Publications

Displaying 301 - 317 of 317
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (2009). Privileged syntactic arguments, pivots and controllers. In L. Guerrero, S. Ibáñez, & V. A. Belloro (Eds.), Studies in role and reference grammar (pp. 45-68). Mexico: Universidad Nacional Autónoma de México.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Valin Jr., R. D. (2009). Role and reference grammar. In F. Brisard, J.-O. Östman, & J. Verschueren (Eds.), Grammar, meaning, and pragmatics (pp. 239-249). Amsterdam: Benjamins.
  • van Hell, J. G., & Witteman, M. J. (2009). The neurocognition of switching between languages: A review of electrophysiological studies. In L. Isurin, D. Winford, & K. de Bot (Eds.), Multidisciplinary approaches to code switching (pp. 53-84). Philadelphia: John Benjamins.

    Abstract

    The seemingly effortless switching between languages and the merging of two languages into a coherent utterance is a hallmark of bilingual language processing, and reveals the flexibility of human speech and skilled cognitive control. That skill appears to be available not only to speakers when they produce language-switched utterances, but also to listeners and readers when presented with mixed language information. In this chapter, we review electrophysiological studies in which Event-Related Potentials (ERPs) are derived from recordings of brain activity to examine the neurocognitive aspects of comprehending and producing mixed language. Topics we discuss include the time course of brain activity associated with language switching between single stimuli and language switching of words embedded in a meaningful sentence context. The majority of ERP studies report that switching between languages incurs neurocognitive costs, but –more interestingly- ERP patterns differ as a function of L2 proficiency and the amount of daily experience with language switching, the direction of switching (switching into L2 is typically associated with higher switching costs than switching into L1), the type of language switching task, and the predictability of the language switch. Finally, we outline some future directions for this relatively new approach to the study of language switching.
  • Verhagen, J. (2009). Light verbs and the acquisition of finiteness and negation in Dutch as a second language. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 203-234). Berlin: Mouton de Gruyter.
  • Verkerk, A. (2009). A semantic map of secondary predication. In B. Botma, & J. Van Kampen (Eds.), Linguistics in the Netherlands 2009 (pp. 115-126).
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2009). New perspectives in analyzing aspectual distinctions across languages. In W. Klein, & P. Li (Eds.), The expression of time (pp. 195-216). Berlin: Mouton de Gruyter.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Wilkins, D., Kita, S., & Enfield, N. J. (2007). 'Ethnography of pointing' - field worker's guide. In A. Majid (Ed.), Field Manual Volume 10 (pp. 89-95). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492922.

    Abstract

    Pointing gestures are recognised to be a primary manifestation of human social cognition and communicative capacity. The goal of this task is to collect empirical descriptions of pointing practices in different cultural settings.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Wood, N. (2009). Field recording for dummies. In A. Majid (Ed.), Field manual volume 12 (pp. V). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page