which melodic universals emerge from repeated signaling games?: A Note on Lumaca and Baggio (2017). Artificial Life, 24(2), 149-153. doi:10.1162/ARTL_a_00259.

    Abstract

    Music is a peculiar human behavior, yet we still know little as to why and how music emerged. For centuries, the study of music has been the sole prerogative of the humanities. Lately, however, music is being increasingly investigated by psychologists, neuroscientists, biologists, and computer scientists. One approach to studying the origins of music is to empirically test hypotheses about the mechanisms behind this structured behavior. Recent lab experiments show how musical rhythm and melody can emerge via the process of cultural transmission. In particular, Lumaca and Baggio (2017) tested the emergence of a sound system at the boundary between music and language. In this study, participants were given random pairs of signal-meanings; when participants negotiated their meaning and played a “ game of telephone ” with them, these pairs became more structured and systematic. Over time, the small biases introduced in each artificial transmission step accumulated, displaying quantitative trends, including the emergence, over the course of artificial human generations, of features resembling properties of language and music. In this Note, we highlight the importance of Lumaca and Baggio ʼ s experiment, place it in the broader literature on the evolution of language and music, and suggest refinements for future experiments. We conclude that, while psychological evidence for the emergence of proto-musical features is accumulating, complementary work is needed: Mathematical modeling and computer simulations should be used to test the internal consistency of experimentally generated hypotheses and to make new predictions.
  • Ravignani, A., Thompson, B., Lumaca, M., & Grube, M. (2018). Why do durations in musical rhythms conform to small integer ratios? Frontiers in Computational Neuroscience, 12: 86. doi:10.3389/fncom.2018.00086.

    Abstract

    One curious aspect of human timing is the organization of rhythmic patterns in small integer ratios. Behavioral and neural research has shown that adjacent time intervals in rhythms tend to be perceived and reproduced as approximate fractions of small numbers (e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given a randomly timed drum pattern to reproduce, participants subconsciously transform it toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon are little understood, but might be explained by combining two theoretical frameworks from psychophysics. The scalar expectancy theory describes time interval perception and reproduction in terms of Weber's law: just detectable durational differences equal a constant fraction of the reference duration. The notion of categorical perception emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception and production might arise from the interaction of the scalar property of timing with the categorical perception of time intervals, and that neurally it can plausibly be related to oscillatory activity. We support our integrative approach with mathematical derivations to formalize assumptions and provide testable predictions. We present equations to calculate durational ratios by: (i) parameterizing the relationship between durational categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category of ratios. Our derivations provide the basis for future computational, behavioral, and neurophysiological work to test our model.
  • Raviv, L., & Arnon, I. (2018). Systematicity, but not compositionality: Examining the emergence of linguistic structure in children and adults using iterated learning. Cognition, 181, 160-173. doi:10.1016/j.cognition.2018.08.011.

    Abstract

    Recent work suggests that cultural transmission can lead to the emergence of linguistic structure as speakers’ weak individual biases become amplified through iterated learning. However, to date no published study has demonstrated a similar emergence of linguistic structure in children. The lack of evidence from child learners constitutes a problematic
    2
    gap in the literature: if such learning biases impact the emergence of linguistic structure, they should also be found in children, who are the primary learners in real-life language transmission. However, children may differ from adults in their biases given age-related differences in general cognitive skills. Moreover, adults’ performance on iterated learning tasks may reflect existing (and explicit) linguistic biases, partially undermining the generality of the results. Examining children’s performance can also help evaluate contrasting predictions about their role in emerging languages: do children play a larger or smaller role than adults in the creation of structure? Here, we report a series of four iterated artificial language learning studies (based on Kirby, Cornish & Smith, 2008) with both children and adults, using a novel child-friendly paradigm. Our results show that linguistic structure does not emerge more readily in children compared to adults, and that adults are overall better in both language learning and in creating linguistic structure. When languages could become underspecified (by allowing homonyms), children and adults were similar in developing consistent mappings between meanings and signals in the form of structured ambiguities. However, when homonimity was not allowed, only adults created compositional structure. This study is a first step in using iterated language learning paradigms to explore child-adult differences. It provides the first demonstration that cultural transmission has a different effect on the languages produced by children and adults: While children were able to develop systematicity, their languages did not show compositionality. We focus on the relation between learning and structure creation as a possible explanation for our findings and discuss implications for children’s role in the emergence of linguistic structure.

    Additional information

    results A results B results D stimuli
  • Raviv, L., & Arnon, I. (2018). The developmental trajectory of children’s auditory and visual statistical learning abilities: Modality-based differences in the effect of age. Developmental Science, 21(4): e12593. doi:10.1111/desc.12593.

    Abstract

    Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early-maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age-related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality-based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large-scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5–12y). Results show modality-based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality-based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw.

    Additional information

    Video abstract of the article
  • Redl, T., Eerland, A., & Sanders, T. J. M. (2018). The processing of the Dutch masculine generic zijn ‘his’ across stereotype contexts: An eye-tracking study. PLoS One, 13(10): e0205903. doi:10.1371/journal.pone.0205903.

    Abstract

    Language users often infer a person’s gender when it is not explicitly mentioned. This information is included in the mental model of the described situation, giving rise to expectations regarding the continuation of the discourse. Such gender inferences can be based on two types of information: gender stereotypes (e.g., nurses are female) and masculine generics, which are grammatically masculine word forms that are used to refer to all genders in certain contexts (e.g., To each his own). In this eye-tracking experiment (N = 82), which is the first to systematically investigate the online processing of masculine generic pronouns, we tested whether the frequently used Dutch masculine generic zijn ‘his’ leads to a male bias. In addition, we tested the effect of context by introducing male, female, and neutral stereotypes. We found no evidence for the hypothesis that the generically-intended masculine pronoun zijn ‘his’ results in a male bias. However, we found an effect of stereotype context. After introducing a female stereotype, reading about a man led to an increase in processing time. However, the reverse did not hold, which parallels the finding in social psychology that men are penalized more for gender-nonconforming behavior. This suggests that language processing is not only affected by the strength of stereotype contexts; the associated disapproval of violating these gender stereotypes affects language processing, too.

    Additional information

    pone.0205903.s001.pdf data files
  • Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta Psychologica, 191, 124-130. doi:10.1016/j.actpsy.2018.09.008.

    Abstract

    It is unclear whether cognitive and motor control are parallel and interactive or serial and independent processes. According to one view, cognitive control refers to a set of modality-nonspecific processes that act on supramodal representations and precede response modality-specific motor processes. An alternative view is that cognitive control represents a set of modality-specific operations that act directly on motor-related representations, implying dependence of cognitive control on motor control. Here, we examined the influence of response modality (vocal vs. manual) on three well-established subcomponent processes of cognitive control: shifting, inhibiting, and updating. We observed effects of all subcomponent processes in reaction times. The magnitude of these effects did not differ between response modalities for shifting and inhibiting, in line with a serial, supramodal view. However, the magnitude of the updating effect differed between modalities, in line with an interactive, modality-specific view. These results suggest that updating represents a modality-specific operation that depends on motor control, whereas shifting and inhibiting represent supramodal operations that act independently of motor control.
  • Rodenas-Cuadrado, P., Mengede, J., Baas, L., Devanna, P., Schmid, T. A., Yartsev, M., Firzlaff, U., & Vernes, S. C. (2018). Mapping the distribution of language related genes FoxP1, FoxP2 and CntnaP2 in the brains of vocal learning bat species. Journal of Comparative Neurology, 526(8), 1235-1266. doi:10.1002/cne.24385.

    Abstract

    Genes including FOXP2, FOXP1 and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language-related circuitry in the brain. Although speech and language are unique human phenotypes, a comparative approach is possible by addressing language-relevant traits in animal model systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalisations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language-relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1 and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult Phyllostomus discolor bat, which showed low levels of FoxP2 expression in the cortex, contrasting with patterns found in rodents and non-human primates. We created an online, open-access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language-related genes in complex vocal-motor and vocal learning behaviours in a mammalian model system.
  • Roelofs, A. (1997). The WEAVER model of word-form encoding in speech production. Cognition, 64, 249-284. doi:10.1016/S0010-0277(97)00027-9.

    Abstract

    Lexical access in speaking consists of two major steps: lemma retrieval and word-form encoding. In Roelofs (Roelofs, A. 1992a. Cognition 42. 107-142; Roelofs. A. 1993. Cognition 47, 59-87.), I described a model of lemma retrieval. The present paper extends this work by presenting a comprehensive model of the second access step, word-form encoding. The model is called WEAVER (Word-form Encoding by Activation and VERification). Unlike other models of word-form generation, WEAVER is able to provide accounts of response time data, particularly from the picture-word interference paradigm and the implicit priming paradigm. Its key features are (1) retrieval by spreading activation, (2) verification of activated information by a production rule, (3) a rightward incremental construction of phonological representations using a principle of active syllabification, syllables are constructed on the fly rather than stored with lexical items, (4) active competitive selection of syllabic motor programs using a mathematical formalism that generates response times and (5) the association of phonological speech errors with the selection of syllabic motor programs due to the failure of verification.
  • Rommers, J., & Federmeier, K. D. (2018). Lingering expectations: A pseudo-repetition effect for words previously expected but not presented. NeuroImage, 183, 263-272. doi:10.1016/j.neuroimage.2018.08.023.

    Abstract

    Prediction can help support rapid language processing. However, it is unclear whether prediction has downstream
    consequences, beyond processing in the moment. In particular, when a prediction is disconfirmed, does it linger,
    or is it suppressed? This study manipulated whether words were actually seen or were only expected, and probed
    their fate in memory by presenting the words (again) a few sentences later. If disconfirmed predictions linger,
    subsequent processing of the previously expected (but never presented) word should be similar to actual word
    repetition. At initial presentation, electrophysiological signatures of prediction disconfirmation demonstrated that
    participants had formed expectations. Further downstream, relative to unseen words, repeated words elicited a
    strong N400 decrease, an enhanced late positive complex (LPC), and late alpha band power decreases. Critically,
    like repeated words, words previously expected but not presented also attenuated the N400. This “pseudorepetition
    effect” suggests that disconfirmed predictions can linger at some stages of processing, and demonstrates
    that prediction has downstream consequences beyond rapid on-line processing
  • Rommers, J., & Federmeier, K. D. (2018). Predictability's aftermath: Downstream consequences of word predictability as revealed by repetition effects. Cortex, 101, 16-30. doi:10.1016/j.cortex.2017.12.018.

    Abstract

    Stimulus processing in language and beyond is shaped by context, with predictability having a
    particularly well-attested influence on the rapid processes that unfold during the presentation
    of a word. But does predictability also have downstream consequences for the quality of the
    constructed representations? On the one hand, the ease of processing predictablewordsmight
    free up time or cognitive resources, allowing for relatively thorough processing of the input. On
    the other hand, predictabilitymight allowthe systemto run in a top-down “verificationmode”,
    at the expense of thorough stimulus processing. This electroencephalogram (EEG) study
    manipulated word predictability, which reduced N400 amplitude and inter-trial phase clustering
    (ITPC), and then probed the fate of the (un)predictable words in memory by presenting
    them again. More thorough processing of predictable words should increase repetition effects,
    whereas less thorough processing should decrease them. Repetition was reflected in N400 decreases,
    late positive complex (LPC) enhancements, and late alpha/beta band power decreases.
    Critically, prior predictability tended to reduce the repetition effect on the N400, suggesting less
    priming, and eliminated the repetition effect on the LPC, suggesting a lack of episodic recollection.
    These findings converge on a top-down verification account, on which the brain processes
    more predictable input less thoroughly. More generally, the results demonstrate that
    predictability hasmultifaceted downstreamconsequences beyond processing in the moment
  • Rossi, G. (2018). Composite social actions: The case of factual declaratives in everyday interaction. Research on Language and Social Interaction, 51(4), 379-397. doi:10.1080/08351813.2018.1524562.

    Abstract

    When taking a turn at talk, a speaker normally accomplishes a sequential action such as a question, answer, complaint, or request. Sometimes, however, a turn at talk may accomplish not a single but a composite action, involving a combination of more than one action. I show that factual declaratives (e.g., “the feed drip has finished”) are recurrently used to implement composite actions consisting of both an informing and a request or, alternatively, a criticism and a request. A key determinant between these is the recipient’s epistemic access to what the speaker is describing. Factual declaratives afford a range of possible responses, which can tell us how the composite action has been understood and give us insights into its underlying structure. Evidence for the stacking of composite actions, however, is not always directly available in the response and may need to be pieced together with the help of other linguistic and contextual considerations. Data are in Italian with English translation.
  • Rowland, C. F., & Pine, J. M. (2000). Subject-auxiliary inversion errors and wh-question acquisition: what children do know? Journal of Child Language, 27(1), 157-181.

    Abstract

    The present paper reports an analysis of correct wh-question production and subject–auxiliary inversion errors in one child's early wh-question data (age 2; 3.4 to 4; 10.23). It is argued that two current movement rule accounts (DeVilliers, 1991; Valian, Lasser & Mandelbaum, 1992) cannot explain the patterning of early wh-questions. However, the data can be explained in terms of the child's knowledge of particular lexically-specific wh-word+auxiliary combinations, and the pattern of inversion and uninversion predicted from the relative frequencies of these combinations in the mother's speech. The results support the claim that correctly inverted wh-questions can be produced without access to a subject–auxiliary inversion rule and are consistent with the constructivist claim that a distributional learning mechanism that learns and reproduces lexically-specific formulae heard in the input can explain much of the early multi-word speech data. The implications of these results for movement rule-based and constructivist theories of grammatical development are discussed.
  • Rowland, C. F. (2018). The principles of scientific inquiry. Linguistic Approaches to Bilingualism, 8(6), 770-775. doi:10.1075/lab.18056.row.
  • Rubio-Fernández, P. (2018). Trying to discredit the Duplo task with a partial replication: Reply to Paulus and Kammermeier (2018). Cognitive Development, 48, 286-288. doi:10.1016/j.cogdev.2018.07.006.

    Abstract

    Kammermeier and Paulus (2018) report a partial replication of the results of Rubio-Fernández and Geurts (2013) but present their study as a failed replication. Paulus and Kammermeier (2018) insist on a negative interpretation of their findings, discrediting the Duplo task against their own empirical evidence. Here I argue that Paulus and Kammermeier may try to make an impactful contribution to the field by adding to the growing skepticism towards early Theory of Mind studies, but fail to make any significant contribution to our understanding of young children’s Theory of Mind abilities.
  • Rubio-Fernández, P. (2018). What do failed (and successful) replications with the Duplo task show? Cognitive Development, 48, 316-320. doi:10.1016/j.cogdev.2018.07.004.
  • San Roque, L., Kendrick, K. H., Norcliffe, E., & Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29, 371-406. doi:10.1515/cog-2017-0034.
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. Neurocomputing, 32(33), 987-994. doi:10.1016/S0925-2312(00)00270-8.

    Abstract

    Capacity limited memory systems need to gradually forget old information in order to avoid catastrophic forgetting where all stored information is lost. This can be achieved by allowing new information to overwrite old, as in the so-called palimpsest memory. This paper describes a new such learning rule employed in an attractor neural network. The network does not exhibit catastrophic forgetting, has a capacity dependent on the learning time constant and exhibits recency e!ects in retrieval
  • Schaeffer, J., van Witteloostuijn, M., & Creemers, A. (2018). Article choice, theory of mind, and memory in children with high-functioning autism and children with specific language impairment. Applied Psycholinguistics, 39(1), 89-115. doi:10.1017/S0142716417000492.

    Abstract

    Previous studies show that young, typically developing (TD) children (age 5) make errors in the choice between a definite and an indefinite article. Suggested explanations for overgeneration of the definite article include failure to distinguish speaker from hearer assumptions, and for overgeneration of the indefinite article failure to draw scalar implicatures, and weak working memory. However, no direct empirical evidence for these accounts is available. In this study, 27 Dutch-speaking children with high-functioning autism, 27 children with SLI, and 27 TD children aged 5–14 were administered a pragmatic article choice test, a nonverbal theory of mind test, and three types of memory tests (phonological memory, verbal, and nonverbal working memory). The results show that the children with high-functioning autism and SLI (a) make similar errors, that is, they overgenerate the indefinite article; (b) are TD-like at theory of mind, but (c) perform significantly more poorly than the TD children on phonological memory and verbal working memory. We propose that weak memory skills prevent the integration of the definiteness scale with the preceding discourse, resulting in the failure to consistently draw the relevant scalar implicature. This in turn yields the occasional erroneous choice of the indefinite article a in definite contexts.
  • Schijven, D., Kofink, D., Tragante, V., Verkerke, M., Pulit, S. L., Kahn, R. S., Veldink, J. H., Vinkers, C. H., Boks, M. P., & Luykx, J. J. (2018). Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophrenia Research, 199, 195-202. doi:10.1016/j.schres.2018.03.032.

    Abstract

    Large-scale genome-wide association studies (GWAS) have implicated many low-penetrance loci in schizophrenia. However, its pathological mechanisms are poorly understood, which in turn hampers the development of novel pharmacological treatments. Pathway and gene set analyses carry the potential to generate hypotheses about disease mechanisms and have provided biological context to genome-wide data of schizophrenia. We aimed to examine which biological processes are likely candidates to underlie schizophrenia by integrating novel and powerful pathway analysis tools using data from the largest Psychiatric Genomics Consortium schizophrenia GWAS (N=79,845) and the most recent 2018 schizophrenia GWAS (N=105,318). By applying a primary unbiased analysis (Multi-marker Analysis of GenoMic Annotation; MAGMA) to weigh the role of biological processes from the Molecular Signatures Database (MSigDB), we identified enrichment of common variants in synaptic plasticity and neuron differentiation gene sets. We supported these findings using MAGMA, Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) and Interval Enrichment Analysis (INRICH) on detailed synaptic signaling pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and found enrichment in mainly the dopaminergic and cholinergic synapses. Moreover, shared genes involved in these neurotransmitter systems had a large contribution to the observed enrichment, protein products of top genes in these pathways showed more direct and indirect interactions than expected by chance, and expression profiles of these genes were largely similar among brain tissues. In conclusion, we provide strong and consistent genetics and protein-interaction informed evidence for the role of postsynaptic signaling processes in schizophrenia, opening avenues for future translational and psychopharmacological studies.
  • Schilberg, L., Engelen, T., Ten Oever, S., Schuhmann, T., De Gelder, B., De Graaf, T. A., & Sack, A. T. (2018). Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Cortex, 103, 142-152. doi:10.1016/j.cortex.2018.03.001.

    Abstract

    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved.
  • Schiller, N. O., Meyer, A. S., & Levelt, W. J. M. (1997). The syllabic structure of spoken words: Evidence from the syllabification of intervocalic consonants. Language and Speech, 40(2), 103-140.

    Abstract

    A series of experiments was carried out to investigate the syllable affiliation of intervocalic consonants following short vowels, long vowels, and schwa in Dutch. Special interest was paid to words such as letter ['leter] ''id.,'' where a short vowel is followed by a single consonant. On phonological grounds one may predict that the first syllable should always be closed, but earlier psycholinguistic research had shown that speakers tend to leave these syllables open. In our experiments, bisyllabic word forms were presented aurally, and participants produced their syllables in reversed order (Experiments 1 through 5), or repeated the words inserting a pause between the syllables (Experiment 6). The results showed that participants generally closed syllables with a short vowel. However, in a significant number of the cases they produced open short vowel syllables. Syllables containing schwa, like syllables with a long vowel, were hardly ever closed. Word stress, the phonetic quality of the vowel in the first syllable, and the experimental context influenced syllabification. Taken together, the experiments show that native speakers syllabify bisyllabic Dutch nouns in accordance with a small set of prosodic output constraints. To account for the variability of the results, we propose that these constraints differ in their probabilities of being applied.
  • Schillingmann, L., Ernst, J., Keite, V., Wrede, B., Meyer, A. S., & Belke, E. (2018). AlignTool: The automatic temporal alignment of spoken utterances in German, Dutch, and British English for psycholinguistic purposes. Behavior Research Methods, 50(2), 466-489. doi:10.3758/s13428-017-1002-7.

    Abstract

    In language production research, the latency with which speakers produce a spoken response to a stimulus and the onset and offset times of words in longer utterances are key dependent variables. Measuring these variables automatically often yields partially incorrect results. However, exact measurements through the visual inspection of the recordings are extremely time-consuming. We present AlignTool, an open-source alignment tool that establishes preliminarily the onset and offset times of words and phonemes in spoken utterances using Praat, and subsequently performs a forced alignment of the spoken utterances and their orthographic transcriptions in the automatic speech recognition system MAUS. AlignTool creates a Praat TextGrid file for inspection and manual correction by the user, if necessary. We evaluated AlignTool’s performance with recordings of single-word and four-word utterances as well as semi-spontaneous speech. AlignTool performs well with audio signals with an excellent signal-to-noise ratio, requiring virtually no corrections. For audio signals of lesser quality, AlignTool still is highly functional but its results may require more frequent manual corrections. We also found that audio recordings including long silent intervals tended to pose greater difficulties for AlignTool than recordings filled with speech, which AlignTool analyzed well overall. We expect that by semi-automatizing the temporal analysis of complex utterances, AlignTool will open new avenues in language production research.
  • Schoenmakers, G.-J., & Piepers, J. (2018). Echter kan het wel. Levende Talen Magazine, 105(4), 10-13.
  • Schweinfurth, M. K., De Troy, S. E., Van Leeuwen, E. J. C., Call, J., & Haun, D. B. M. (2018). Spontaneous social tool use in Chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 132(4), 455-463. doi:10.1037/com0000127.

    Abstract

    Although there is good evidence that social animals show elaborate cognitive skills to deal with others, there are few reports of animals physically using social agents and their respective responses as means to an end—social tool use. In this case study, we investigated spontaneous and repeated social tool use behavior in chimpanzees (Pan troglodytes). We presented a group of chimpanzees with an apparatus, in which pushing two buttons would release juice from a distantly located fountain. Consequently, any one individual could only either push the buttons or drink from the fountain but never push and drink simultaneously. In this scenario, an adult male attempted to retrieve three other individuals and push them toward the buttons that, if pressed, released juice from the fountain. With this strategy, the social tool user increased his juice intake 10-fold. Interestingly, the strategy was stable over time, which was possibly enabled by playing with the social tools. With over 100 instances, we provide the biggest data set on social tool use recorded among nonhuman animals so far. The repeated use of other individuals as social tools may represent a complex social skill linked to Machiavellian intelligence.
  • Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-M., Bosch, S. E., & Van Gerven, M. A. J. (2018). Convolutional neural network-based encoding and decoding of visual object recognition in space and time. NeuroImage, 180, 253-266. doi:10.1016/j.neuroimage.2017.07.018.

    Abstract

    Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely
    investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance
    imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in
    the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain
    signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we
    addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG).
    Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled
    their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward
    sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade
    was captured by the network layer representations, where the increasingly abstract stimulus representation in the
    hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral
    stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out
    validation set of viewed objects, achieving state-of-the-art decoding accuracy.
  • Segaert, K., Mazaheri, A., & Hagoort, P. (2018). Binding language: Structuring sentences through precisely timed oscillatory mechanisms. European Journal of Neuroscience, 48(7), 2651-2662. doi:10.1111/ejn.13816.

    Abstract

    Syntactic binding refers to combining words into larger structures. Using EEG, we investigated the neural processes involved in syntactic binding. Participants were auditorily presented two-word sentences (i.e. pronoun and pseudoverb such as ‘I grush’, ‘she grushes’, for which syntactic binding can take place) and wordlists (i.e. two pseudoverbs such as ‘pob grush’, ‘pob grushes’, for which no binding occurs). Comparing these two conditions, we targeted syntactic binding while minimizing contributions of semantic binding and of other cognitive processes such as working memory. We found a converging pattern of results using two distinct analysis approaches: one approach using frequency bands as defined in previous literature, and one data-driven approach in which we looked at the entire range of frequencies between 3-30 Hz without the constraints of pre-defined frequency bands. In the syntactic binding (relative to the wordlist) condition, a power increase was observed in the alpha and beta frequency range shortly preceding the presentation of the target word that requires binding, which was maximal over frontal-central electrodes. Our interpretation is that these signatures reflect that language comprehenders expect the need for binding to occur. Following the presentation of the target word in a syntactic binding context (relative to the wordlist condition), an increase in alpha power maximal over a left lateralized cluster of frontal-temporal electrodes was observed. We suggest that this alpha increase relates to syntactic binding taking place. Taken together, our findings suggest that increases in alpha and beta power are reflections of distinct the neural processes underlying syntactic binding.
  • Seifart, F., Evans, N., Hammarström, H., & Levinson, S. C. (2018). Language documentation twenty-five years on. Language, 94(4), e324-e345. doi:10.1353/lan.2018.0070.

    Abstract

    This discussion note reviews responses of the linguistics profession to the grave issues of language
    endangerment identified a quarter of a century ago in the journal Language by Krauss,
    Hale, England, Craig, and others (Hale et al. 1992). Two and a half decades of worldwide research
    not only have given us a much more accurate picture of the number, phylogeny, and typological
    variety of the world’s languages, but they have also seen the development of a wide range of new
    approaches, conceptual and technological, to the problem of documenting them. We review these
    approaches and the manifold discoveries they have unearthed about the enormous variety of linguistic
    structures. The reach of our knowledge has increased by about 15% of the world’s languages,
    especially in terms of digitally archived material, with about 500 languages now
    reasonably documented thanks to such major programs as DoBeS, ELDP, and DEL. But linguists
    are still falling behind in the race to document the planet’s rapidly dwindling linguistic diversity,
    with around 35–42% of the world’s languages still substantially undocumented, and in certain
    countries (such as the US) the call by Krauss (1992) for a significant professional realignment toward
    language documentation has only been heeded in a few institutions. Apart from the need for
    an intensified documentarist push in the face of accelerating language loss, we argue that existing
    language documentation efforts need to do much more to focus on crosslinguistically comparable
    data sets, sociolinguistic context, semantics, and interpretation of text material, and on methods
    for bridging the ‘transcription bottleneck’, which is creating a huge gap between the amount we
    can record and the amount in our transcribed corpora.*
  • Sekine, K., Wood, C., & Kita, S. (2018). Gestural depiction of motion events in narrative increases symbolic distance with age. Language, Interaction and Acquisition, 9(1), 11-21. doi:10.1075/lia.15020.sek.

    Abstract

    We examined gesture representation of motion events in narratives produced by three- and nine-year-olds, and adults. Two aspects of gestural depiction were analysed: how protagonists were depicted, and how gesture space was used. We found that older groups were more likely to express protagonists as an object that a gesturing hand held and manipulated, and less likely to express protagonists with whole-body enactment gestures. Furthermore, for older groups, gesture space increasingly became less similar to narrated space. The older groups were less likely to use large gestures or gestures in the periphery of the gesture space to represent movements that were large relative to a protagonist’s body or that took place next to a protagonist. They were also less likely to produce gestures on a physical surface (e.g. table) to represent movement on a surface in narrated events. The development of gestural depiction indicates that older speakers become less immersed in the story world and start to control and manipulate story representation from an outside perspective in a bounded and stage-like gesture space. We discuss this developmental shift in terms of increasing symbolic distancing (Werner & Kaplan, 1963).
  • Senft, G. (1991). [Review of the book Einführung in die deskriptive Linguistik by Michael Dürr and Peter Schlobinski]. Linguistics, 29, 722-725.
  • Senft, G. (2000). [Review of the book Language, identity, and marginality in Indonesia: The changing nature of ritual speech on the island of Sumba by Joel C. Kuipers]. Linguistics, 38, 435-441. doi:10.1515/ling.38.2.435.
  • Senft, G. (1997). [Review of the book The design of language: An introduction to descriptive linguistics by Terry Crowley, John Lynch, Jeff Siegel, and Julie Piau]. Linguistics, 35, 781-785.
  • Senft, G. (1991). [Review of the book The sign languages of Aboriginal Australia by Adam Kendon]. Journal of Pragmatics, 15, 400-405. doi:10.1016/0378-2166(91)90040-5.
  • Senft, G. (1997). Magical conversation on the Trobriand Islands. Anthropos, 92, 369-391.
  • Senft, G. (1991). Network models to describe the Kilivila classifier system. Oceanic Linguistics, 30, 131-155. Retrieved from http://www.jstor.org/stable/3623085.
  • Seuren, P. A. M. (2000). Bewustzijn en taal. Splijtstof, 28(4), 111-123.
  • Seuren, P. A. M. (1982). De spellingsproblematiek in Suriname: Een inleiding. OSO, 1(1), 71-79.
  • Seuren, P. A. M. (1997). [Review of the book Schets van de Nederlandse Taal. Grammatica, poëtica en retorica by Adriaen Verwer, Naar de editie van E. van Driel (1783) vertaald door J. Knol. Ed. Th.A.J.M. Janssen & J. Noordegraaf]. Nederlandse Taalkunde, 4, 370-374.
  • Seuren, P. A. M. (1963). Naar aanleiding van Dr. F. Balk-Smit Duyzentkunst "De Grammatische Functie". Levende Talen, 219, 179-186.
  • Seuren, P. A. M. (1991). Grammatika als algorithme: Rekenen met taal. Koninklijke Nederlandse Akademie van Wetenschappen. Mededelingen van de Afdeling Letterkunde, Nieuwe Reeks, 54(2), 25-63.
  • Seuren, P. A. M. (1982). Internal variability in competence. Linguistische Berichte, 77, 1-31.
  • Seuren, P. A. M. (2000). Presupposition, negation and trivalence. Journal of Linguistics, 36(2), 261-297.
  • Shopen, T., Reid, N., Shopen, G., & Wilkins, D. G. (1997). Ensuring the survival of Aboriginal and Torres Strait islander languages into the 21st century. Australian Review of Applied Linguistics, 10(1), 143-157.

    Abstract

    Aboriginal languages threatened by speakers poor economic and social conditions; some may survive through support for community development, language maintenance, bilingual education and training of Aboriginal teachers and linguists, and nonAboriginal teachers of Aboriginal and Islander students.
  • Sikora, K., & Roelofs, A. (2018). Switching between spoken language-production tasks: the role of attentional inhibition and enhancement. Language, Cognition and Neuroscience, 33(7), 912-922. doi:10.1080/23273798.2018.1433864.

    Abstract

    Since Pillsbury [1908. Attention. London: Swan Sonnenschein & Co], the issue of whether attention operates through inhibition or enhancement has been on the scientific agenda. We examined whether overcoming previous attentional inhibition or enhancement is the source of asymmetrical switch costs in spoken noun-phrase production and colour-word Stroop tasks. In Experiment 1, using bivalent stimuli, we found asymmetrical costs in response times for switching between long and short phrases and between Stroop colour naming and reading. However, in Experiment 2, using bivalent stimuli for the weaker tasks (long phrases, colour naming) and univalent stimuli for the stronger tasks (short phrases, word reading), we obtained an asymmetrical switch cost for phrase production, but a symmetrical cost for Stroop. The switch cost evidence was quantified using Bayesian statistical analyses. Our findings suggest that switching between phrase types involves inhibition, whereas switching between colour naming and reading involves enhancement. Thus, the attentional mechanism depends on the language-production task involved. The results challenge theories of task switching that assume only one attentional mechanism, inhibition or enhancement, rather than both mechanisms.
  • Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.

    Abstract

    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences.
  • Sjerps, M. J., Zhang, C., & Peng, G. (2018). Lexical Tone is Perceived Relative to Locally Surrounding Context, Vowel Quality to Preceding Context. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 914-924. doi:10.1037/xhp0000504.

    Abstract

    Important speech cues such as lexical tone and vowel quality are perceptually contrasted to the distribution of those same cues in surrounding contexts. However, it is unclear whether preceding and following contexts have similar influences, and to what extent those influences are modulated by the auditory history of previous trials. To investigate this, Cantonese participants labeled sounds from (a) a tone continuum (mid- to high-level), presented with a context that had raised or lowered F0 values and (b) a vowel quality continuum (/u/ to /o/), where the context had raised or lowered F1 values. Contexts with high or low F0/F1 were presented in separate blocks or intermixed in 1 block. Contexts were presented following (Experiment 1) or preceding the target continuum (Experiment 2). Contrastive effects were found for both tone and vowel quality (e.g., decreased F0 values in contexts lead to more high tone target judgments and vice versa). Importantly, however, lexical tone was only influenced by F0 in immediately preceding and following contexts. Vowel quality was only influenced by the F1 in preceding contexts, but this extended to contexts from preceding trials. Contextual influences on tone and vowel quality are qualitatively different, which has important implications for understanding the mechanism of context effects in speech perception.
  • Slone, L. K., Abney, D. H., Borjon, J. I., Chen, C.-h., Franchak, J. M., Pearcy, D., Suarez-Rivera, C., Xu, T. L., Zhang, Y., Smith, L. B., & Yu, C. (2018). Gaze in action: Head-mounted eye tracking of children's dynamic visual attention during naturalistic behavior. Journal of Visualized Experiments, (141): e58496. doi:10.3791/58496.

    Abstract

    Young children's visual environments are dynamic, changing moment-by-moment as children physically and visually explore spaces and objects and interact with people around them. Head-mounted eye tracking offers a unique opportunity to capture children's dynamic egocentric views and how they allocate visual attention within those views. This protocol provides guiding principles and practical recommendations for researchers using head-mounted eye trackers in both laboratory and more naturalistic settings. Head-mounted eye tracking complements other experimental methods by enhancing opportunities for data collection in more ecologically valid contexts through increased portability and freedom of head and body movements compared to screen-based eye tracking. This protocol can also be integrated with other technologies, such as motion tracking and heart-rate monitoring, to provide a high-density multimodal dataset for examining natural behavior, learning, and development than previously possible. This paper illustrates the types of data generated from head-mounted eye tracking in a study designed to investigate visual attention in one natural context for toddlers: free-flowing toy play with a parent. Successful use of this protocol will allow researchers to collect data that can be used to answer questions not only about visual attention, but also about a broad range of other perceptual, cognitive, and social skills and their development.
  • De Smedt, F., Merchie, E., Barendse, M. T., Rosseel, Y., De Naeghel, J., & Van Keer, H. (2018). Cognitive and motivational challenges in writing: Studying the relation with writing performance across students' gender and achievement level. Reading Research Quarterly, 53(2), 249-272. doi:10.1002/rrq.193.

    Abstract

    Abstract In the past, several assessment reports on writing repeatedly showed that elementary school students do not develop the essential writing skills to be successful in school. In this respect, prior research has pointed to the fact that cognitive and motivational challenges are at the root of the rather basic level of elementary students' writing performance. Additionally, previous research has revealed gender and achievement-level differences in elementary students' writing. In view of providing effective writing instruction for all students to overcome writing difficulties, the present study provides more in-depth insight into (a) how cognitive and motivational challenges mediate and correlate with students' writing performance and (b) whether and how these relations vary for boys and girls and for writers of different achievement levels. In the present study, 1,577 fifth- and sixth-grade students completed questionnaires regarding their writing self-efficacy, writing motivation, and writing strategies. In addition, half of the students completed two writing tests, respectively focusing on the informational or narrative text genre. Based on multiple group structural equation modeling (MG-SEM), we put forward two models: a MG-SEM model for boys and girls and a MG-SEM model for low, average, and high achievers. The results underline the importance of studying writing models for different groups of students in order to gain more refined insight into the complex interplay between motivational and cognitive challenges related to students' writing performance.
  • Smits, R. (2000). Temporal distribution of information for human consonant recognition in VCV utterances. Journal of Phonetics, 28, 111-135. doi:10.006/jpho.2000.0107.

    Abstract

    The temporal distribution of perceptually relevant information for consonant recognition in British English VCVs is investigated. The information distribution in the vicinity of consonantal closure and release was measured by presenting initial and final portions, respectively, of naturally produced VCV utterances to listeners for categorization. A multidimensional scaling analysis of the results provided highly interpretable, four-dimensional geometrical representations of the confusion patterns in the categorization data. In addition, transmitted information as a function of truncation point was calculated for the features manner place and voicing. The effects of speaker, vowel context, stress, and distinctive feature on the resulting information distributions were tested statistically. It was found that, although all factors are significant, the location and spread of the distributions depends principally on the distinctive feature, i.e., the temporal distribution of perceptually relevant information is very different for the features manner, place, and voicing.
  • Smulders, F. T. Y., Ten Oever, S., Donkers, F. C. L., Quaedflieg, C. W. E. M., & Van de Ven, V. (2018). Single-trial log transformation is optimal in frequency analysis of resting EEG alpha. European Journal of Neuroscience, 48(7), 2585-2598. doi:10.1111/ejn.13854.

    Abstract

    The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2min of eyes-closed and 2min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude.
  • Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., Rodan, L. H., Nowak, C. B., Douglas, J., Swoboda, K. J., Steeves, M. A., Sahai, I., Stumpel, C. T. R. M., Stegmann, A. P. A., Wheeler, P., Willing, M., Fiala, E., Kochhar, A., Gibson, W. T., Cohen, A. S. A. and 59 moreSnijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., Rodan, L. H., Nowak, C. B., Douglas, J., Swoboda, K. J., Steeves, M. A., Sahai, I., Stumpel, C. T. R. M., Stegmann, A. P. A., Wheeler, P., Willing, M., Fiala, E., Kochhar, A., Gibson, W. T., Cohen, A. S. A., Agbahovbe, R., Innes, A. M., Au, P. Y. B., Rankin, J., Anderson, I. J., Skinner, S. A., Louie, R. J., Warren, H. E., Afenjar, A., Keren, B., Nava, C., Buratti, J., Isapof, A., Rodriguez, D., Lewandowski, R., Propst, J., Van Essen, T., Choi, M., Lee, S., Chae, J. H., Price, S., Schnur, R. E., Douglas, G., Wentzensen, I. M., Zweier, C., Reis, A., Bialer, M. G., Moore, C., Koopmans, M., Brilstra, E. H., Monroe, G. R., Van Gassen, K. L. I., Van Binsbergen, E., Newbury-Ecob, R., Bownass, L., Bader, I., Mayr, J. A., Wortmann, S. B., Jakielski, K. J., Strand, E. A., Kloth, K., Bierhals, T., The DDD study, Roberts, J. D., Petrovich, R. M., Machida, S., Kurumizaka, H., Lelieveld, S., Pfundt, R., Jansen, S., Derizioti, P., Faivre, L., Thevenon, J., Assoum, M., Shriberg, L., Kleefstra, T., Brunner, H. G., Wade, P. A., Fisher, S. E., & Campeau, P. M. (2018). CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature Communications, 9: 4619. doi:10.1038/s41467-018-06014-6.

    Abstract

    Chromatin remodeling is of crucial importance during brain development. Pathogenic
    alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental
    disorders. We describe an index case with a de novo missense mutation in CHD3,
    identified during whole genome sequencing of a cohort of children with rare speech disorders.
    To gain a comprehensive view of features associated with disruption of this gene, we use a
    genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3
    mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase
    domain of the encoded protein. Modeling their impact on the three-dimensional structure
    demonstrates disturbance of critical binding and interaction motifs. Experimental assays with
    six of the identified mutations show that a subset directly affects ATPase activity, and all but
    one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a
    syndrome characterized by intellectual disability, macrocephaly, and impaired speech and
    language.
  • Snijders Blok, L., Hiatt, S. M., Bowling, K. M., Prokop, J. W., Engel, K. L., Cochran, J. N., Bebin, E. M., Bijlsma, E. K., Ruivenkamp, C. A. L., Terhal, P., Simon, M. E. H., Smith, R., Hurst, J. A., The DDD study, MCLaughlin, H., Person, R., Crunk, A., Wangler, M. F., Streff, H., Symonds, J. D., Zuberi, S. M. and 11 moreSnijders Blok, L., Hiatt, S. M., Bowling, K. M., Prokop, J. W., Engel, K. L., Cochran, J. N., Bebin, E. M., Bijlsma, E. K., Ruivenkamp, C. A. L., Terhal, P., Simon, M. E. H., Smith, R., Hurst, J. A., The DDD study, MCLaughlin, H., Person, R., Crunk, A., Wangler, M. F., Streff, H., Symonds, J. D., Zuberi, S. M., Elliott, K. S., Sanders, V. R., Masunga, A., Hopkin, R. J., Dubbs, H. A., Ortiz-Gonzalez, X. R., Pfundt, R., Brunner, H. G., Fisher, S. E., Kleefstra, T., & Cooper, G. M. (2018). De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder. Human Genetics, 137(5), 375-388. doi:10.1007/s00439-018-1887-y.

    Abstract

    Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes
  • Speed, L. J., & Majid, A. (2018). An exception to mental simulation: No evidence for embodied odor language. Cognitive Science, 42(4), 1146-1178. doi:10.1111/cogs.12593.

    Abstract

    Do we mentally simulate olfactory information? We investigated mental simulation of odors and sounds in two experiments. Participants retained a word while they smelled an odor or heard a sound, then rated odor/sound intensity and recalled the word. Later odor/sound recognition was also tested, and pleasantness and familiarity judgments were collected. Word recall was slower when the sound and sound-word mismatched (e.g., bee sound with the word typhoon). Sound recognition was higher when sounds were paired with a match or near-match word (e.g., bee sound with bee or buzzer). This indicates sound-words are mentally simulated. However, using the same paradigm no memory effects were observed for odor. Instead it appears odor-words only affect lexical-semantic representations, demonstrated by higher ratings of odor intensity and pleasantness when an odor was paired with a match or near-match word (e.g., peach odor with peach or mango). These results suggest fundamental differences in how odor and sound-words are represented.

    Additional information

    cogs12593-sup-0001-SupInfo.docx
  • Speed, L. J., & Majid, A. (2018). Superior olfactory language and cognition in odor-color synaesthesia. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 468-481. doi:10.1037/xhp0000469.

    Abstract

    Olfaction is often considered a vestigial sense in humans, demoted throughout evolution to make way for the dominant sense of vision. This perspective on olfaction is reflected in how we think and talk about smells in the West, with odor imagery and odor language reported to be difficult. In the present study we demonstrate odor cognition is superior in odor-color synaesthesia, where there are additional sensory connections to odor concepts. Synaesthesia is a neurological phenomenon in which input in 1 modality leads to involuntary perceptual associations. Semantic accounts of synaesthesia posit synaesthetic associations are mediated by activation of inducing concepts. Therefore, synaesthetic associations may strengthen conceptual representations. To test this idea, we ran 6 odor-color synaesthetes and 17 matched controls on a battery of tasks exploring odor and color cognition. We found synaesthetes outperformed controls on tests of both odor and color discrimination, demonstrating for the first time enhanced perception in both the inducer (odor) and concurrent (color) modality. So, not only do synaesthetes have additional perceptual experiences in comparison to controls, their primary perceptual experience is also different. Finally, synaesthetes were more consistent and accurate at naming odors. We propose synaesthetic associations to odors strengthen odor concepts, making them more differentiated (facilitating odor discrimination) and easier to link with lexical representations (facilitating odor naming). In summary, we show for the first time that both odor language and perception is enhanced in people with synaesthetic associations to odors
  • Stoehr, A., Benders, T., Van Hell, J. G., & Fikkert, P. (2018). Heritage language exposure impacts voice onset time of Dutch–German simultaneous bilingual preschoolers. Bilingualism: Language and Cognition, 21(3), 598-617. doi:10.1017/S1366728917000116.

    Abstract

    This study assesses the effects of age and language exposure on VOT production in 29 simultaneous bilingual children aged 3;7 to 5;11 who speak German as a heritage language in the Netherlands. Dutch and German have a binary voicing contrast, but the contrast is implemented with different VOT values in the two languages. The results suggest that bilingual children produce ‘voiced’ plosives similarly in their two languages, and these productions are not monolingual-like in either language. Bidirectional cross-linguistic influence between Dutch and German can explain these results. Yet, the bilinguals seemingly have two autonomous categories for Dutch and German ‘voiceless’ plosives. In German, the bilinguals’ aspiration is not monolingual-like, but bilinguals with more heritage language exposure produce more target-like aspiration. Importantly, the amount of exposure to German has no effect on the majority language's ‘voiceless’ category. This implies that more heritage language exposure is associated with more language-specific voicing systems.
  • Stolk, A., Griffin, S., Van der Meij, R., Dewar, C., Saez, I., Lin, J. J., Piantoni, G., Schoffelen, J.-M., Knight, R. T., & Oostenveld, R. (2018). Integrated analysis of anatomical and electrophysiological human intracranial data. Nature Protocols, 13, 1699-1723. doi:10.1038/s41596-018-0009-6.

    Abstract

    Human intracranial electroencephalography (iEEG) recordings provide data with much greater spatiotemporal precision
    than is possible from data obtained using scalp EEG, magnetoencephalography (MEG), or functional MRI. Until recently,
    the fusion of anatomical data (MRI and computed tomography (CT) images) with electrophysiological data and their
    subsequent analysis have required the use of technologically and conceptually challenging combinations of software.
    Here, we describe a comprehensive protocol that enables complex raw human iEEG data to be converted into more readily
    comprehensible illustrative representations. The protocol uses an open-source toolbox for electrophysiological data
    analysis (FieldTrip). This allows iEEG researchers to build on a continuously growing body of scriptable and reproducible
    analysis methods that, over the past decade, have been developed and used by a large research community. In this
    protocol, we describe how to analyze complex iEEG datasets by providing an intuitive and rapid approach that can handle
    both neuroanatomical information and large electrophysiological datasets. We provide a worked example using
    an example dataset. We also explain how to automate the protocol and adjust the settings to enable analysis of
    iEEG datasets with other characteristics. The protocol can be implemented by a graduate student or postdoctoral
    fellow with minimal MATLAB experience and takes approximately an hour to execute, excluding the automated cortical
    surface extraction.
  • Sulik, J. (2018). Cognitive mechanisms for inferring the meaning of novel signals during symbolisation. PLoS One, 13(1): e0189540. doi:10.1371/journal.pone.0189540.

    Abstract

    As participants repeatedly interact using graphical signals (as in a game of Pictionary), the signals gradually shift from being iconic (or motivated) to being symbolic (or arbitrary). The aim here is to test experimentally whether this change in the form of the signal implies a concomitant shift in the inferential mechanisms needed to understand it. The results show that, during early, iconic stages, there is more reliance on creative inferential processes associated with insight problem solving, and that the recruitment of these cognitive mechanisms decreases over time. The variation in inferential mechanism is not predicted by the sign’s visual complexity or iconicity, but by its familiarity, and by the complexity of the relevant mental representations. The discussion explores implications for pragmatics, language evolution, and iconicity research.
  • Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36, 422-444. doi:10.1006/jmla.1996.2495.

    Abstract

    Finnish vowel harmony rules require that if the vowel in the first syllable of a word belongs to one of two vowel sets, then all subsequent vowels in that word must belong either to the same set or to a neutral set. A harmony mismatch between two syllables containing vowels from the opposing sets thus signals a likely word boundary. We report five experiments showing that Finnish listeners can exploit this information in an on-line speech segmentation task. Listeners found it easier to detect words likehymyat the end of the nonsense stringpuhymy(where there is a harmony mismatch between the first two syllables) than in the stringpyhymy(where there is no mismatch). There was no such effect, however, when the target words appeared at the beginning of the nonsense string (e.g.,hymypuvshymypy). Stronger harmony effects were found for targets containing front harmony vowels (e.g.,hymy) than for targets containing back harmony vowels (e.g.,paloinkypaloandkupalo). The same pattern of results appeared whether target position within the string was predictable or unpredictable. Harmony mismatch thus appears to provide a useful segmentation cue for the detection of word onsets in Finnish speech.
  • Swaab, T. Y., Brown, C. M., & Hagoort, P. (1997). Spoken sentence comprehension in aphasia: Event-related potential evidence for a lexical integration deficit. Journal of Cognitive Neuroscience, 9(1), 39-66.

    Abstract

    In this study the N400 component of the event-related potential was used to investigate spoken sentence understanding in Broca's and Wernicke's aphasics. The aim of the study was to determine whether spoken sentence comprehension problems in these patients might result from a deficit in the on-line integration of lexical information. Subjects listened to sentences spoken at a normal rate. In half of these sentences, the meaning of the final word of the sentence matched the semantic specifications of the preceding sentence context. In the other half of the sentences, the sentence-final word was anomalous with respect to the preceding sentence context. The N400 was measured to the sentence-final words in both conditions. The results for the aphasic patients (n = 14) were analyzed according to the severity of their comprehension deficit and compared to a group of 12 neurologically unimpaired age-matched controls, as well as a group of 6 nonaphasic patients with a lesion in the right hemisphere. The nonaphasic brain damaged patients and the aphasic patients with a light comprehension deficit (high comprehenders, n = 7) showed an N400 effect that was comparable to that of the neurologically unimpaired subjects. In the aphasic patients with a moderate to severe comprehension deficit (low comprehenders, n = 7), a reduction and delay of the N400 effect was obtained. In addition, the P300 component was measured in a classical oddball paradigm, in which subjects were asked to count infrequent low tones in a random series of high and low tones. No correlation was found between the occurrence of N400 and P300 effects, indicating that changes in the N400 results were related to the patients' language deficit. Overall, the pattern of results was compatible with the idea that aphasic patients with moderate to severe comprehension problems are impaired in the integration of lexical information into a higher order representation of the preceding sentence context.
  • Swingley, D., & Aslin, R. N. (2000). Spoken word recognition and lexical representation in very young children. Cognition, 76, 147-166. doi:10.1016/S0010-0277(00)00081-0.

    Abstract

    Although children's knowledge of the sound patterns of words has been a focus of debate for many years, little is known about the lexical representations very young children use in word recognition. In particular, researchers have questioned the degree of specificity encoded in early lexical representations. The current study addressed this issue by presenting 18–23-month-olds with object labels that were either correctly pronounced, or mispronounced. Mispronunciations involved replacement of one segment with a similar segment, as in ‘baby–vaby’. Children heard sentences containing these words while viewing two pictures, one of which was the referent of the sentence. Analyses of children's eye movements showed that children recognized the spoken words in both conditions, but that recognition was significantly poorer when words were mispronounced. The effects of mispronunciation on recognition were unrelated to age or to spoken vocabulary size. The results suggest that children's representations of familiar words are phonetically well-specified, and that this specification may not be a consequence of the need to differentiate similar words in production.
  • Tamariz, M., Roberts, S. G., Martínez, J. I., & Santiago, J. (2018). The Interactive Origin of Iconicity. Cognitive Science, 42, 334-349. doi:10.1111/cogs.12497.

    Abstract

    We investigate the emergence of iconicity, specifically a bouba-kiki effect in miniature artificial languages under different functional constraints: when the languages are reproduced and when they are used communicatively. We ran transmission chains of (a) participant dyads who played an interactive communicative game and (b) individual participants who played a matched learning game. An analysis of the languages over six generations in an iterated learning experiment revealed that in the Communication condition, but not in the Reproduction condition, words for spiky shapes tend to be rated by naive judges as more spiky than the words for round shapes. This suggests that iconicity may not only be the outcome of innovations introduced by individuals, but, crucially, the result of interlocutor negotiation of new communicative conventions. We interpret our results as an illustration of cultural evolution by random mutation and selection (as opposed to by guided variation).
  • Tan, Y., & Martin, R. C. (2018). Verbal short-term memory capacities and executive function in semantic and syntactic interference resolution during sentence comprehension: Evidence from aphasia. Neuropsychologia, 113, 111-125. doi:10.1016/j.neuropsychologia.2018.03.001.

    Abstract

    This study examined the role of verbal short-term memory (STM) and executive function (EF) underlying semantic and syntactic interference resolution during sentence comprehension for persons with aphasia (PWA) with varying degrees of STM and EF deficits. Semantic interference was manipulated by varying the semantic plausibility of the intervening NP as subject of the verb and syntactic interference was manipulated by varying whether the NP was another subject or an object. Nine PWA were assessed on sentence reading times and on comprehension question performance. PWA showed exaggerated semantic and syntactic interference effects relative to healthy age-matched control subjects. Importantly, correlational analyses showed that while answering comprehension questions, PWA’ semantic STM capacity related to their ability to resolve semantic but not syntactic interference. In contrast, PWA’ EF abilities related to their ability to resolve syntactic but not semantic interference. Phonological STM deficits were not related to the ability to resolve either type of interference. The results for semantic STM are consistent with prior findings indicating a role for semantic but not phonological STM in sentence comprehension, specifically with regard to maintaining semantic information prior to integration. The results for syntactic interference are consistent with the recent findings suggesting that EF is critical for syntactic processing.
  • Tanenhaus, M. K., Magnuson, J. S., Dahan, D., & Chaimbers, G. (2000). Eye movements and lexical access in spoken-language comprehension: evaluating a linking hypothesis between fixations and linguistic processing. Journal of Psycholinguistic Research, 29, 557-580. doi:10.1023/A:1026464108329.

    Abstract

    A growing number of researchers in the sentence processing community are using eye movements to address issues in spoken language comprehension. Experiments using this paradigm have shown that visually presented referential information, including properties of referents relevant to specific actions, influences even the earliest moments of syntactic processing. Methodological concerns about task-specific strategies and the linking hypothesis between eye movements and linguistic processing are identified and discussed. These concerns are addressed in a review of recent studies of spoken word recognition which introduce and evaluate a detailed linking hypothesis between eye movements and lexical access. The results provide evidence about the time course of lexical activation that resolves some important theoretical issues in spoken-word recognition. They also demonstrate that fixations are sensitive to properties of the normal language-processing system that cannot be attributed to task-specific strategies
  • Teeling, E., Vernes, S. C., Davalos, L. M., Ray, D. A., Gilbert, M. T. P., Myers, E., & Bat1K Consortium (2018). Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species. Annual Review of Animal Biosciences, 6, 23-46. doi:10.1146/annurev-animal-022516-022811.

    Abstract

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>132 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.
  • Thorin, J., Sadakata, M., Desain, P., & McQueen, J. M. (2018). Perception and production in interaction during non-native speech category learning. The Journal of the Acoustical Society of America, 144(1), 92-103. doi:10.1121/1.5044415.

    Abstract

    Establishing non-native phoneme categories can be a notoriously difficult endeavour—in both speech perception and speech production. This study asks how these two domains interact in the course of this learning process. It investigates the effect of perceptual learning and related production practice of a challenging non-native category on the perception and/or production of that category. A four-day perceptual training protocol on the British English /æ/-/ɛ/ vowel contrast was combined with either related or unrelated production practice. After feedback on perceptual categorisation of the contrast, native Dutch participants in the related production group (N = 19) pronounced the trial's correct answer, while participants in the unrelated production group (N = 19) pronounced similar but phonologically unrelated words. Comparison of pre- and post-tests showed significant improvement over the course of training in both perception and production, but no differences between the groups were found. The lack of an effect of production practice is discussed in the light of previous, competing results and models of second-language speech perception and production. This study confirms that, even in the context of related production practice, perceptual training boosts production learning.
  • Tian, X., Ding, N., Teng, X., Bai, F., & Poeppel, D. (2018). Imagined speech influences perceived loudness of sound. Nature Human Behaviour, 2, 225-234. doi:10.1038/s41562-018-0305-8.

    Abstract

    The way top-down and bottom-up processes interact to shape our perception and behaviour is a fundamental question and remains highly controversial. How early in a processing stream do such interactions occur, and what factors govern such interactions? The degree of abstractness of a perceptual attribute (for example, orientation versus shape in vision, or loudness versus sound identity in hearing) may determine the locus of neural processing and interaction between bottom-up and internal information. Using an imagery-perception repetition paradigm, we find that imagined speech affects subsequent auditory perception, even for a low-level attribute such as loudness. This effect is observed in early auditory responses in magnetoencephalography and electroencephalography that correlate with behavioural loudness ratings. The results suggest that the internal reconstruction of neural representations without external stimulation is flexibly regulated by task demands, and that such top-down processes can interact with bottom-up information at an early perceptual stage to modulate perception.
  • Tilot, A. K., Kucera, K. S., Vino, A., Asher, J. E., Baron-Cohen, S., & Fisher, S. E. (2018). Rare variants in axonogenesis genes connect three families with sound–color synesthesia. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3168-3173. doi:10.1073/pnas.1715492115.

    Abstract

    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound–color (auditory–visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes—COL4A1, ITGA2, MYO10, ROBO3, SLC9A6, and SLIT2—associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences.

    Additional information

    Tilot_etal_2018SI.pdf
  • Torreira, F., & Grice, M. (2018). Melodic constructions in Spanish: Metrical structure determines the association properties of intonational tones. Journal of the International Phonetic Association, 48(1), 9-32. doi:10.1017/S0025100317000603.

    Abstract

    This paper explores phrase-length-related alternations in the association of tones to positions in metrical structure in two melodic constructions of Spanish. An imitation-and-completion task eliciting (a) the low–falling–rising contour and (b) the circumflex contour on intonation phrases (IPs) of one, two, and three prosodic words revealed that, although the focus structure and pragmatic context is constant across conditions, phrases containing one prosodic word differ in their nuclear (i.e. final) pitch accents and edge tones from phrases containing more than one prosodic word. For contour (a), short intonation phrases (e.g. [ Ma no lo ] IP ) were produced with a low accent followed by a high edge tone (L ∗ H% in ToBI notation), whereas longer phrases (e.g. [ El her ma no de la a m igadeMa no lo ] IP ‘Manolo’s friend’s brother’) had a low accent on the first stressed syllable, a rising accent on the last stressed syllable, and a low edge tone (L ∗ L+H ∗ L%). For contour (b), short phrases were produced with a high–rise (L+H ∗ ¡H%), whereas longer phrases were produced with an initial accentual rise followed by an upstepped rise–fall (L+H ∗ ¡H ∗ L%). These findings imply that the common practice of describing the structure of intonation contours as consisting of a constant nuclear pitch accent and following edge tone is not adequate for modeling Spanish intonation. To capture the observed melodic alternations, we argue for clearer separation between tones and metrical structure, whereby intonational tones do not necessarily have an intrinsic culminative or delimitative function (i.e. as pitch accents or as edge tones). Instead, this function results from melody-specific principles of tonal–metrical association.
  • Tribushinina, E., Mak, M., Dubinkina, E., & Mak, W. M. (2018). Adjective production by Russian-speaking children with developmental language disorder and Dutch–Russian simultaneous bilinguals: Disentangling the profiles. Applied Psycholinguistics, 39(5), 1033-1064. doi:10.1017/S0142716418000115.

    Abstract

    Bilingual children with reduced exposure to one or both languages may have language profiles that are
    apparently similar to those of children with developmental language disorder (DLD). Children with
    DLD receive enough input, but have difficulty using this input for acquisition due to processing deficits.
    The present investigation aims to determine aspects of adjective production that are differentially
    affected by reduced input (in bilingualism) and reduced intake (in DLD). Adjectives were elicited
    from Dutch–Russian simultaneous bilinguals with limited exposure to Russian and Russian-speaking
    monolinguals with andwithout DLD.Anantonymelicitation taskwas used to assess the size of adjective
    vocabularies, and a degree task was employed to compare the preferences of the three groups in the
    use of morphological, lexical, and syntactic degree markers. The results revealed that adjective–noun
    agreement is affected to the same extent by both reduced input and reduced intake. The size of adjective
    lexicons is also negatively affected by both, but more so by reduced exposure. However, production
    of morphological degree markers and learning of semantic paradigms are areas of relative strength in
    which bilinguals outperform monolingual children with DLD.We suggest that reduced input might be
    counterbalanced by linguistic and cognitive advantages of bilingualism
  • Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.

    Abstract

    When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings.
  • Trompenaars, T. (2018). Empathy for the inanimate. Linguistics in the Netherlands, 35, 125-138. doi:10.1075/avt.00009.tro.

    Abstract

    Narrative fiction may invite us to share the perspective of characters which are very much unlike ourselves. Inanimate objects featuring as protagonists or narrators are an extreme example of this. The way readers experience these characters was examined by means of a narrative immersion study. Participants (N = 200) judged narratives containing animate or inanimate characters in predominantly Agent or Experiencer roles. Narratives with inanimate characters were judged to be less emotionally engaging. This effect was influenced by the dominant thematic role associated with the character: inanimate Agents led to more defamiliarization compared to their animate counterparts than inanimate Experiencers. I argue for an integrated account of thematic roles and animacy in literary experience and linguistics in general.
  • Trompenaars, T., Hogeweg, L., Stoop, W., & De Hoop, H. (2018). The language of an inanimate narrator. Open Linguistics, 4, 707-721. doi:10.1515/opli-2018-0034.

    Abstract

    We show by means of a corpus study that the language used by the inanimate first person narrator in the novel Specht en zoon deviates from what we would expect on the basis of the fact that the narrator is inanimate, but at the same time also differsfrom the language of a human narrator in the novel De wijde blik on several linguistic dimensions. Whereas the human narrator is associated strongly with action verbs, preferring the Agent role, the inanimate narrator is much more limited to the Experiencer role, predominantly associated with cognition and sensory verbs. Our results show that animacy as a linguistic concept may be refined by taking into account the myriad ways in which an entity’s conceptual animacy may be expressed: we accept the conceptual animacy of the inanimate narrator despite its inability to act on its environment, showing this need not be a requirement for animacy
  • Trujillo, J. P., Simanova, I., Bekkering, H., & Ozyurek, A. (2018). Communicative intent modulates production and perception of actions and gestures: A Kinect study. Cognition, 180, 38-51. doi:10.1016/j.cognition.2018.04.003.

    Abstract

    Actions may be used to directly act on the world around us, or as a means of communication. Effective communication requires the addressee to recognize the act as being communicative. Humans are sensitive to ostensive communicative cues, such as direct eye gaze (Csibra & Gergely, 2009). However, there may be additional cues present in the action or gesture itself. Here we investigate features that characterize the initiation of a communicative interaction in both production and comprehension.

    We asked 40 participants to perform 31 pairs of object-directed actions and representational gestures in more- or less- communicative contexts. Data were collected using motion capture technology for kinematics and video recording for eye-gaze. With these data, we focused on two issues. First, if and how actions and gestures are systematically modulated when performed in a communicative context. Second, if observers exploit such kinematic information to classify an act as communicative.

    Our study showed that during production the communicative context modulates space–time dimensions of kinematics and elicits an increase in addressee-directed eye-gaze. Naïve participants detected communicative intent in actions and gestures preferentially using eye-gaze information, only utilizing kinematic information when eye-gaze was unavailable.

    Our study highlights the general communicative modulation of action and gesture kinematics during production but also shows that addressees only exploit this modulation to recognize communicative intention in the absence of eye-gaze. We discuss these findings in terms of distinctive but potentially overlapping functions of addressee directed eye-gaze and kinematic modulations within the wider context of human communication and learning.
  • Ung, D. C., Iacono, G., Méziane, H., Blanchard, E., Papon, M.-A., Selten, M., van Rhijn, J.-R., Van Rhijn, J. R., Montjean, R., Rucci, J., Martin, S., Fleet, A., Birling, M.-C., Marouillat, S., Roepman, R., Selloum, M., Lux, A., Thépault, R.-A., Hamel, P., Mittal, K. and 7 moreUng, D. C., Iacono, G., Méziane, H., Blanchard, E., Papon, M.-A., Selten, M., van Rhijn, J.-R., Van Rhijn, J. R., Montjean, R., Rucci, J., Martin, S., Fleet, A., Birling, M.-C., Marouillat, S., Roepman, R., Selloum, M., Lux, A., Thépault, R.-A., Hamel, P., Mittal, K., Vincent, J. B., Dorseuil, O., Stunnenberg, H. G., Billuart, P., Nadif Kasri, N., Hérault, Y., & Laumonnier, F. (2018). Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Molecular Psychiatry, 23, 1356-1367. doi:10.1038/mp.2017.39.

    Abstract

    Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1−/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.

    Additional information

    mp201739x1.pdf
  • Valentin, B., Verga, L., Benoit, C.-E., Kotz, S. A., & Dalla Bella, S. (2018). Test-retest reliability of the battery for the assessment of auditory sensorimotor and timing abilities (BAASTA). Annals of Physical and Rehabilitation Medicine, 61(6), 395-400. doi:10.1016/j.rehab.2018.04.001.

    Abstract

    Perceptual and sensorimotor timing skills can be thoroughly assessed with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery has been used for testing rhythmic skills in healthy adults and patient populations (e.g., with Parkinson disease), showing sensitivity to timing and rhythm deficits. Here we assessed the test-retest reliability of the BAASTA in 20 healthy adults. Participants were tested twice with the BAASTA, implemented on a tablet interface, with a 2-week interval. They completed 4 perceptual tasks, namely, duration discrimination, anisochrony detection with tones and music, and the Beat Alignment Test (BAT). Moreover, they completed motor tasks via finger tapping, including unpaced and paced tapping with tones and music, synchronization-continuation, and adaptive tapping to a sequence with a tempo change. Despite high variability among individuals, the results showed good test-retest reliability in most tasks. A slight but significant improvement from test to retest was found in tapping with music, which may reflect a learning effect. In general, the BAASTA was found a reliable tool for evaluating timing and rhythm skills.
  • Van den Broek, G., Takashima, A., Segers, E., & Verhoeven, L. (2018). Contextual Richness and Word Learning: Context Enhances Comprehension but Retrieval Enhances Retention. Language Learning, 68(2), 546-585. doi:10.1111/lang.12285.

    Abstract

    Learning new vocabulary from context typically requires multiple encounters during which word meaning can be retrieved from memory or inferred from context. We compared the effect of memory retrieval and context inferences on short‐ and long‐term retention in three experiments. Participants studied novel words and then practiced the words either in an uninformative context that required the retrieval of word meaning from memory (“I need the funguo”) or in an informative context from which word meaning could be inferred (“I want to unlock the door: I need the funguo”). The informative context facilitated word comprehension during practice. However, later recall of word form and meaning and word recognition in a new context were better after successful retrieval practice and retrieval practice with feedback than after context‐inference practice. These findings suggest benefits of retrieval during contextualized vocabulary learning whereby the uninformative context enhanced word retention by triggering memory retrieval.
  • Van Wijk, C., & Kempen, G. (1982). De ontwikkeling van syntactische formuleervaardigheid bij kinderen van 9 tot 16 jaar. Nederlands Tijdschrift voor de Psychologie en haar Grensgebieden, 37(8), 491-509.

    Abstract

    An essential phenomenon in the development towards syntactic maturity after early childhood is the increasing use of so-called sentence-combining transformations. Especially by using subordination, complex sentences are produced. The research reported here is an attempt to arrive at a more adequate characterization and explanation. Our starting point was an analysis of 280 texts written by Dutch-speaking pupils of the two highest grades of the primary school and the four lowest grades of three different types of secondary education. It was examined whether systematic shifts in the use of certain groups of so-called function words could be traced. We concluded that the development of the syntactic formulating ability can be characterized as an increase in connectivity: the use of all kinds of function words which explicitly mark logico-semantic relations between propositions. This development starts by inserting special adverbs and coordinating conjunctions resulting in various types of coordination. In a later stage, the syntactic patterning of the sentence is affected as well (various types of subordination). The increase in sentence complexity is only one aspect of the entire development. An explanation for the increase in connectivity is offered based upon a distinction between narrative and expository language use. The latter, but not the former, is characterized by frequent occurrence of connectives. The development in syntactic formulating ability includes a high level of skill in expository language use. Speed of development is determined by intensity of training, e.g. in scholastic and occupational settings.
  • Van Turennout, M., Hagoort, P., & Brown, C. M. (1997). Electrophysiological evidence on the time course of semantic and phonological processes in speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(4), 787-806.

    Abstract

    The temporal properties of semantic and phonological processes in speech production were investigated in a new experimental paradigm using movement-related brain potentials. The main experimental task was picture naming. In addition, a 2-choice reaction go/no-go procedure was included, involving a semantic and a phonological categorization of the picture name. Lateralized readiness potentials (LRPs) were derived to test whether semantic and phonological information activated motor processes at separate moments in time. An LRP was only observed on no-go trials when the semantic (not the phonological) decision determined the response hand. Varying the position of the critical phoneme in the picture name did not affect the onset of the LRP but rather influenced when the LRP began to differ on go and no-go trials and allowed the duration of phonological encoding of a word to be estimated. These results provide electrophysiological evidence for early semantic activation and later phonological encoding.
  • Van de Geer, J. P., & Levelt, W. J. M. (1963). Detection of visual patterns disturbed by noise: An exploratory study. Quarterly Journal of Experimental Psychology, 15, 192-204. doi:10.1080/17470216308416324.

    Abstract

    An introductory study of the perception of stochastically specified events is reported. The initial problem was to determine whether the perceiver can split visual input data of this kind into random and determined components. The inability of subjects to do so with the stimulus material used (a filmlike sequence of dot patterns), led to the more general question of how subjects code this kind of visual material. To meet the difficulty of defining the subjects' responses, two experiments were designed. In both, patterns were presented as a rapid sequence of dots on a screen. The patterns were more or less disturbed by “noise,” i.e. the dots did not appear exactly at their proper places. In the first experiment the response was a rating on a semantic scale, in the second an identification from among a set of alternative patterns. The results of these experiments give some insight in the coding systems adopted by the subjects. First, noise appears to be detrimental to pattern recognition, especially to patterns with little spread. Second, this shows connections with the factors obtained from analysis of the semantic ratings, e.g. easily disturbed patterns show a large drop in the semantic regularity factor, when only a little noise is added.
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1991). Aspects of computer simulations in education. Education & Computing, 6(3/4), 231-239.

    Abstract

    Computer simulations in an instructional context can be characterized according to four aspects (themes): simulation models, learning goals, learning processes and learner activity. The present paper provides an outline of these four themes. The main classification criterion for simulation models is quantitative vs. qualitative models. For quantitative models a further subdivision can be made by classifying the independent and dependent variables as continuous or discrete. A second criterion is whether one of the independent variables is time, thus distinguishing dynamic and static models. Qualitative models on the other hand use propositions about non-quantitative properties of a system or they describe quantitative aspects in a qualitative way. Related to the underlying model is the interaction with it. When this interaction has a normative counterpart in the real world we call it a procedure. The second theme of learning with computer simulation concerns learning goals. A learning goal is principally classified along three dimensions, which specify different aspects of the knowledge involved. The first dimension, knowledge category, indicates that a learning goal can address principles, concepts and/or facts (conceptual knowledge) or procedures (performance sequences). The second dimension, knowledge representation, captures the fact that knowledge can be represented in a more declarative (articulate, explicit), or in a more compiled (implicit) format, each one having its own advantages and drawbacks. The third dimension, knowledge scope, involves the learning goal's relation with the simulation domain; knowledge can be specific to a particular domain, or generalizable over classes of domains (generic). A more or less separate type of learning goal refers to knowledge acquisition skills that are pertinent to learning in an exploratory environment. Learning processes constitute the third theme. Learning processes are defined as cognitive actions of the learner. Learning processes can be classified using a multilevel scheme. The first (highest) of these levels gives four main categories: orientation, hypothesis generation, testing and evaluation. Examples of more specific processes are model exploration and output interpretation. The fourth theme of learning with computer simulations is learner activity. Learner activity is defined as the ‘physical’ interaction of the learner with the simulations (as opposed to the mental interaction that was described in the learning processes). Five main categories of learner activity are distinguished: defining experimental settings (variables, parameters etc.), interaction process choices (deciding a next step), collecting data, choice of data presentation and metacontrol over the simulation.
  • Van Rhijn, J. R., Fisher, S. E., Vernes, S. C., & Nadif Kasri, N. (2018). Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Structure and Function, 223(9), 4211-4226. doi:10.1007/s00429-018-1746-6.

    Abstract

    Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-mediated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive.

    Additional information

    429_2018_1746_MOESM1_ESM.docx
  • Van Berkum, J. J. A., & De Jong, T. (1991). Instructional environments for simulations. Education & Computing, 6(3/4), 305-358.

    Abstract

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving context, to practise task performance without stress, to systematically explore both realistic and hypothetical situations, to change the time-scale of events, and to interact with simplified versions of the process or system being simulated. However, learners are often unable to cope with the freedom offered by, and the complexity of, a simulation. As a result many of them resort to an unsystematic, unproductive mode of exploration. There is evidence that simulation-based learning can be improved if the learner is supported while working with the simulation. Constructing such an instructional environment around simulations seems to run counter to the freedom the learner is allowed to in ‘stand alone’ simulations. The present article explores instructional measures that allow for an optimal freedom for the learner. An extensive discussion of learning goals brings two main types of learning goals to the fore: conceptual knowledge and operational knowledge. A third type of learning goal refers to the knowledge acquisition (exploratory learning) process. Cognitive theory has implications for the design of instructional environments around simulations. Most of these implications are quite general, but they can also be related to the three types of learning goals. For conceptual knowledge the sequence and choice of models and problems is important, as is providing the learner with explanations and minimization of error. For operational knowledge cognitive theory recommends learning to take place in a problem solving context, the explicit tracing of the behaviour of the learner, providing immediate feedback and minimization of working memory load. For knowledge acquisition goals, it is recommended that the tutor takes the role of a model and coach, and that learning takes place together with a companion. A second source of inspiration for designing instructional environments can be found in Instructional Design Theories. Reviewing these shows that interacting with a simulation can be a part of a more comprehensive instructional strategy, in which for example also prerequisite knowledge is taught. Moreover, information present in a simulation can also be represented in a more structural or static way and these two forms of presentation provoked to perform specific learning processes and learner activities by tutor controlled variations in the simulation, and by tutor initiated prodding techniques. And finally, instructional design theories showed that complex models and procedures can be taught by starting with central and simple elements of these models and procedures and subsequently presenting more complex models and procedures. Most of the recent simulation-based intelligent tutoring systems involve troubleshooting of complex technical systems. Learners are supposed to acquire knowledge of particular system principles, of troubleshooting procedures, or of both. Commonly encountered instructional features include (a) the sequencing of increasingly complex problems to be solved, (b) the availability of a range of help information on request, (c) the presence of an expert troubleshooting module which can step in to provide criticism on learner performance, hints on the problem nature, or suggestions on how to proceed, (d) the option of having the expert module demonstrate optimal performance afterwards, and (e) the use of different ways of depicting the simulated system. A selection of findings is summarized by placing them under the four themes we think to be characteristic of learning with computer simulations (see de Jong, this volume).
  • Van Bergen, G., & Bosker, H. R. (2018). Linguistic expectation management in online discourse processing: An investigation of Dutch inderdaad 'indeed' and eigenlijk 'actually'. Journal of Memory and Language, 103, 191-209. doi:10.1016/j.jml.2018.08.004.

    Abstract

    Interpersonal discourse particles (DPs), such as Dutch inderdaad (≈‘indeed’) and eigenlijk (≈‘actually’) are highly frequent in everyday conversational interaction. Despite extensive theoretical descriptions of their polyfunctionality, little is known about how they are used by language comprehenders. In two visual world eye-tracking experiments involving an online dialogue completion task, we asked to what extent inderdaad, confirming an inferred expectation, and eigenlijk, contrasting with an inferred expectation, influence real-time understanding of dialogues. Answers in the dialogues contained a DP or a control adverb, and a critical discourse referent was replaced by a beep; participants chose the most likely dialogue completion by clicking on one of four referents in a display. Results show that listeners make rapid and fine-grained situation-specific inferences about the use of DPs, modulating their expectations about how the dialogue will unfold. Findings further specify and constrain theories about the conversation-managing function and polyfunctionality of DPs.
  • Van Campen, A. D., Kunert, R., Van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2018). Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict. Psychophysiology, 55(3): e13003. doi:10.1111/psyp.13003.

    Abstract

    In the recent literature, the effects of noninvasive neurostimulation on cognitive functioning appear to lack consistency and replicability. We propose that such effects may be concealed unless dedicated, sensitive, and process-specific dependent measures are used. The expression and subsequent suppression of response capture are often studied using conflict tasks. Response-time distribution analyses have been argued to provide specific measures of the susceptibility to make fast impulsive response errors, as well as the proficiency of the selective suppression of these impulses. These measures of response capture and response inhibition are particularly sensitive to experimental manipulations and clinical deficiencies that are typically obfuscated in commonly used overall performance analyses. Recent work using structural and functional imaging techniques links these behavioral outcome measures to the integrity of frontostriatal networks. These studies suggest that the presupplementary motor area (pre-SMA) is linked to the susceptibility to response capture whereas the right inferior frontal cortex (rIFC) is associated with the selective suppression of action impulses. Here, we used repetitive transcranial magnetic stimulation (rTMS) to test the causal involvement of these two cortical areas in response capture and inhibition in the Simon task. Disruption of rIFC function specifically impaired selective suppression of conflicting action tendencies, whereas the anticipated increase of fast impulsive errors after perturbing pre-SMA function was not confirmed. These results provide a proof of principle of the notion that the selection of appropriate dependent measures is perhaps crucial to establish the effects of neurostimulation on specific cognitive functions.
  • Van de Geer, J. P., Levelt, W. J. M., & Plomp, R. (1962). The connotation of musical consonance. Acta Psychologica, 20, 308-319.

    Abstract

    As a preliminary to further research on musical consonance an explanatory investigation was made on the different modes of judgment of musical intervals. This was done by way of a semantic differential. Subjects rated 23 intervals against 10 scales. In a factor analysis three factors appeared: pitch, evaluation and fusion. The relation between these factors and some physical characteristics has been investigated. The scale consonant-dissonant showed to be purely evaluative (in opposition to Stumpf's theory). This evaluative connotation is not in accordance with the musicological meaning of consonance. Suggestions to account for this difference have been given.
  • Van Leeuwen, E. J. C., Cohen, E., Collier-Baker, E., Rapold, C. J., Schäfer, M., Schütte, S., & Haun, D. B. M. (2018). The development of human social learning across seven societies. Nature Communications, 9: 2076. doi:10.1038/s41467-018-04468-2.

    Abstract

    Social information use is a pivotal characteristic of the human species. Avoiding the cost of individual exploration, social learning confers substantial fitness benefits under a wide variety of environmental conditions, especially when the process is governed by biases toward relative superiority (e.g., experts, the majority). Here, we examine the development of social information use in children aged 4–14 years (n = 605) across seven societies in a standardised social learning task. We measured two key aspects of social information use: general reliance on social information and majority preference. We show that the extent to which children rely on social information depends on children’s cultural background. The extent of children’s majority preference also varies cross-culturally, but in contrast to social information use, the ontogeny of majority preference follows a U-shaped trajectory across all societies. Our results demonstrate both cultural continuity and diversity in the realm of human social learning.

    Additional information

    VanLeeuwen_etal_2018sup.pdf
  • Van Berkum, J. J. A. (1997). Syntactic processes in speech production: The retrieval of grammatical gender. Cognition, 64(2), 115-152. doi:10.1016/S0010-0277(97)00026-7.

    Abstract

    Jescheniak and Levelt (Jescheniak, J.-D., Levelt, W.J.M. 1994. Journal of Experimental Psychology: Learning, Memory and Cognition 20 (4), 824–843) have suggested that the speed with which native speakers of a gender-marking language retrieve the grammatical gender of a noun from their mental lexicon may depend on the recency of earlier access to that same noun's gender, as the result of a mechanism that is dedicated to facilitate gender-marked anaphoric reference to recently introduced discourse entities. This hypothesis was tested in two picture naming experiments. Recent gender access did not facilitate the production of gender-marked adjective noun phrases (Experiment 1), nor that of gender-marked definite article noun phrases (Experiment 2), even though naming times for the latter utterances were sensitive to the gender of a written distractor word superimposed on the picture to be named. This last result replicates and extends earlier gender-specific picture-word interference results (Schriefers, H. 1993. Journal of Experimental Psychology: Learning, Memory, and Cognition 19 (4), 841–850), showing that one can selectively tap into the production of grammatical gender agreement during speaking. The findings are relevant to theories of speech production and the representation of grammatical gender for that process.
  • Van Wijk, C., & Kempen, G. (1982). Syntactische formuleervaardigheid en het schrijven van opstellen. Pedagogische Studiën, 59, 126-136.

    Abstract

    Meermalen is getracht om syntactische formuleenuuirdigheid direct en objectief te meten aan de hand van gesproken of geschreven teksten. Uitgangspunt hierbij vormde in de regel de syntactische complexiteit van de geproduceerde taaluitingen. Dit heeft echter niet geleid tot een plausibele, duidelijk omschreven en praktisch bruikbare index. N.a.v. een kritische bespreking van de notie complexiteit wordt in dit artikel als nieuw criterium voorgesteld de connectiviteit van de taaluitingen; de expliciete aanduiding van logiscli-scmantische relaties tussen proposities. Connectiviteit is gemakkelijk scoorbaar aan de hand van functiewoorden die verschillende vormen van nevenschikkend en onderschikkend zinsverband markeren. Deze nieuwe index ondetrangt de kritiek die op complexiteit gegeven kon worden, blijkt duidelijk te discrimineren tussen groepen leerlingen die van elkaar verschillen naar leeftijd en opleidingsniveau, en sluit aan bij recente taalpsychologische en sociolinguïstische theorie. Tot besluit worden enige onderwijskundige implicaties aangegeven.
  • Van Donkelaar, M. M. J., Hoogman, M., Pappa, I., Tiemeier, H., Buitelaar, J. K., Franke, B., & Bralten, J. (2018). Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes. Frontiers in Behavioral Neuroscience, 12: 61. doi:10.3389/fnbeh.2018.00061.

    Abstract

    Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus accumbens and amygdala volumes, respectively.
  • Van Leeuwen, E. J. C., Cronin, K. A., & Haun, D. B. M. (2018). Population-specific social dynamics in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 115(45), 11393-11400. doi:10.1073/pnas.1722614115.

    Abstract

    Understanding intraspecific variation in sociality is essential for characterizing the flexibility and evolution of social systems, yet its study in nonhuman animals is rare. Here, we investigated whether chimpanzees exhibit population-level differences in sociality that cannot be easily explained by differences in genetics or ecology. We compared social proximity and grooming tendencies across four semiwild populations of chimpanzees living in the same ecological environment over three consecutive years, using both linear mixed models and social network analysis. Results indicated temporally stable, population-level differences in dyadic-level sociality. Moreover, group cohesion measures capturing network characteristics beyond dyadic interactions (clustering, modularity, and social differentiation) showed population-level differences consistent with the dyadic indices. Subsequently, we explored whether the observed intraspecific variation in sociality could be attributed to cultural processes by ruling out alternative sources of variation including the influences of ecology, genetics, and differences in population demographics. We conclude that substantial variation in social behavior exists across neighboring populations of chimpanzees and that this variation is in part shaped by cultural processes.

    Additional information

    pnas.1722614115.sapp.pdf
  • Van der Veer, G. C., Bagnara, S., & Kempen, G. (1991). Preface. Acta Psychologica, 78, ix. doi:10.1016/0001-6918(91)90002-H.
  • Van de Ven, M., & Ernestus, M. (2018). The role of segmental and durational cues in the processing of reduced words. Language and Speech, 61(3), 358-383. doi:10.1177/0023830917727774.

    Abstract

    In natural conversations, words are generally shorter and they often lack segments. It is unclear to what extent such durational and segmental reductions affect word recognition. The present study investigates to what extent reduction in the initial syllable hinders word comprehension, which types of segments listeners mostly rely on, and whether listeners use word duration as a cue in word recognition. We conducted three experiments in Dutch, in which we adapted the gating paradigm to study the comprehension of spontaneously uttered conversational speech by aligning the gates with the edges of consonant clusters or vowels. Participants heard the context and some segmental and/or durational information from reduced target words with unstressed initial syllables. The initial syllable varied in its degree of reduction, and in half of the stimuli the vowel was not clearly present. Participants gave too short answers if they were only provided with durational information from the target words, which shows that listeners are unaware of the reductions that can occur in spontaneous speech. More importantly, listeners required fewer segments to recognize target words if the vowel in the initial syllable was absent. This result strongly suggests that this vowel hardly plays a role in word comprehension, and that its presence may even delay this process. More important are the consonants and the stressed vowel.
  • Van Berkum, J. J. A., Hagoort, P., & Brown, C. M. (2000). The use of referential context and grammatical gender in parsing: A reply to Brysbaert and Mitchell. Journal of Psycholinguistic Research, 29(5), 467-481. doi:10.1023/A:1005168025226.

    Abstract

    Based on the results of an event-related brain potentials (ERP) experiment (van Berkum, Brown, & Hagoort. 1999a, b), we have recently argued that discourse-level referential context can be taken into account extremely rapidly by the parser. Moreover, our ERP results indicated that local grammatical gender information, although available within a few hundred milliseconds from word onset, is not always used quickly enough to prevent the parser from considering a discourse-supported, but agreement-violating, syntactic analysis. In a comment on our work, Brysbaert and Mitchell (2000) have raised concerns about the methodology of our ERP experiment and have challenged our interpretation of the results. In this reply, we argue that these concerns are unwarranted and, that, in contrast to our own interpretation, the alternative explanations provided by Brysbaert and Mitchell do not account for the full pattern of ERP results.
  • Vanderauwera, J., De Vos, A., Forkel, S. J., Catani, M., Wouters, J., Vandermosten, M., & Ghesquière, P. (2018). Neural organization of ventral white matter tracts parallels the initial steps of reading development: A DTI tractography study. Brain and Language, 183, 32-40. doi:10.1016/j.bandl.2018.05.007.

    Abstract

    Insight in the developmental trajectory of the neuroanatomical reading correlates is important to understand related cognitive processes and disorders. In adults, a dual pathway model has been suggested encompassing a dorsal phonological and a ventral orthographic white matter system. This dichotomy seems not present in pre-readers, and the specific role of ventral white matter in reading remains unclear. Therefore, the present longitudinal study investigated the relation between ventral white matter and cognitive processes underlying reading in children with a broad range of reading skills (n = 61). Ventral pathways of the reading network were manually traced using diffusion tractography: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). Pathways were examined pre-reading (5–6 years) and after two years of reading acquisition (7–8 years). Dimension reduction for the cognitive measures resulted in one component for pre-reading cognitive measures and a separate phonological and orthographic component for the early reading measures. Regression analyses revealed a relation between the pre-reading cognitive component and bilateral IFOF and left ILF. Interestingly, exclusively the left IFOF was related to the orthographic component, whereas none of the pathways was related to the phonological component. Hence, the left IFOF seems to serve as the lexical reading route, already in the earliest reading stages.
  • Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.

    Abstract

    Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval.

Share this page