Publications

Displaying 301 - 400 of 644
  • Levelt, W. J. M. (1979). On learnability: A reply to Lasnik and Chomsky. Unpublished manuscript.
  • Levinson, S. C. (1979). Activity types and language. Linguistics, 17, 365-399.
  • Levinson, S. C. (1997). Language and cognition: The cognitive consequences of spatial description in Guugu Yimithirr. Journal of Linguistic Anthropology, 7(1), 98-131. doi:10.1525/jlin.1997.7.1.98.

    Abstract

    This article explores the relation between language and cognition by examining the case of "absolute" (cardinal direction) spatial description in the Australian aboriginal language Guugu Yimithirr. This kind of spatial description is incongruent with the "relative" (e.g., left/right/front/back) spatial description familiar in European languages. Building on Haviland's 1993 analysis of Guugu Yimithirr directionals in speech and gesture, a series of informal experiments were developed. It is shown that Guugu Yimithirr speakers predominantly code for nonverbal memory in "absolute" concepts congruent with their language, while a comparative sample of Dutch speakers do so in "relative" concepts. Much anecdotal evidence also supports this. The conclusion is that Whorfian effects may in fact be demonstrable in the spatial domain.
  • Levinson, S. C. (1997). Language and cognition: The cognitive consequences of spatial description in Guugu Yimithirr. Journal of Linguistic Anthropology, 7(1), 1-35. doi:10.1525/jlin.1997.7.1.98.
  • Levinson, S. C. (1996). Language and space. Annual Review of Anthropology, 25, 353-382. doi:10.1146/annurev.anthro.25.1.353.

    Abstract

    This review describes some recent, unexpected findings concerning variation in spatial language across cultures, and places them in the context of the general anthropology of space on the one hand, and theories of spatial cognition in the cognitive sciences on the other. There has been much concern with the symbolism of space in anthropological writings, but little on concepts of space in practical activities. This neglect of everyday spatial notions may be due to unwitting ethnocentrism, the assumption in Western thinking generally that notions of space are universally of a single kind. Recent work shows that systems of spatial reckoning and description can in fact be quite divergent across cultures, linguistic differences correlating with distinct cognitive tendencies. This unexpected cultural variation raises interesting questions concerning the relation between cultural and linguistic concepts and the biological foundations of cognition. It argues for more sophisticated models relating culture and cognition than we currently have available.
  • Levshina, N. (2019). Token-based typology and word order entropy: A study based on universal dependencies. Linguistic Typology, 23(3), 533-572. doi:10.1515/lingty-2019-0025.

    Abstract

    The present paper discusses the benefits and challenges of token-based typology, which takes into account the frequencies of words and constructions in language use. This approach makes it possible to introduce new criteria for language classification, which would be difficult or impossible to achieve with the traditional, type-based approach. This point is illustrated by several quantitative studies of word order variation, which can be measured as entropy at different levels of granularity. I argue that this variation can be explained by general functional mechanisms and pressures, which manifest themselves in language use, such as optimization of processing (including avoidance of ambiguity) and grammaticalization of predictable units occurring in chunks. The case studies are based on multilingual corpora, which have been parsed using the Universal Dependencies annotation scheme.

    Additional information

    lingty-2019-0025ad.zip
  • Lewis, A. G., Schoffelen, J.-M., Hoffmann, C., Bastiaansen, M. C. M., & Schriefers, H. (2017). Discourse-level semantic coherence influences beta oscillatory dynamics and the N400 during sentence comprehension. Language, Cognition and Neuroscience, 32(5), 601-617. doi:10.1080/23273798.2016.1211300.

    Abstract

    In this study, we used electroencephalography to investigate the influence of discourse-level semantic coherence on electrophysiological signatures of local sentence-level processing. Participants read groups of four sentences that could either form coherent stories or were semantically unrelated. For semantically coherent discourses compared to incoherent ones, the N400 was smaller at sentences 2–4, while the visual N1 was larger at the third and fourth sentences. Oscillatory activity in the beta frequency range (13–21 Hz) was higher for coherent discourses. We relate the N400 effect to a disruption of local sentence-level semantic processing when sentences are unrelated. Our beta findings can be tentatively related to disruption of local sentence-level syntactic processing, but it cannot be fully ruled out that they are instead (or also) related to disrupted local sentence-level semantic processing. We conclude that manipulating discourse-level semantic coherence does have an effect on oscillatory power related to local sentence-level processing.
  • Liang, S., Li, Y., Zhang, Z., Kong, X., Wang, Q., Deng, W., Li, X., Zhao, L., Li, M., Meng, Y., Huang, F., Ma, X., Li, X.-m., Greenshaw, A. J., Shao, J., & Li, T. (2019). Classification of first-episode schizophrenia using multimodal brain features: A combined structural and diffusion imaging study. Schizophrenia Bulletin, 45(3), 591-599. doi:10.1093/schbul/sby091.

    Abstract

    Schizophrenia is a common and complex mental disorder with neuroimaging alterations. Recent neuroanatomical pattern recognition studies attempted to distinguish individuals with schizophrenia by structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI). 1, 2 Applications of cutting-edge machine learning approaches in structural neuroimaging studies have revealed potential pathways to classification of schizophrenia based on regional gray matter volume (GMV) or density or cortical thickness. 3–5 Additionally, cortical folding may have high discriminatory value in correctly identifying symptom severity in schizophrenia. 6 Regional GMV and cortical thickness have also been combined in attempts to differentiate individuals with schizophrenia from healthy controls (HCs). 7 Applications of machine learning algorithms to diffusion imaging data analysis to predict individuals with first-episode schizophrenia (FES) have achieved encouraging accuracy. 8–10 White matter (WM) abnormalities in schizophrenia as estimated by DTI appear to be present in the early stage of the disorder, most likely reflecting the developmental stage of the sample of interest.

    Additional information

    Supplementary data
  • Liang, S., Wang, Q., Kong, X., Deng, W., Yang, X., Li, X., Zhang, Z., Zhang, J., Zhang, C., Li, X.-m., Ma, X., Shao, J., Greenshaw, A. J., & Li, T. (2019). White matter abnormalities in major depression bibotypes identified by Diffusion Tensor Imaging. Neuroscience Bulletin, 35(5), 867-876. doi:10.1007/s12264-019-00381-w.

    Abstract

    Identifying data-driven biotypes of major depressive disorder (MDD) has promise for the clarification of diagnostic heterogeneity. However, few studies have focused on white-matter abnormalities for MDD subtyping. This study included 116 patients with MDD and 118 demographically-matched healthy controls assessed by diffusion tensor imaging and neurocognitive evaluation. Hierarchical clustering was applied to the major fiber tracts, in conjunction with tract-based spatial statistics, to reveal white-matter alterations associated with MDD. Clinical and neurocognitive differences were compared between identified subgroups and healthy controls. With fractional anisotropy extracted from 20 fiber tracts, cluster analysis revealed 3 subgroups based on the patterns of abnormalities. Patients in each subgroup versus healthy controls showed a stepwise pattern of white-matter alterations as follows: subgroup 1 (25.9% of patient sample), widespread white-matter disruption; subgroup 2 (43.1% of patient sample), intermediate and more localized abnormalities in aspects of the corpus callosum and left cingulate; and subgroup 3 (31.0% of patient sample), possible mild alterations, but no statistically significant tract disruption after controlling for family-wise error. The neurocognitive impairment in each subgroup accompanied the white-matter alterations: subgroup 1, deficits in sustained attention and delayed memory; subgroup 2, dysfunction in delayed memory; and subgroup 3, no significant deficits. Three subtypes of white-matter abnormality exist in individuals with major depression, those having widespread abnormalities suffering more neurocognitive impairments, which may provide evidence for parsing the heterogeneity of the disorder and help optimize type-specific treatment approaches.

    Additional information

    12264_2019_381_MOESM1_ESM.pdf
  • Lieber, R., & Baayen, R. H. (1997). A semantic principle of auxiliary selection in Dutch. Natural Language & Linguistic Theory, 15(4), 789-845.

    Abstract

    We propose that the choice between the auxiliaries hebben 'have' and zijn 'be' in Dutch is determined by a particular semantic feature of verbs. In particular we propose a feature of meaning [IEPS] for 'inferable eventual position or state' that characterizes whether the action denoted by the verb allows us to determine the eventual position or state of the verb's highest argument. It is argued that only verbs which exhibit the feature [+IEPS] or which obtain the feature compositionally in the syntax select zijn as their auxiliary. Our analysis is then compared to a number of other analyses of auxiliary selection in Dutch.

    Additional information

    access via JSTOR
  • Linnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P., Abdellaoui, A., Hammerschlag, A. R., Nivard, M. G., Okbay, A., Rietveld, C. A., Timshel, P. N., Trzaskowski, M., De Vlaming, R., Zünd, C. L., Bao, Y., Buzdugan, L., Caplin, A. H. and 72 moreLinnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P., Abdellaoui, A., Hammerschlag, A. R., Nivard, M. G., Okbay, A., Rietveld, C. A., Timshel, P. N., Trzaskowski, M., De Vlaming, R., Zünd, C. L., Bao, Y., Buzdugan, L., Caplin, A. H., Chen, C.-Y., Eibich, P., Fontanillas, P., Gonzalez, J. R., Joshi, P. K., Karhunen, V., Kleinman, A., Levin, R. Z., Lill, C. M., Meddens, G. A., Muntané, G., Sanchez-Roige, S., Van Rooij, F. J., Taskesen, E., Wu, Y., Zhang, F., 23and Me Research Team, eQTLgen Consortium, International Cannabis Consortium, Social Science Genetic Association Consortium, Auton, A., Boardman, J. D., Clark, D. W., Conlin, A., Dolan, C. C., Fischbacher, U., Groenen, P. J. F., Harris, K. M., Hasler, G., Hofman, A., Ikram, M. A., Jain, S., Karlsson, R., Kessler, R. C., Kooyman, M., MacKillop, J., Männikkö, M., Morcillo-Suarez, C., McQueen, M. B., Schmidt, K. M., Smart, M. C., Sutter, M., Thurik, A. R., Uitterlinden, A. G., White, J., De Wit, H., Yang, J., Bertram, L., Boomsma, D. I., Esko, T., Fehr, E., Hinds, D. A., Johannesson, M., Kumari, M., Laibson, D., Magnusson, P. K. E., Meyer, M. N., Navarro, A., Palmer, A. A., Pers, T. H., Posthuma, D., Schunk, D., Stein, M. B., Svento, R., Tiemeier, H., Timmers, P. R. H. J., Turley, P., Ursano, R. J., Wagner, G. G., Wilson, J. F., Gratten, J., Lee, J. J., Cesarini, D., Benjamin, D. J., Koellinger, P. D., & Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51, 245-257. doi:10.1038/s41588-018-0309-3.
  • Little, H., Eryilmaz, K., & de Boer, B. (2017). Conventionalisation and Discrimination as Competing Pressures on Continuous Speech-like Signals. Interaction studies, 18(3), 355-378. doi:10.1075/is.18.3.04lit.

    Abstract

    Arbitrary communication systems can emerge from iconic beginnings through processes of conventionalisation via interaction. Here, we explore whether this process of conventionalisation occurs with continuous, auditory signals. We conducted an artificial signalling experiment. Participants either created signals for themselves, or for a partner in a communication game. We found no evidence that the speech-like signals in our experiment became less iconic or simpler through interaction. We hypothesise that the reason for our results is that when it is difficult to be iconic initially because of the constraints of the modality, then iconicity needs to emerge to enable grounding before conventionalisation can occur. Further, pressures for discrimination, caused by the expanding meaning space in our study, may cause more complexity to emerge, again as a result of the restrictive signalling modality. Our findings have possible implications for the processes of conventionalisation possible in signed and spoken languages, as the spoken modality is more restrictive than the manual modality.
  • Little, H., Rasilo, H., van der Ham, S., & Eryılmaz, K. (2017). Empirical approaches for investigating the origins of structure in speech. Interaction studies, 18(3), 332-354. doi:10.1075/is.18.3.03lit.

    Abstract

    In language evolution research, the use of computational and experimental methods to investigate the emergence of structure in language is exploding. In this review, we look exclusively at work exploring the emergence of structure in speech, on both a categorical level (what drives the emergence of an inventory of individual speech sounds), and a combinatorial level (how these individual speech sounds emerge and are reused as part of larger structures). We show that computational and experimental methods for investigating population-level processes can be effectively used to explore and measure the effects of learning, communication and transmission on the emergence of structure in speech. We also look at work on child language acquisition as a tool for generating and validating hypotheses for the emergence of speech categories. Further, we review the effects of noise, iconicity and production effects.
  • Little, H. (2017). Introduction to the Special Issue on the Emergence of Sound Systems. Journal of Language Evolution, 2(1), 1-3. doi:10.1093/jole/lzx014.

    Abstract

    How did human sound systems get to be the way they are? Collecting contributions implementing a wealth of methods to address this question, this special issue treats language and speech as being the result of a complex adaptive system. The work throughout provides evidence and theory at the levels of phylogeny, glossogeny and ontogeny. In taking a multi-disciplinary approach that considers interactions within and between these levels of selection, the papers collectively provide a valuable, integrated contribution to existing work on the evolution of speech and sound systems.
  • Little, H., Eryılmaz, K., & de Boer, B. (2017). Signal dimensionality and the emergence of combinatorial structure. Cognition, 168, 1-15. doi:10.1016/j.cognition.2017.06.011.

    Abstract

    In language, a small number of meaningless building blocks can be combined into an unlimited set of meaningful utterances. This is known as combinatorial structure. One hypothesis for the initial emergence of combinatorial structure in language is that recombining elements of signals solves the problem of overcrowding in a signal space. Another hypothesis is that iconicity may impede the emergence of combinatorial structure. However, how these two hypotheses relate to each other is not often discussed. In this paper, we explore how signal space dimensionality relates to both overcrowding in the signal space and iconicity. We use an artificial signalling experiment to test whether a signal space and a meaning space having similar topologies will generate an iconic system and whether, when the topologies differ, the emergence of combinatorially structured signals is facilitated. In our experiments, signals are created from participants' hand movements, which are measured using an infrared sensor. We found that participants take advantage of iconic signal-meaning mappings where possible. Further, we use trajectory predictability, measures of variance, and Hidden Markov Models to measure the use of structure within the signals produced and found that when topologies do not match, then there is more evidence of combinatorial structure. The results from these experiments are interpreted in the context of the differences between the emergence of combinatorial structure in different linguistic modalities (speech and sign).

    Additional information

    mmc1.zip
  • Little, H. (Ed.). (2017). Special Issue on the Emergence of Sound Systems [Special Issue]. The Journal of Language Evolution, 2(1).
  • Lloyd, S. E., Günther, W., Pearce, S. H. S., Thomson, A., Bianchi, M. L., Bosio, M., Craig, I. W., Fisher, S. E., Scheinman, S. J., Wrong, O., Jentsch, T. J., & Thakker, R. V. (1997). Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Human Molecular Genetics, 6(8), 1233-1239. doi:10.1093/hmg/6.8.1233.

    Abstract

    Mutations of the renal-specific chloride channel (CLCN5) gene, which is located on chromosome Xp11.22, are associated with hypercalciuric nephrolithiasis (kidney stones) in the Northern European and Japanese populations. CLCN5 encodes a 746 amino acid channel (CLC-5) that has approximately 12 transmembrane domains, and heterologous expression of wild-type CLC-5 in Xenopus oocytes has yielded outwardly rectifying chloride currents that were markedly reduced or abolished by these mutations. In order to assess further the structural and functional relationships of this recently cloned chloride channel, additional CLCN5 mutations have been identified in five unrelated families with this disorder. Three of these mutations were missense (G57V, G512R and E527D), one was a nonsense (R648Stop) and one was an insertion (30:H insertion). In addition, two of the mutations (30:H insertion and E527D) were demonstrated to be de novo, and the G57V and E527D mutations were identified in families of Afro-American and Indian origin, respectively. The G57V and 30:H insertion mutations represent the first CLCN5 mutations to be identified in the N-terminus region, and the R648Stop mutation, which has been observed previously in an unrelated family, suggests that this codon may be particularly prone to mutations. Heterologous expression of the mutations resulted in a marked reduction or abolition of the chloride currents, thereby establishing their functional importance. These results help to elucidate further the structure-function relationships of this renal chloride channel.
  • Lloyd, S. E., Pearce, S. H. S., Fisher, S. E., Steinmeyer, K., Schwappach, B., Scheinman, S. J., Harding, B., Bolino, A., Devoto, M., Goodyer, P., Rigden, S. P. A., Wrong, O., Jentsch, T. J., Craig, I. W., & Thakker, R. V. (1996). A common molecular basis for three inherited kidney stone diseases [Letter to Nature]. Nature, 379, 445 -449. doi:10.1038/379445a0.

    Abstract

    Kidney stones (nephrolithiasis), which affect 12% of males and 5% of females in the western world, are familial in 45% of patients and are most commonly associated with hypercalciuria. Three disorders of hypercalciuric nephrolithiasis (Dent's disease, X-linked recessive nephrolithiasis (XRN), and X-linked recessive hypophosphataemic rickets (XLRH)) have been mapped to Xp11.22 (refs 5-7). A microdeletion in one Dent's disease kindred allowed the identification of a candidate gene, CLCN5 (refs 8,9) which encodes a putative renal chloride channel. Here we report the investigation of 11 kindreds with these renal tubular disorders for CLCN5 abnormalities; this identified three nonsense, four missense and two donor splice site mutations, together with one intragenic deletion and one microdeletion encompassing the entire gene. Heterologous expression of wild-type CLCN5 in Xenopus oocytes yielded outwardly rectifying chloride currents, which were either abolished or markedly reduced by the mutations. The common aetiology for Dent's disease, XRN and XLRH indicates that CLCN5 may be involved in other renal tubular disorders associated with kidney stones
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., & Willems, R. M. (2017). Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PLoS One, 12(5): e0177794. doi:10.1371/journal.pone.0177794.

    Abstract

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

    Additional information

    Data availability
  • Magyari, L., De Ruiter, J. P., & Levinson, S. C. (2017). Temporal preparation for speaking in question-answer sequences. Frontiers in Psychology, 8: 211. doi:10.3389/fpsyg.2017.00211.

    Abstract

    In every-day conversations, the gap between turns of conversational partners is most frequently between 0 and 200 ms. We were interested how speakers achieve such fast transitions. We designed an experiment in which participants listened to pre-recorded questions about images presented on a screen and were asked to answer these questions. We tested whether speakers already prepare their answers while they listen to questions and whether they can prepare for the time of articulation by anticipating when questions end. In the experiment, it was possible to guess the answer at the beginning of the questions in half of the experimental trials. We also manipulated whether it was possible to predict the length of the last word of the questions. The results suggest when listeners know the answer early they start speech production already during the questions. Speakers can also time when to speak by predicting the duration of turns. These temporal predictions can be based on the length of anticipated words and on the overall probability of turn durations.

    Additional information

    presentation 1.pdf
  • Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A. S. (2017). Vocabulary Knowledge Predicts Lexical Processing: Evidence from a Group of Participants with Diverse Educational Backgrounds. Frontiers in Psychology, 8: 1164. doi:10.3389/fpsyg.2017.01164.

    Abstract

    Vocabulary knowledge is central to a speaker's command of their language. In previous research, greater vocabulary knowledge has been associated with advantages in language processing. In this study, we examined the relationship between individual differences in vocabulary and language processing performance more closely by (i) using a battery of vocabulary tests instead of just one test, and (ii) testing not only university students (Experiment 1) but young adults from a broader range of educational backgrounds (Experiment 2). Five vocabulary tests were developed, including multiple-choice and open antonym and synonym tests and a definition test, and administered together with two established measures of vocabulary. Language processing performance was measured using a lexical decision task. In Experiment 1, vocabulary and word frequency were found to predict word recognition speed while we did not observe an interaction between the effects. In Experiment 2, word recognition performance was predicted by word frequency and the interaction between word frequency and vocabulary, with high-vocabulary individuals showing smaller frequency effects. While overall the individual vocabulary tests were correlated and showed similar relationships with language processing as compared to a composite measure of all tests, they appeared to share less variance in Experiment 2 than in Experiment 1. Implications of our findings concerning the assessment of vocabulary size in individual differences studies and the investigation of individuals from more varied backgrounds are discussed.

    Additional information

    Supplementary Material Appendices.pdf
  • Majid, A., Speed, L., Croijmans, I., & Arshamian, A. (2017). What makes a better smeller? Perception, 46, 406-430. doi:10.1177/0301006616688224.

    Abstract

    Olfaction is often viewed as difficult, yet the empirical evidence suggests a different picture. A closer look shows people around the world differ in their ability to detect, discriminate, and name odors. This gives rise to the question of what influences our ability to smell. Instead of focusing on olfactory deficiencies, this review presents a positive perspective by focusing on factors that make someone a better smeller. We consider three driving forces in improving olfactory ability: one’s biological makeup, one’s experience, and the environment. For each factor, we consider aspects proposed to improve odor perception and critically examine the evidence; as well as introducing lesser discussed areas. In terms of biology, there are cases of neurodiversity, such as olfactory synesthesia, that serve to enhance olfactory ability. Our lifetime experience, be it typical development or unique training experience, can also modify the trajectory of olfaction. Finally, our odor environment, in terms of ambient odor or culinary traditions, can influence odor perception too. Rather than highlighting the weaknesses of olfaction, we emphasize routes to harnessing our olfactory potential.
  • Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535. doi:10.1080/23273798.2018.1552007.

    Abstract

    People engage in simulation when reading literary narratives. In this study, we tried to pinpoint how different kinds of simulation (perceptual and motor simulation, mentalising) affect reading behaviour. Eye-tracking (gaze durations, regression probability) and questionnaire data were collected from 102 participants, who read three literary short stories. In a pre-test, 90 additional participants indicated which parts of the stories were high in one of the three kinds of simulation-eliciting content. The results show that motor simulation reduces gaze duration (faster reading), whereas perceptual simulation and mentalising increase gaze duration (slower reading). Individual differences in the effect of simulation on gaze duration were found, which were related to individual differences in aspects of story world absorption and story appreciation. These findings suggest fundamental differences between different kinds of simulation and confirm the role of simulation in absorption and appreciation.
  • Mansbridge, M. P., Tamaoka, K., Xiong, K., & Verdonschot, R. G. (2017). Ambiguity in the processing of Mandarin Chinese relative clauses: One factor cannot explain it all. PLoS One, 12(6): e0178369. doi:10.1371/journal.pone.0178369.

    Abstract

    This study addresses the question of whether native Mandarin Chinese speakers process and comprehend subject-extracted relative clauses (SRC) more readily than objectextracted relative clauses (ORC) in Mandarin Chinese. Presently, this has been a hotly debated issue, with various studies producing contrasting results. Using two eye-tracking experiments with ambiguous and unambiguous RCs, this study shows that both ORCs and SRCs have different processing requirements depending on the locus and time course during reading. The results reveal that ORC reading was possibly facilitated by linear/ temporal integration and canonicity. On the other hand, similarity-based interference made ORCs more difficult, and expectation-based processing was more prominent for unambiguous ORCs. Overall, RC processing in Mandarin should not be broken down to a single ORC (dis) advantage, but understood as multiple interdependent factors influencing whether ORCs are either more difficult or easier to parse depending on the task and context at hand.
  • Mantegna, F., Hintz, F., Ostarek, M., Alday, P. M., & Huettig, F. (2019). Distinguishing integration and prediction accounts of ERP N400 modulations in language processing through experimental design. Neuropsychologia, 134: 107199. doi:10.1016/j.neuropsychologia.2019.107199.

    Abstract

    Prediction of upcoming input is thought to be a main characteristic of language processing (e.g. Altmann & Mirkovic, 2009; Dell & Chang, 2014; Federmeier, 2007; Ferreira & Chantavarin, 2018; Pickering & Gambi, 2018; Hale, 2001; Hickok, 2012; Huettig 2015; Kuperberg & Jaeger, 2016; Levy, 2008; Norris, McQueen, & Cutler, 2016; Pickering & Garrod, 2013; Van Petten & Luka, 2012). One of the main pillars of experimental support for this notion comes from studies that have attempted to measure electrophysiological markers of prediction when participants read or listened to sentences ending in highly predictable words. The N400, a negative-going and centro-parietally distributed component of the ERP occurring approximately 400ms after (target) word onset, has been frequently interpreted as indexing prediction of the word (or the semantic representations and/or the phonological form of the predicted word, see Kutas & Federmeier, 2011; Nieuwland, 2019; Van Petten & Luka, 2012; for review). A major difficulty for interpreting N400 effects in language processing however is that it has been difficult to establish whether N400 target word modulations conclusively reflect prediction rather than (at least partly) ease of integration. In the present exploratory study, we attempted to distinguish lexical prediction (i.e. ‘top-down’ activation) from lexical integration (i.e. ‘bottom-up’ activation) accounts of ERP N400 modulations in language processing.
  • Martin, A. E., & Doumas, L. A. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. PLoS Biology, 15(3): e2000663. doi:10.1371/journal.pbio.2000663.

    Abstract

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation
  • Martin, A. E., Huettig, F., & Nieuwland, M. S. (2017). Can structural priming answer the important questions about language? A commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e304. doi:10.1017/S0140525X17000528.

    Abstract

    While structural priming makes a valuable contribution to psycholinguistics, it does not allow direct observation of representation, nor escape “source ambiguity.” Structural priming taps into implicit memory representations and processes that may differ from what is used online. We question whether implicit memory for language can and should be equated with linguistic representation or with language processing.
  • Martin, A. E., & Baggio, G. (2019). Modeling meaning composition from formalism to mechanism. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190298. doi:10.1098/rstb.2019.0298.

    Abstract

    Human thought and language have extraordinary expressive power because meaningful parts can be assembled into more complex semantic structures. This partly underlies our ability to compose meanings into endlessly novel configurations, and sets us apart from other species and current computing devices. Crucially, human behaviour, including language use and linguistic data, indicates that composing parts into complex structures does not threaten the existence of constituent parts as independent units in the system: parts and wholes exist simultaneously yet independently from one another in the mind and brain. This independence is evident in human behaviour, but it seems at odds with what is known about the brain's exquisite sensitivity to statistical patterns: everyday language use is productive and expressive precisely because it can go beyond statistical regularities. Formal theories in philosophy and linguistics explain this fact by assuming that language and thought are compositional: systems of representations that separate a variable (or role) from its values (fillers), such that the meaning of a complex expression is a function of the values assigned to the variables. The debate on whether and how compositional systems could be implemented in minds, brains and machines remains vigorous. However, it has not yet resulted in mechanistic models of semantic composition: how, then, are the constituents of thoughts and sentences put and held together? We review and discuss current efforts at understanding this problem, and we chart possible routes for future research.
  • Martin, A. E., & Doumas, L. A. A. (2019). Tensors and compositionality in neural systems. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375(1791): 20190306. doi:10.1098/rstb.2019.0306.

    Abstract

    Neither neurobiological nor process models of meaning composition specify the operator through which constituent parts are bound together into compositional structures. In this paper, we argue that a neurophysiological computation system cannot achieve the compositionality exhibited in human thought and language if it were to rely on a multiplicative operator to perform binding, as the tensor product (TP)-based systems that have been widely adopted in cognitive science, neuroscience and artificial intelligence do. We show via simulation and two behavioural experiments that TPs violate variable-value independence, but human behaviour does not. Specifically, TPs fail to capture that in the statements fuzzy cactus and fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and belong to the set of fuzzy things, rendering these arguments similar to each other. Consistent with that thesis, people judged arguments that shared the same role to be similar, even when those arguments themselves (e.g., cacti and penguins) were judged to be dissimilar when in isolation. By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy(penguin) was determined by the similarity of the arguments, which in this case approaches zero. Based on these results, we argue that neural systems that use TPs for binding cannot approximate how the human mind and brain represent compositional information during processing. We describe a contrasting binding mechanism that any physiological or artificial neural system could use to maintain independence between a role and its argument, a prerequisite for compositionality and, thus, for instantiating the expressive power of human thought and language in a neural system.

    Additional information

    Supplemental Material
  • Martin, A. E., & Doumas, L. A. A. (2019). Predicate learning in neural systems: Using oscillations to discover latent structure. Current Opinion in Behavioral Sciences, 29, 77-83. doi:10.1016/j.cobeha.2019.04.008.

    Abstract

    Humans learn to represent complex structures (e.g. natural language, music, mathematics) from experience with their environments. Often such structures are latent, hidden, or not encoded in statistics about sensory representations alone. Accounts of human cognition have long emphasized the importance of structured representations, yet the majority of contemporary neural networks do not learn structure from experience. Here, we describe one way that structured, functionally symbolic representations can be instantiated in an artificial neural network. Then, we describe how such latent structures (viz. predicates) can be learned from experience with unstructured data. Our approach exploits two principles from psychology and neuroscience: comparison of representations, and the naturally occurring dynamic properties of distributed computing across neuronal assemblies (viz. neural oscillations). We discuss how the ability to learn predicates from experience, to represent information compositionally, and to extrapolate knowledge to unseen data is core to understanding and modeling the most complex human behaviors (e.g. relational reasoning, analogy, language processing, game play).
  • Martin, A. E., Monahan, P. J., & Samuel, A. G. (2017). Prediction of agreement and phonetic overlap shape sublexical identification. Language and Speech, 60(3), 356-376. doi:10.1177/0023830916650714.

    Abstract

    The mapping between the physical speech signal and our internal representations is rarely straightforward. When faced with uncertainty, higher-order information is used to parse the signal and because of this, the lexicon and some aspects of sentential context have been shown to modulate the identification of ambiguous phonetic segments. Here, using a phoneme identification task (i.e., participants judged whether they heard [o] or [a] at the end of an adjective in a noun–adjective sequence), we asked whether grammatical gender cues influence phonetic identification and if this influence is shaped by the phonetic properties of the agreeing elements. In three experiments, we show that phrase-level gender agreement in Spanish affects the identification of ambiguous adjective-final vowels. Moreover, this effect is strongest when the phonetic characteristics of the element triggering agreement and the phonetic form of the agreeing element are identical. Our data are consistent with models wherein listeners generate specific predictions based on the interplay of underlying morphosyntactic knowledge and surface phonetic cues.
  • Martinez-Conde, S., Alexander, R. G., Blum, D., Britton, N., Lipska, B. K., Quirk, G. J., Swiss, J. I., Willems, R. M., & Macknik, S. L. (2019). The storytelling brain: How neuroscience stories help bridge the gap between research and society. The Journal of Neuroscience, 39(42), 8285-8290. doi:10.1523/JNEUROSCI.1180-19.2019.

    Abstract

    Active communication between researchers and society is necessary for the scientific community’s involvement in developing sciencebased
    policies. This need is recognized by governmental and funding agencies that compel scientists to increase their public engagement
    and disseminate research findings in an accessible fashion. Storytelling techniques can help convey science by engaging people’s imagination
    and emotions. Yet, many researchers are uncertain about how to approach scientific storytelling, or feel they lack the tools to
    undertake it. Here we explore some of the techniques intrinsic to crafting scientific narratives, as well as the reasons why scientific
    storytellingmaybe an optimal way of communicating research to nonspecialists.Wealso point out current communication gaps between
    science and society, particularly in the context of neurodiverse audiences and those that include neurological and psychiatric patients.
    Present shortcomings may turn into areas of synergy with the potential to link neuroscience education, research, and advocacy
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). How the tracking of habitual rate influences speech perception. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1), 128-138. doi:10.1037/xlm0000579.

    Abstract

    Listeners are known to track statistical regularities in speech. Yet, which temporal cues
    are encoded is unclear. This study tested effects of talker-specific habitual speech rate
    and talker-independent average speech rate (heard over a longer period of time) on
    the perception of the temporal Dutch vowel contrast /A/-/a:/. First, Experiment 1
    replicated that slow local (surrounding) speech contexts induce fewer long /a:/
    responses than faster contexts. Experiment 2 tested effects of long-term habitual
    speech rate. One high-rate group listened to ambiguous vowels embedded in `neutral'
    speech from talker A, intermixed with speech from fast talker B. Another low-rate group
    listened to the same `neutral' speech from talker A, but to talker B being slow.
    Between-group comparison of the `neutral' trials showed that the high-rate group
    demonstrated a lower proportion of /a:/ responses, indicating that talker A's habitual
    speech rate sounded slower when B was faster. In Experiment 3, both talkers
    produced speech at both rates, removing the different habitual speech rates of talker A
    and B, while maintaining the average rate differing between groups. This time no
    global rate effect was observed. Taken together, the present experiments show that a
    talker's habitual rate is encoded relative to the habitual rate of another talker, carrying
    implications for episodic and constraint-based models of speech perception.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). Listeners normalize speech for contextual speech rate even without an explicit recognition task. The Journal of the Acoustical Society of America, 146(1), 179-188. doi:10.1121/1.5116004.

    Abstract

    Speech can be produced at different rates. Listeners take this rate variation into account by normalizing vowel duration for contextual speech rate: An ambiguous Dutch word /m?t/ is perceived as short /mAt/ when embedded in a slow context, but long /ma:t/ in a fast context. Whilst some have argued that this rate normalization involves low-level automatic perceptual processing, there is also evidence that it arises at higher-level cognitive processing stages, such as decision making. Prior research on rate-dependent speech perception has only used explicit recognition tasks to investigate the phenomenon, involving both perceptual processing and decision making. This study tested whether speech rate normalization can be observed without explicit decision making, using a cross-modal repetition priming paradigm. Results show that a fast precursor sentence makes an embedded ambiguous prime (/m?t/) sound (implicitly) more /a:/-like, facilitating lexical access to the long target word "maat" in a (explicit) lexical decision task. This result suggests that rate normalization is automatic, taking place even in the absence of an explicit recognition task. Thus, rate normalization is placed within the realm of everyday spoken conversation, where explicit categorization of ambiguous sounds is rare.
  • Massaro, D. W., & Perlman, M. (2017). Quantifying iconicity’s contribution during language acquisition: Implications for vocabulary learning. Frontiers in Communication, 2: 4. doi:10.3389/fcomm.2017.00004.

    Abstract

    Previous research found that iconicity—the motivated correspondence between word form and meaning—contributes to expressive vocabulary acquisition. We present two new experiments with two different databases and with novel analyses to give a detailed quantification of how iconicity contributes to vocabulary acquisition across development, including both receptive understanding and production. The results demonstrate that iconicity is more prevalent early in acquisition and diminishes with increasing age and with increasing vocabulary. In the first experiment, we found that the influence of iconicity on children’s production vocabulary decreased gradually with increasing age. These effects were independent of the observed influence of concreteness, difficulty of articulation, and parental input frequency. Importantly, we substantiated the independence of iconicity, concreteness, and systematicity—a statistical regularity between sounds and meanings. In the second experiment, we found that the average iconicity of both a child’s receptive vocabulary and expressive vocabulary diminished dramatically with increases in vocabulary size. These results indicate that iconic words tend to be learned early in the acquisition of both receptive vocabulary and expressive vocabulary. We recommend that iconicity be included as one of the many different influences on a child’s early vocabulary acquisition. Facing the logically insurmountable challenge to link the form of a novel word (e.g., “gavagai”) with its particular meaning (e.g., “rabbit”; Quine, 1960, 1990/1992), children manage to learn words with incredible ease. Interest in this process has permeated empirical and theoretical research in developmental psychology, psycholinguistics, and language studies more generally. Investigators have studied which words are learned and when they are learned (Fenson et al., 1994), biases in word learning (Markman, 1990, 1991); the perceptual, social, and linguistic properties of the words (Gentner, 1982; Waxman, 1999; Maguire et al., 2006; Vosoughi et al., 2010), the structure of the language being learned (Gentner and Boroditsky, 2001), and the influence of the child’s milieu on word learning (Hart and Risley, 1995; Roy et al., 2015). A growing number of studies also show that the iconicity of words might be a significant factor in word learning (Imai and Kita, 2014; Perniss and Vigliocco, 2014; Perry et al., 2015). Iconicity refers generally to a correspondence between the form of a signal (e.g., spoken word, sign, and written character) and its meaning. For example, the sign for tree is iconic in many signed languages: it resembles a branching tree waving above the ground in American Sign Language, outlines the shape of a tree in Danish Sign Language and forms a tree trunk in Chinese Sign Language. In contrast to signed languages, the words of spoken languages have traditionally been treated as arbitrary, with the assumption that the forms of most words bear no resemblance to their meaning (e.g., Hockett, 1960; Pinker and Bloom, 1990). However, there is now a large body of research showing that iconicity is prevalent in the lexicons of many spoken languages (Nuckolls, 1999; Dingemanse et al., 2015). Most languages have an inventory of iconic words for sounds—onomatopoeic words such as splash, slurp, and moo, which sound somewhat like the sound of the real-world event to which they refer. Rhodes (1994), for example, counts more than 100 of these words in English. Many languages also contain large inventories of ideophones—a distinctively iconic class of words that is used to express a variety of sensorimotor-rich meanings (Nuckolls, 1999; Voeltz and Kilian-Hatz, 2001; Dingemanse, 2012). For example, in Japanese, the word “koron”—with a voiceless [k] refers to a light object rolling once, the reduplicated “korokoro” to a light object rolling repeatedly, and “gorogoro”—with a voiced [g]—to a heavy object rolling repeatedly (Imai and Kita, 2014). And in Siwu, spoken in Ghana, ideophones include words like fwεfwε “springy, elastic” and saaa “cool sensation” (Dingemanse et al., 2015). Outside of onomatopoeia and ideophones, there is also evidence that adjectives and verbs—which also tend to convey sensorimotor imagery—are also relatively iconic (Nygaard et al., 2009; Perry et al., 2015). Another domain of iconic words involves some correspondence between the point of articulation of a word and its meaning. For example, there appears to be some prevalence across languages of nasal consonants in words for nose and bilabial consonants in words for lip (Urban, 2011). Spoken words can also have a correspondence between a word’s meaning and other aspects of its pronunciation. The word teeny, meaning small, is pronounced with a relatively small vocal tract, with high front vowels characterized by retracted lips and a high-frequency second formant (Ohala, 1994). Thus, teeny can be recognized as iconic of “small” (compared to the larger vocal tract configuration of the back, rounded vowel in huge), a pattern that is documented in the lexicons of a diversity of languages (Ultan, 1978; Blasi et al., 2016). Lewis and Frank (2016) have studied a more abstract form of iconicity that more meaningfully complex words tend to be longer. An evaluation of many diverse languages revealed that conceptually more complex meanings tend to have longer spoken forms. In their study, participants tended to assign a relatively long novel word to a conceptually more complex referent. Understanding that more complex meaning is usually represented by a longer word could aid a child’s parsing of a stream of spoken language and thus facilitate word learning. Some developmental psychologists have theorized that iconicity helps young children learn words by “bootstrapping” or “bridging” the association between a symbol and its referent (Imai and Kita, 2014; Perniss and Vigliocco, 2014). According to this idea, children begin to master word learning with the aid of iconic cues, which help to profile the connection between the form of a word and its meaning out in the world. The learning of verbs in particular may benefit from iconicity, as the referents of verbs are more abstract and challenging for young children to identify (Gentner, 1982; Snedeker and Gleitman, 2004). By helping children gain a firmer grasp of the concept of a symbol, iconicity might set the stage for the ensuing word-learning spurt of non-iconic words. The hypothesis that iconicity plays a role in word learning is supported by experimental studies showing that young children are better at learning words—especially verbs—when they are iconic (Imai et al., 2008; Kantartzis et al., 2011; Yoshida, 2012). In one study, for example, 3-year-old Japanese children were taught a set of novel verbs for actions. Some of the words the children learned were iconic (“sound-symbolic”), created on the basis of iconic patterns found in Japanese mimetics (e.g., the novel word nosunosu for a slow manner of walking; Imai et al., 2008). The results showed that children were better able to generalize action words across agents when the verb was iconic of the action compared to when it was not. A subsequent study also using novel verbs based on Japanese mimetics replicated the finding with 3-year-old English-speaking children (Kantartzis et al., 2011). However, it remains to be determined whether children trained in an iconic condition can generalize their learning to a non-iconic condition that would not otherwise be learned. Children as young as 14 months of age have been shown to benefit from iconicity in word learning (Imai et al., 2015). These children were better at learning novel words for spikey and rounded shapes when the words were iconic, corresponding to kiki and bouba sound symbolism (e.g., Köhler, 1947; Ramachandran and Hubbard, 2001). If iconic words are indeed easier to learn, there should be a preponderance of iconic words early in the learning of natural languages. There is evidence that this is the case in signed languages, which are widely recognized to contain a prevalence of iconic signs [Klima and Bellugi, 1979; e.g., as evident in Signing Savvy (2016)]. Although the role of iconicity in sign acquisition has been disputed [e.g., Orlansky and Bonvillian, 1984; see Thompson (2011) for discussion], the most thorough study to date found that signs of British Sign Language (BSL) that were learned earlier by children tended to be more iconic (Thompson et al., 2012). Thompson et al.’s measure of the age of acquisition of signs came from parental reports from a version of the MacArthur-Bates Communicative Development Inventory (MCDI; Fenson et al., 1994) adapted for BSL (Woolfe et al., 2010). The iconicity of signs was taken from norms based on BSL signers’ judgments using a scale of 1 (not at all iconic) to 7 [highly iconic; see Vinson et al. (2008), for norming details and BSL videos]. Thompson et al. (2012) found a positive correlation between iconicity judgments and words understood and produced. This relationship held up even after controlling for the contribution of imageability and familiarity. Surprisingly, however, there was a significantly stronger correlation for older children (21- to 30-month olds) than for younger children (age 11- to 20-month olds). Thompson et al. suggested that the larger role for iconicity for the older children may result from their increasing cognitive abilities or their greater experience in understanding meaningful form-meaning mappings. However, this suggestion does not fit with the expectation that iconicity should play a larger role earlier in language use. Thus, although supporting a role for iconicity in word learning, the larger influence for older children is inconsistent with the bootstrapping hypothesis, in which iconicity should play a larger role earlier in vocabulary learning (Imai and Kita, 2014; Perniss and Vigliocco, 2014). There is also evidence in spoken languages that earlier learned words tend to be more iconic. Perry et al. (2015) collected iconicity ratings on the roughly 600 English and Spanish words that are learned earliest by children, selected from their respective MCDIs. Native speakers on Amazon Mechanical Turk rated the iconicity of the words on a scale from −5 to 5, where 5 indicated that a word was highly iconic, −5 that it sounded like the opposite of its meaning, and 0 that it was completely arbitrary. Their instructions to raters are given in the Appendix because the same instructions were used for acquiring our iconicity ratings. The Perry et al. (2015) results showed that the likelihood of a word in children’s production vocabulary in both English and Spanish at 30 months was positively correlated with the iconicity ratings, even when several other possible contributing factors were partialed out, including log word frequency, concreteness, and word length. The pattern in Spanish held for two collections of iconicity ratings, one with the verbs of the 600-word set presented in infinitive form, and one with the verbs conjugated in the third person singular form. In English, the correlation between age of acquisition and iconicity held when the ratings were collected for words presented in written form only and in written form plus a spoken recording. It also held for ratings based on a more implicit measure of iconicity in which participants rated how accurately a space alien could guess the meaning of the word based on its sound alone. The pattern in English also held when Perry et al. (2015) factored out the systematicity of words [taken from Monaghan et al. (2014)]. Systematicity is measured as a correlation between form similarity and meaning similarity—that is, the degree to which words with similar meanings have similar forms. Monaghan et al. computed systematicity for a large number of English words and found a negative correlation with the age of acquisition of the word from 2 to 13+ years of age—more systematic words are learned earlier. Monaghan et al. (2014) and Christiansen and Chater (2016) observe that consistent sound-meaning patterns may facilitate early vocabulary acquisition, but the child would soon have to master arbitrary relationships necessitated by increases in vocabulary size. In theory, systematicity, sometimes called “relative iconicity,” is independent of iconicity. For example, the English cluster gl– occurs systematically in several words related to “vision” and “light,” such as glitter, glimmer, and glisten (Bergen, 2004), but the segments bear no obvious resemblance to this meaning. Monaghan et al. (2014) question whether spoken languages afford sufficient degrees of articulatory freedom for words to be iconic but not systematic. As evidence, they give the example of onomatopoeic words for the calls of small animals (e.g., peep and cheep) versus calls of big animals (roar and grrr), which would systematically reflect the size of the animal. Although Perry et al. (2015) found a positive effect of iconicity at 30 months, they did not evaluate its influence across the first years of a child’s life. To address this question, we conduct a more detailed examination of the time course of iconicity in word learning across the first 4 years of expressive vocabulary acquisition. In addition, we examine the role of iconicity in the acquisition of receptive vocabulary as well as productive vocabulary. There is some evidence that although receptive vocabulary and productive vocabulary are correlated with one another, a variable might not have equivalent influences on these two expressions of vocabulary. Massaro and Rowe (2015), for example, showed that difficulty of articulation had a strong effect on word production but not word comprehension. Thus, it is possible that the influence of iconicity on vocabulary development differs between production and comprehension. In particular, a larger influence on comprehension might follow from the emphasis of the bootstrapping hypothesis on iconicity serving to perceptually cue children to the connection between the sound of a word and its meaning
  • McKone, E., Wan, L., Pidcock, M., Crookes, K., Reynolds, K., Dawel, A., Kidd, E., & Fiorentini, C. (2019). A critical period for faces: Other-race face recognition is improved by childhood but not adult social contact. Scientific Reports, 9: 12820. doi:10.1038/s41598-019-49202-0.

    Abstract

    Poor recognition of other-race faces is ubiquitous around the world. We resolve a longstanding contradiction in the literature concerning whether interracial social contact improves the other-race effect. For the first time, we measure the age at which contact was experienced. taking advantage of
    unusual demographics allowing dissociation of childhood from adult contact, results show sufficient childhood contact eliminated poor other-race recognition altogether (confirming inter-country adoption
    studies). Critically, however, the developmental window for easy acquisition of other-race faces closed by approximately 12 years of age and social contact as an adult — even over several years and involving many other-race friends — produced no improvement. Theoretically, this pattern of developmental change in plasticity mirrors that found in language, suggesting a shared origin grounded in the
    functional importance of both skills to social communication. Practically, results imply that, where parents wish to ensure their offspring develop the perceptual skills needed to recognise other-race people easily, childhood experience should be encouraged: just as an English-speaking person who moves to France as a child (but not an adult) can easily become a native speaker of French, we can easily
    become “native recognisers” of other-race faces via natural social exposure obtained in childhood, but not later
  • McLaughlin, R. L., Schijven, D., Van Rheenen, W., Van Eijk, K. R., O’Brien, M., Project MinE GWAS Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Kahn, R. S., Ophoff, R. A., Goris, A., Bradley, D. G., Al-Chalabi, A., van den Berg, L. H., Luykx, J. J., Hardiman, O., & Veldink, J. H. (2017). Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 8: 14774. doi:10.1038/ncomms14774.

    Abstract

    We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; P=1 × 10−4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10−7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.
  • Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135-156.

    Abstract

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Response were, overall, equally fast in each speech mode. However analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than earlier targets, and targets preceded by long words were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claim from previous work that listeners pay great attention to prosodic information in the process of recognizing speech.
  • Menks, W. M., Furger, R., Lenz, C., Fehlbaum, L. V., Stadler, C., & Raschle, N. M. (2017). Microstructural white matter alterations in the corpus callosum of girls with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 56, 258-265. doi:10.1016/j.jaac.2016.12.006.

    Abstract

    Objective

    Diffusion tensor imaging (DTI) studies in adolescent conduct disorder (CD) have demonstrated white matter alterations of tracts connecting functionally distinct fronto-limbic regions, but only in boys or mixed-gender samples. So far, no study has investigated white matter integrity in girls with CD on a whole-brain level. Therefore, our aim was to investigate white matter alterations in adolescent girls with CD.
    Method

    We collected high-resolution DTI data from 24 girls with CD and 20 typically developing control girls using a 3T magnetic resonance imaging system. Fractional anisotropy (FA) and mean diffusivity (MD) were analyzed for whole-brain as well as a priori−defined regions of interest, while controlling for age and intelligence, using a voxel-based analysis and an age-appropriate customized template.
    Results

    Whole-brain findings revealed white matter alterations (i.e., increased FA) in girls with CD bilaterally within the body of the corpus callosum, expanding toward the right cingulum and left corona radiata. The FA and MD results in a priori−defined regions of interest were more widespread and included changes in the cingulum, corona radiata, fornix, and uncinate fasciculus. These results were not driven by age, intelligence, or attention-deficit/hyperactivity disorder comorbidity.
    Conclusion

    This report provides the first evidence of white matter alterations in female adolescents with CD as indicated through white matter reductions in callosal tracts. This finding enhances current knowledge about the neuropathological basis of female CD. An increased understanding of gender-specific neuronal characteristics in CD may influence diagnosis, early detection, and successful intervention strategies.
  • Merkx, D., & Frank, S. L. (2019). Learning semantic sentence representations from visually grounded language without lexical knowledge. Natural Language Engineering, 25, 451-466. doi:10.1017/S1351324919000196.

    Abstract

    Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state of the art on two popular image-caption retrieval benchmark datasets: Microsoft Common Objects in Context (MSCOCO) and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity (STS) benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.
  • Meyer, A. S. (1997). Conceptual influences on grammatical planning units. Language and Cognitive Processes, 12, 859-863. doi:10.1080/016909697386745.
  • Meyer, A. S., Levelt, W. J. M., & Wissink, M. T. (1996). Een modulair model van zinsproductie. Logopedie, 9(2), 21-31.

    Abstract

    In deze bijdrage wordt een modulair model van zinsproductie besproken. De planningsprocessen, die aan de productie van een zin voorafgaan, kunnen in twee hoofdcomponenten onderverdeeld worden: deconceptualisering (het bedenken van de inhoud van de uiting) en de formulering (het vastleggen van de linguïstische vorm). Het formuleringsproces bestaat weer uit twee componenten, te weten de grammatische en fonologische codering. Ook deze componenten bestaan elk weer uit een aantal subcomponenten. Dit artikel beschrijft wat de specifieke taak van iedere component is, hoe deze uitgevoerd wordt en hoe de componenten samenwerken. Tevens worden enkele belangrijke methoden van taalproductie-onderzoek besproken.
  • Meyer, A. S. (1996). Lexical access in phrase and sentence production: Results from picture-word interference experiments. Journal of Memory and Language, 35, 477-496. doi:doi:10.1006/jmla.1996.0026.

    Abstract

    Four experiments investigated the span of advance planning for phrases and short sentences. Dutch subjects were presented with pairs of objects, which they named using noun-phrase conjunctions (e.g., the translation equivalent of ''the arrow and the bag'') or sentences (''the arrow is next to the bag''). Each display was accompanied by an auditory distracter, which was related in form or meaning to the first or second noun of the utterance or unrelated to both. For sentences and phrases, the mean speech onset time was longer when the distracter was semantically related to the first or second noun and shorter when it was phonologically related to the first noun than when it was unrelated. No phonological facilitation was found for the second noun. This suggests that before utterance onset both target lemmas and the first target form were selected.
  • Meyer, A. S., & Gerakaki, S. (2017). The art of conversation: Why it’s harder than you might think. Contact Magazine, 43(2), 11-15. Retrieved from http://contact.teslontario.org/the-art-of-conversation-why-its-harder-than-you-might-think/.
  • Meyer, A. S. (2017). Structural priming is not a Royal Road to representations. Commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e305. doi:10.1017/S0140525X1700053X.

    Abstract

    Branigan & Pickering (B&P) propose that the structural priming paradigm is a Royal Road to linguistic representations of any kind, unobstructed by in fl uences of psychological processes. In my view, however, they are too optimistic about the versatility of the paradigm and, more importantly, its ability to provide direct evidence about the nature of stored linguistic representations.
  • Meyer, A. S., Roelofs, A., & Brehm, L. (2019). Thirty years of Speaking: An introduction to the special issue. Language, Cognition and Neuroscience, 34(9), 1073-1084. doi:10.1080/23273798.2019.1652763.

    Abstract

    Thirty years ago, Pim Levelt published Speaking. During the 10th International Workshop on Language Production held at the Max Planck Institute for Psycholinguistics in Nijmegen in July 2018, researchers reflected on the impact of the book in the field, developments since its publication, and current research trends. The contributions in this Special Issue are closely related to the presentations given at the workshop. In this editorial, we sketch the research agenda set by Speaking, review how different aspects of this agenda are taken up in the papers in this volume and outline directions for further research.
  • Mickan, A., McQueen, J. M., & Lemhöfer, K. (2019). Bridging the gap between second language acquisition research and memory science: The case of foreign language attrition. Frontiers in Human Neuroscience, 13: 397. doi:10.3389/fnhum.2019.00397.

    Abstract

    The field of second language acquisition (SLA) is by nature of its subject a highly interdisciplinary area of research. Learning a (foreign) language, for example, involves encoding new words, consolidating and committing them to long-term memory, and later retrieving them. All of these processes have direct parallels in the domain of human memory and have been thoroughly studied by researchers in that field. Yet, despite these clear links, the two fields have largely developed in parallel and in isolation from one another. The present paper aims to promote more cross-talk between SLA and memory science. We focus on foreign language (FL) attrition as an example of a research topic in SLA where the parallels with memory science are especially apparent. We discuss evidence that suggests that competition between languages is one of the mechanisms of FL attrition, paralleling the interference process thought to underlie forgetting in other domains of human memory. Backed up by concrete suggestions, we advocate the use of paradigms from the memory literature to study these interference effects in the language domain. In doing so, we hope to facilitate future cross-talk between the two fields, and to further our understanding of FL attrition as a memory phenomenon.
  • Middeldorp, C. M., Felix, J. F., Mahajan, A., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Early Growth Genetics (EGG) consortium, & McCarthy, M. I. (2019). The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: Design, results and future prospects. European Journal of Epidemiology, 34(3), 279-300. doi:10.1007/s10654-019-00502-9.

    Abstract

    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  • Minutjukur, M., Tjitayi, K., Tjitayi, U., & Defina, R. (2019). Pitjantjatjara language change: Some observations and recommendations. Australian Aboriginal Studies, (1), 82-91.
  • Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical gender in German influences how role-nouns are interpreted: Evidence from ERPs. Discourse Processes, 56(8), 643-654. doi:10.1080/0163853X.2018.1541382.

    Abstract

    Grammatically masculine role-nouns (e.g., Studenten-masc.‘students’) can refer to men and women, but may favor an interpretation where only men are considered the referent. If true, this has implications for a society aiming to achieve equal representation in the workplace since, for example, job adverts use such role descriptions. To investigate the interpretation of role-nouns, the present ERP study assessed grammatical gender processing in German. Twenty participants read sentences where a role-noun (masculine or feminine) introduced a group of people, followed by a congruent (masculine–men, feminine–women) or incongruent (masculine–women, feminine–men) continuation. Both for feminine-men and masculine-women continuations a P600 (500 to 800 ms) was observed; another positivity was already present from 300 to 500 ms for feminine-men continuations, but critically not for masculine-women continuations. The results imply a male-biased rather than gender-neutral interpretation of the masculine—despite widespread usage of the masculine as a gender-neutral form—suggesting masculine forms are inadequate for representing genders equally.
  • Moers, C., Meyer, A. S., & Janse, E. (2017). Effects of word frequency and transitional probability on word reading durations of younger and older speakers. Language and Speech, 60(2), 289-317. doi:10.1177/0023830916649215.

    Abstract

    High-frequency units are usually processed faster than low-frequency units in language comprehension and language production. Frequency effects have been shown for words as well as word combinations. Word co-occurrence effects can be operationalized in terms of transitional probability (TP). TPs reflect how probable a word is, conditioned by its right or left neighbouring word. This corpus study investigates whether three different age groups–younger children (8–12 years), adolescents (12–18 years) and older (62–95 years) Dutch speakers–show frequency and TP context effects on spoken word durations in reading aloud, and whether age groups differ in the size of these effects. Results show consistent effects of TP on word durations for all age groups. Thus, TP seems to influence the processing of words in context, beyond the well-established effect of word frequency, across the entire age range. However, the study also indicates that age groups differ in the size of TP effects, with older adults having smaller TP effects than adolescent readers. Our results show that probabilistic reduction effects in reading aloud may at least partly stem from contextual facilitation that leads to faster reading times in skilled readers, as well as in young language learners.
  • Moisik, S. R., & Dediu, D. (2017). Anatomical biasing and clicks: Evidence from biomechanical modeling. Journal of Language Evolution, 2(1), 37-51. doi:10.1093/jole/lzx004.

    Abstract

    It has been observed by several researchers that the Khoisan palate tends to lack a prominent alveolar ridge. A biomechanical model of click production was created to examine if these sounds might be subject to an anatomical bias associated with alveolar ridge size. Results suggest the bias is plausible, taking the form of decreased articulatory effort and improved volume change characteristics; however, further modeling and experimental research is required to solidify the claim.

    Additional information

    lzx004_Supp.zip
  • Moisik, S. R., & Gick, B. (2017). The quantal larynx: The stable regions of laryngeal biomechanics and implications for speech production. Journal of Speech, Language, and Hearing Research, 60, 540-560. doi:10.1044/2016_JSLHR-S-16-0019.

    Abstract

    Purpose: Recent proposals suggest that (a) the high dimensionality of speech motor control may be reduced via modular neuromuscular organization that takes advantage of intrinsic biomechanical regions of stability and (b) computational modeling provides a means to study whether and how such modularization works. In this study, the focus is on the larynx, a structure that is fundamental to speech production because of its role in phonation and numerous articulatory functions. Method: A 3-dimensional model of the larynx was created using the ArtiSynth platform (http://www.artisynth.org). This model was used to simulate laryngeal articulatory states, including inspiration, glottal fricative, modal prephonation, plain glottal stop, vocal–ventricular stop, and aryepiglotto– epiglottal stop and fricative. Results: Speech-relevant laryngeal biomechanics is rich with “quantal” or highly stable regions within muscle activation space. Conclusions: Quantal laryngeal biomechanics complement a modular view of speech control and have implications for the articulatory–biomechanical grounding of numerous phonetic and phonological phenomena
  • Monaghan, P. (2017). Canalization of language structure from environmental constraints: A computational model of word learning from multiple cues. Topics in Cognitive Science, 9(1), 21-34. doi:10.1111/tops.12239.

    Abstract

    There is substantial variation in language experience, yet there is surprising similarity in the language structure acquired. Constraints on language structure may be external modulators that result in this canalization of language structure, or else they may derive from the broader, communicative environment in which language is acquired. In this paper, the latter perspective is tested for its adequacy in explaining robustness of language learning to environmental variation. A computational model of word learning from cross‐situational, multimodal information was constructed and tested. Key to the model's robustness was the presence of multiple, individually unreliable information sources to support learning. This “degeneracy” in the language system has a detrimental effect on learning, compared to a noise‐free environment, but has a critically important effect on acquisition of a canalized system that is resistant to environmental noise in communication.
  • Monaghan, P., & Fletcher, M. (2019). Do sound symbolism effects for written words relate to individual phonemes or to phoneme features? Language and Cognition, 11(2), 235-255. doi:10.1017/langcog.2019.20.

    Abstract

    The sound of words has been shown to relate to the meaning that the words denote, an effect that extends beyond morphological properties of the word. Studies of these sound-symbolic relations have described this iconicity in terms of individual phonemes, or alternatively due to acoustic properties (expressed in phonological features) relating to meaning. In this study, we investigated whether individual phonemes or phoneme features best accounted for iconicity effects. We tested 92 participants’ judgements about the appropriateness of 320 nonwords presented in written form, relating to 8 different semantic attributes. For all 8 attributes, individual phonemes fitted participants’ responses better than general phoneme features. These results challenge claims that sound-symbolic effects for visually presented words can access broad, cross-modal associations between sound and meaning, instead the results indicate the operation of individual phoneme to meaning relations. Whether similar effects are found for nonwords presented auditorially remains an open question.
  • Monaghan, P., & Roberts, S. G. (2019). Cognitive influences in language evolution: Psycholinguistic predictors of loan word borrowing. Cognition, 186, 147-158. doi:10.1016/j.cognition.2019.02.007.

    Abstract

    Languages change due to social, cultural, and cognitive influences. In this paper, we provide an assessment of these cognitive influences on diachronic change in the vocabulary. Previously, tests of stability and change of vocabulary items have been conducted on small sets of words where diachronic change is imputed from cladistics studies. Here, we show for a substantially larger set of words that stability and change in terms of documented borrowings of words into English and into Dutch can be predicted by psycholinguistic properties of words that reflect their representational fidelity. We found that grammatical category, word length, age of acquisition, and frequency predict borrowing rates, but frequency has a non-linear relationship. Frequency correlates negatively with probability of borrowing for high-frequency words, but positively for low-frequency words. This borrowing evidence documents recent, observable diachronic change in the vocabulary enabling us to distinguish between change associated with transmission during language acquisition and change due to innovations by proficient speakers.
  • Monaghan, P., & Rowland, C. F. (2017). Combining language corpora with experimental and computational approaches for language acquisition research. Language Learning, 67(S1), 14-39. doi:10.1111/lang.12221.

    Abstract

    Historically, first language acquisition research was a painstaking process of observation, requiring the laborious hand coding of children's linguistic productions, followed by the generation of abstract theoretical proposals for how the developmental process unfolds. Recently, the ability to collect large-scale corpora of children's language exposure has revolutionized the field. New techniques enable more precise measurements of children's actual language input, and these corpora constrain computational and cognitive theories of language development, which can then generate predictions about learning behavior. We describe several instances where corpus, computational, and experimental work have been productively combined to uncover the first language acquisition process and the richness of multimodal properties of the environment, highlighting how these methods can be extended to address related issues in second language research. Finally, we outline some of the difficulties that can be encountered when applying multimethod approaches and show how these difficulties can be obviated
  • Monaghan, P., Chang, Y.-N., Welbourne, S., & Brysbaert, M. (2017). Exploring the relations between word frequency, language exposure, and bilingualism in a computational model of reading. Journal of Memory and Language, 93, 1-27. doi:10.1016/j.jml.2016.08.003.

    Abstract

    Individuals show differences in the extent to which psycholinguistic variables predict their responses for lexical processing tasks. A key variable accounting for much variance in lexical processing is frequency, but the size of the frequency effect has been demonstrated to reduce as a consequence of the individual’s vocabulary size. Using a connectionist computational implementation of the triangle model on a large set of English words, where orthographic, phonological, and semantic representations interact during processing, we show that the model demonstrates a reduced frequency effect as a consequence of amount of exposure to the language, a variable that was also a cause of greater vocabulary size in the model. The model was also trained to learn a second language, Dutch, and replicated behavioural observations that increased proficiency in a second language resulted in reduced frequency effects for that language but increased frequency effects in the first language. The model provides a first step to demonstrating causal relations between psycholinguistic variables in a model of individual differences in lexical processing, and the effect of bilingualism on interacting variables within the language processing system
  • Mongelli, V., Dehaene, S., Vinckier, F., Peretz, I., Bartolomeo, P., & Cohen, L. (2017). Music and words in the visual cortex: The impact of musical expertise. Cortex, 86, 260-274. doi:10.1016/j.cortex.2016.05.016.

    Abstract

    How does the human visual system accommodate expertise for two simultaneously acquired
    symbolic systems? We used fMRI to compare activations induced in the visual
    cortex by musical notation, written words and other classes of objects, in professional
    musicians and in musically naı¨ve controls. First, irrespective of expertise, selective activations
    for music were posterior and lateral to activations for words in the left occipitotemporal
    cortex. This indicates that symbols characterized by different visual features
    engage distinct cortical areas. Second, musical expertise increased the volume of activations
    for music and led to an anterolateral displacement of word-related activations. In
    musicians, there was also a dramatic increase of the brain-scale networks connected to the
    music-selective visual areas. Those findings reveal that acquiring a double visual expertise
    involves an expansion of category-selective areas, the development of novel long-distance
    functional connectivity, and possibly some competition between categories for the colonization
    of cortical space
  • Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.

    Abstract

    How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing.
  • Montero-Melis, G., & Bylund, E. (2017). Getting the ball rolling: the cross-linguistic conceptualization of caused motion. Language and Cognition, 9(3), 446–472. doi:10.1017/langcog.2016.22.

    Abstract

    Does the way we talk about events correspond to how we conceptualize them? Three experiments (N = 135) examined how Spanish and Swedish native speakers judge event similarity in the domain of caused motion (‘He rolled the tyre into the barn’). Spanish and Swedish motion descriptions regularly encode path (‘into’), but differ in how systematically they include manner information (‘roll’). We designed a similarity arrangement task which allowed participants to give varying weights to different dimensions when gauging event similarity. The three experiments progressively reduced the likelihood that speakers were using language to solve the task. We found that, as long as the use of language was possible (Experiments 1 and 2), Swedish speakers were more likely than Spanish speakers to base their similarity arrangements on object manner (rolling/sliding). However, when recruitment of language was hindered through verbal interference, cross-linguistic differences disappeared (Experiment 3). A compound analysis of all experiments further showed that (i) cross-linguistic differences were played out against a backdrop of commonly represented event components, and (ii) describing vs. not describing the events did not augment cross-linguistic differences, but instead had similar effects across languages. We interpret these findings as suggesting a dynamic role of language in event conceptualization.
  • Montero-Melis, G., Eisenbeiss, S., Narasimhan, B., Ibarretxe-Antuñano, I., Kita, S., Kopecka, A., Lüpke, F., Nikitina, T., Tragel, I., Jaeger, T. F., & Bohnemeyer, J. (2017). Satellite- vs. Verb-Framing Underpredicts Nonverbal Motion Categorization: Insights from a Large Language Sample and Simulations. Cognitive Semantics, 3(1), 36-61. doi:10.1163/23526416-00301002.

    Abstract

    Is motion cognition influenced by the large-scale typological patterns proposed in Talmy’s (2000) two-way distinction between verb-framed (V) and satellite-framed (S) languages? Previous studies investigating this question have been limited to comparing two or three languages at a time and have come to conflicting results. We present the largest cross-linguistic study on this question to date, drawing on data from nineteen genealogically diverse languages, all investigated in the same behavioral paradigm and using the same stimuli. After controlling for the different dependencies in the data by means of multilevel regression models, we find no evidence that S- vs. V-framing affects nonverbal categorization of motion events. At the same time, statistical simulations suggest that our study and previous work within the same behavioral paradigm suffer from insufficient statistical power. We discuss these findings in the light of the great variability between participants, which suggests flexibility in motion representation. Furthermore, we discuss the importance of accounting for language variability, something which can only be achieved with large cross-linguistic samples.
  • Morgan, T. J. H., Acerbi, A., & Van Leeuwen, E. J. C. (2019). Copy-the-majority of instances or individuals? Two approaches to the majority and their consequences for conformist decision-making. PLoS One, 14(1): e021074. doi:10.1371/journal.pone.0210748.

    Abstract

    Cultural evolution is the product of the psychological mechanisms that underlie individual decision making. One commonly studied learning mechanism is a disproportionate preference for majority opinions, known as conformist transmission. While most theoretical and experimental work approaches the majority in terms of the number of individuals that perform a behaviour or hold a belief, some recent experimental studies approach the majority in terms of the number of instances a behaviour is performed. Here, we use a mathematical model to show that disagreement between these two notions of the majority can arise when behavioural variants are performed at different rates, with different salience or in different contexts (variant overrepresentation) and when a subset of the population act as demonstrators to the whole population (model biases). We also show that because conformist transmission changes the distribution of behaviours in a population, how observers approach the majority can cause populations to diverge, and that this can happen even when the two approaches to the majority agree with regards to which behaviour is in the majority. We discuss these results in light of existing findings, ranging from political extremism on twitter to studies of animal foraging behaviour. We conclude that the factors we considered (variant overrepresentation and model biases) are plausibly widespread. As such, it is important to understand how individuals approach the majority in order to understand the effects of majority influence in cultural evolution.
  • Murakami, S., Verdonschot, R. G., Kreiborg, S., Kakimoto, N., & Kawaguchi, A. (2017). Stereoscopy in dental education: An investigation. Journal of Dental Education, 81(4), 450-457. doi:10.21815/JDE.016.002.

    Abstract

    The aim of this study was to investigate whether stereoscopy can play a meaningful role in dental education. The study used an anaglyph technique in which two images were presented separately to the left and right eyes (using red/cyan filters), which, combined in the brain, give enhanced depth perception. A positional judgment task was performed to assess whether the use of stereoscopy would enhance depth perception among dental students at Osaka University in Japan. Subsequently, the optimum angle was evaluated to obtain maximum ability to discriminate among complex anatomical structures. Finally, students completed a questionnaire on a range of matters concerning their experience with stereoscopic images including their views on using stereoscopy in their future careers. The results showed that the students who used stereoscopy were better able than students who did not to appreciate spatial relationships between structures when judging relative positions. The maximum ability to discriminate among complex anatomical structures was between 2 and 6 degrees. The students' overall experience with the technique was positive, and although most did not have a clear vision for stereoscopy in their own practice, they did recognize its merits for education. These results suggest that using stereoscopic images in dental education can be quite valuable as stereoscopy greatly helped these students' understanding of the spatial relationships in complex anatomical structures.
  • Nakamoto, T., Suei, Y., Konishi, M., Kanda, T., Verdonschot, R. G., & Kakimoto, N. (2019). Abnormal positioning of the common carotid artery clinically diagnosed as a submandibular mass. Oral Radiology, 35(3), 331-334. doi:10.1007/s11282-018-0355-7.

    Abstract

    The common carotid artery (CCA) usually runs along the long axis of the neck, although it is occasionally found in an abnormal position or is displaced. We report a case of an 86-year-old woman in whom the CCA was identified in the submandibular area. The patient visited our clinic and reported soft tissue swelling in the right submandibular area. It resembled a tumor mass or a swollen lymph node. Computed tomography showed that it was the right CCA that had been bent forward and was running along the submandibular subcutaneous area. Ultrasonography verified the diagnosis. No other lesions were found on the diagnostic images. Consequently, the patient was diagnosed as having abnormal CCA positioning. Although this condition generally requires no treatment, it is important to follow-up the abnormality with diagnostic imaging because of the risk of cerebrovascular disorders.
  • Nakamoto, T., Taguchi, A., Verdonschot, R. G., & Kakimoto, N. (2019). Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs. Oral Radiology, 35(2), 143-151. doi:10.1007/s11282-018-0330-3.

    Abstract

    ObjectivesPatients undergoing osteoporosis treatment benefit greatly from early detection. We previously developed a computer-aided diagnosis (CAD) system to identify osteoporosis using panoramic radiographs. However, the region of interest (ROI) was relatively small, and the method to select suitable ROIs was labor-intensive. This study aimed to expand the ROI and perform semi-automatized extraction of ROIs. The diagnostic performance and operating time were also assessed.MethodsWe used panoramic radiographs and skeletal bone mineral density data of 200 postmenopausal women. Using the reference point that we defined by averaging 100 panoramic images as the lower mandibular border under the mental foramen, a 400x100-pixel ROI was automatically extracted and divided into four 100x100-pixel blocks. Valid blocks were analyzed using program 1, which examined each block separately, and program 2, which divided the blocks into smaller segments and performed scans/analyses across blocks. Diagnostic performance was evaluated using another set of 100 panoramic images.ResultsMost ROIs (97.0%) were correctly extracted. The operation time decreased to 51.4% for program 1 and to 69.3% for program 2. The sensitivity, specificity, and accuracy for identifying osteoporosis were 84.0, 68.0, and 72.0% for program 1 and 92.0, 62.7, and 70.0% for program 2, respectively. Compared with the previous conventional system, program 2 recorded a slightly higher sensitivity, although it occasionally also elicited false positives.ConclusionsPatients at risk for osteoporosis can be identified more rapidly using this new CAD system, which may contribute to earlier detection and intervention and improved medical care.
  • Nayernia, L., Van den Vijver, R., & Indefrey, P. (2019). The influence of orthography on phonemic knowledge: An experimental investigation on German and Persian. Journal of Psycholinguistic Research, 48(6), 1391-1406. doi:10.1007/s10936-019-09664-9.

    Abstract

    This study investigated whether the phonological representation of a word is modulated by its orthographic representation in case of a mismatch between the two representations. Such a mismatch is found in Persian, where short vowels are represented phonemically but not orthographically. Persian adult literates, Persian adult illiterates, and German adult literates were presented with two auditory tasks, an AX-discrimination task and a reversal task. We assumed that if orthographic representations influence phonological representations, Persian literates should perform worse than Persian illiterates or German literates on items with short vowels in these tasks. The results of the discrimination tasks showed that Persian literates and illiterates as well as German literates were approximately equally competent in discriminating short vowels in Persian words and pseudowords. Persian literates did not well discriminate German words containing phonemes that differed only in vowel length. German literates performed relatively poorly in discriminating German homographic words that differed only in vowel length. Persian illiterates were unable to perform the reversal task in Persian. The results of the other two participant groups in the reversal task showed the predicted poorer performance of Persian literates on Persian items containing short vowels compared to items containing long vowels only. German literates did not show this effect in German. Our results suggest two distinct effects of orthography on phonemic representations: whereas the lack of orthographic representations seems to affect phonemic awareness, homography seems to affect the discriminability of phonemic representations.
  • Nazzi, T., & Cutler, A. (2019). How consonants and vowels shape spoken-language recognition. Annual Review of Linguistics, 5, 25-47. doi:10.1146/annurev-linguistics-011718-011919.

    Abstract

    All languages instantiate a consonant/vowel contrast. This contrast has processing consequences at different levels of spoken-language recognition throughout the lifespan. In adulthood, lexical processing is more strongly associated with consonant than with vowel processing; this has been demonstrated across 13 languages from seven language families and in a variety of auditory lexical-level tasks (deciding whether a spoken input is a word, spotting a real word embedded in a minimal context, reconstructing a word minimally altered into a pseudoword, learning new words or the “words” of a made-up language), as well as in written-word tasks involving phonological processing. In infancy, a consonant advantage in word learning and recognition is found to emerge during development in some languages, though possibly not in others, revealing that the stronger lexicon–consonant association found in adulthood is learned. Current research is evaluating the relative contribution of the early acquisition of the acoustic/phonetic and lexical properties of the native language in the emergence of this association
  • Negwer, M., & Schubert, D. (2017). Talking convergence: Growing evidence links FOXP2 and retinoic acidin shaping speech-related motor circuitry. Frontiers in Neuroscience, 11: 19. doi:10.3389/fnins.2017.00019.

    Abstract

    A commentary on
    FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    by Devanna, P., Middelbeek, J., and Vernes, S. C. (2014). Front. Cell. Neurosci. 8:305. doi: 10.3389/fncel.2014.00305
  • Niccolai, V., Klepp, A., Indefrey, P., Schnitzler, A., & Biermann-Ruben, K. (2017). Semantic discrimination impacts tDCS modulation of verb processing. Scientific Reports, 7: 17162. doi:10.1038/s41598-017-17326-w.

    Abstract

    Motor cortex activation observed during body-related verb processing hints at simulation accompanying linguistic understanding. By exploiting the up- and down-regulation that anodal and cathodal transcranial direct current stimulation (tDCS) exert on motor cortical excitability, we aimed at further characterizing the functional contribution of the motor system to linguistic processing. In a double-blind sham-controlled within-subjects design, online stimulation was applied to the left hemispheric hand-related motor cortex of 20 healthy subjects. A dual, double-dissociation task required participants to semantically discriminate concrete (hand/foot) from abstract verb primes as well as to respond with the hand or with the foot to verb-unrelated geometric targets. Analyses were conducted with linear mixed models. Semantic priming was confirmed by faster and more accurate reactions when the response effector was congruent with the verb’s body part. Cathodal stimulation induced faster responses for hand verb primes thus indicating a somatotopical distribution of cortical activation as induced by body-related verbs. Importantly, this effect depended on performance in semantic discrimination. The current results point to verb processing being selectively modifiable by neuromodulation and at the same time to a dependence of tDCS effects on enhanced simulation. We discuss putative mechanisms operating in this reciprocal dependence of neuromodulation and motor resonance.

    Additional information

    41598_2017_17326_MOESM1_ESM.pdf
  • Niermann, H. C. M., Tyborowska, A., Cillessen, A. H. N., Van Donkelaar, M. M. J., Lammertink, F., Gunnar, M. R., Franke, B., Figner, B., & Roelofs, K. (2019). The relation between infant freezing and the development of internalizing symptoms in adolescence: A prospective longitudinal study. Developmental Science, 22(3): e12763. doi:10.1111/desc.12763.

    Abstract

    Given the long-lasting detrimental effects of internalizing symptoms, there is great need for detecting early risk markers. One promising marker is freezing behavior. Whereas initial freezing reactions are essential for coping with threat, prolonged freezing has been associated with internalizing psychopathology. However, it remains unknown whether early life alterations in freezing reactions predict changes in internalizing symptoms during adolescent development. In a longitudinal study (N = 116), we tested prospectively whether observed freezing in infancy predicted the development of internalizing symptoms from childhood through late adolescence (until age 17). Both longer and absent infant freezing behavior during a standard challenge (robot-confrontation task) were associated with internalizing symptoms in adolescence. Specifically, absent infant freezing predicted a relative increase in internalizing symptoms consistently across development from relatively low symptom levels in childhood to relatively high levels in late adolescence. Longer infant freezing also predicted a relative increase in internalizing symptoms, but only up until early adolescence. This latter effect was moderated by peer stress and was followed by a later decrease in internalizing symptoms. The findings suggest that early deviations in defensive freezing responses signal risk for internalizing symptoms and may constitute important markers in future stress vulnerability and resilience studies.
  • Nieuwland, M. S., Coopmans, C. W., & Sommers, R. P. (2019). Distinguishing old from new referents during discourse comprehension: Evidence from ERPs and oscillations. Frontiers in Human Neuroscience, 13: 398. doi:10.3389/fnhum.2019.00398.

    Abstract

    In this EEG study, we used pre-registered and exploratory ERP and time-frequency analyses to investigate the resolution of anaphoric and non-anaphoric noun phrases during discourse comprehension. Participants listened to story contexts that described two antecedents, and subsequently read a target sentence with a critical noun phrase that lexically matched one antecedent (‘old’), matched two antecedents (‘ambiguous’), partially matched one antecedent in terms of semantic features (‘partial-match’), or introduced another referent (non-anaphoric, ‘new’). After each target sentence, participants judged whether the noun referred back to an antecedent (i.e., an ‘old/new’ judgment), which was easiest for ambiguous nouns and hardest for partially matching nouns. The noun-elicited N400 ERP component demonstrated initial sensitivity to repetition and semantic overlap, corresponding to repetition and semantic priming effects, respectively. New and partially matching nouns both elicited a subsequent frontal positivity, which suggested that partially matching anaphors may have been processed as new nouns temporarily. ERPs in an even later time window and ERPs time-locked to sentence-final words suggested that new and partially matching nouns had different effects on comprehension, with partially matching nouns incurring additional processing costs up to the end of the sentence. In contrast to the ERP results, the time-frequency results primarily demonstrated sensitivity to noun repetition, and did not differentiate partially matching anaphors from new nouns. In sum, our results show the ERP and time-frequency effects of referent repetition during discourse comprehension, and demonstrate the potentially demanding nature of establishing the anaphoric meaning of a novel noun.
  • Nieuwland, M. S. (2019). Do ‘early’ brain responses reveal word form prediction during language comprehension? A critical review. Neuroscience and Biobehavioral Reviews, 96, 367-400. doi:10.1016/j.neubiorev.2018.11.019.

    Abstract

    Current theories of language comprehension posit that readers and listeners routinely try to predict the meaning but also the visual or sound form of upcoming words. Whereas
    most neuroimaging studies on word rediction focus on the N400 ERP or its magnetic equivalent, various studies claim that word form prediction manifests itself in ‘early’, pre
    N400 brain responses (e.g., ELAN, M100, P130, N1, P2, N200/PMN, N250). Modulations of these components are often taken as evidence that word form prediction impacts early sensory processes (the sensory hypothesis) or, alternatively, the initial stages of word recognition before word meaning is integrated with sentence context (the recognition hypothesis). Here, I
    comprehensively review studies on sentence- or discourse-level language comprehension that report such effects of prediction on early brain responses. I conclude that the reported evidence for the sensory hypothesis or word recognition hypothesis is weak and inconsistent,
    and highlight the urgent need for replication of previous findings. I discuss the implications and challenges to current theories of linguistic prediction and suggest avenues for future research.
  • Nieuwland, M. S., & Martin, A. E. (2017). Neural oscillations and a nascent corticohippocampal theory of reference. Journal of Cognitive Neuroscience, 29(5), 896-910. doi:10.1162/jocn_a_01091.

    Abstract

    The ability to use words to refer to the world is vital to the communicative power of human language. In particular, the anaphoric use of words to refer to previously mentioned concepts (antecedents) allows dialogue to be coherent and meaningful. Psycholinguistic theory posits that anaphor comprehension involves reactivating a memory representation of the antecedent. Whereas this implies the involvement of recognition memory, or the mnemonic sub-routines by which people distinguish old from new, the neural processes for reference resolution are largely unknown. Here, we report time-frequency analysis of four EEG experiments to reveal the increased coupling of functional neural systems associated with referentially coherent expressions compared to referentially problematic expressions. Despite varying in modality, language, and type of referential expression, all experiments showed larger gamma-band power for referentially coherent expressions compared to referentially problematic expressions. Beamformer analysis in high-density Experiment 4 localised the gamma-band increase to posterior parietal cortex around 400-600 ms after anaphor-onset and to frontaltemporal cortex around 500-1000 ms. We argue that the observed gamma-band power increases reflect successful referential binding and resolution, which links incoming information to antecedents through an interaction between the brain’s recognition memory networks and frontal-temporal language network. We integrate these findings with previous results from patient and neuroimaging studies, and we outline a nascent cortico-hippocampal theory of reference.
  • Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B. and 159 moreNievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B., Andersen, S. B., Andreassen, O. A., Arbisi, P. A., Ashley-Koch, A. E., Austin, S. B., Avdibegovic, E., Babić, D., Bækvad-Hansen, M., Baker, D. G., Beckham, J. C., Bierut, L. J., Bisson, J. I., Boks, M. P., Bolger, E. A., Børglum, A. D., Bradley, B., Brashear, M., Breen, G., Bryant, R. A., Bustamante, A. C., Bybjerg-Grauholm, J., Calabrese, J. R., Caldas- de- Almeida, J. M., Dale, A. M., Daly, M. J., Daskalakis, N. P., Deckert, J., Delahanty, D. L., Dennis, M. F., Disner, S. G., Domschke, K., Dzubur-Kulenovic, A., Erbes, C. R., Evans, A., Farrer, L. A., Feeny, N. C., Flory, J. D., Forbes, D., Franz, C. E., Galea, S., Garrett, M. E., Gelaye, B., Geuze, E., Gillespie, C., Uka, A. G., Gordon, S. D., Guffanti, G., Hammamieh, R., Harnal, S., Hauser, M. A., Heath, A. C., Hemmings, S. M. J., Hougaard, D. M., Jakovljevic, M., Jett, M., Johnson, E. O., Jones, I., Jovanovic, T., Qin, X.-J., Junglen, A. G., Karstoft, K.-I., Kaufman, M. L., Kessler, R. C., Khan, A., Kimbrel, N. A., King, A. P., Koen, N., Kranzler, H. R., Kremen, W. S., Lawford, B. R., Lebois, L. A. M., Lewis, C. E., Linnstaedt, S. D., Lori, A., Lugonja, B., Luykx, J. J., Lyons, M. J., Maples-Keller, J., Marmar, C., Martin, A. R., Martin, N. G., Maurer, D., Mavissakalian, M. R., McFarlane, A., McGlinchey, R. E., McLaughlin, K. A., McLean, S. A., McLeay, S., Mehta, D., Milberg, W. P., Miller, M. W., Morey, R. A., Morris, C. P., Mors, O., Mortensen, P. B., Neale, B. M., Nelson, E. C., Nordentoft, M., Norman, S. B., O’Donnell, M., Orcutt, H. K., Panizzon, M. S., Peters, E. S., Peterson, A. L., Peverill, M., Pietrzak, R. H., Polusny, M. A., Rice, J. P., Ripke, S., Risbrough, V. B., Roberts, A. L., Rothbaum, A. O., Rothbaum, B. O., Roy-Byrne, P., Ruggiero, K., Rung, A., Rutten, B. P. F., Saccone, N. L., Sanchez, S. E., Schijven, D., Seedat, S., Seligowski, A. V., Seng, J. S., Sheerin, C. M., Silove, D., Smith, A. K., Smoller, J. W., Sponheim, S. R., Stein, D. J., Stevens, J. S., Sumner, J. A., Teicher, M. H., Thompson, W. K., Trapido, E., Uddin, M., Ursano, R. J., van den Heuvel, L. L., Van Hooff, M., Vermetten, E., Vinkers, C. H., Voisey, J., Wang, Y., Wang, Z., Werge, T., Williams, M. A., Williamson, D. E., Winternitz, S., Wolf, C., Wolf, E. J., Wolff, J. D., Yehuda, R., Young, R. M., Young, K. A., Zhao, H., Zoellner, L. A., Liberzon, I., Ressler, K. J., Haas, M., & Koenen, K. C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10(1): 4558. doi:10.1038/s41467-019-12576-w.

    Abstract

    The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.

    Additional information

    Supplementary information
  • Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. E. M., Abdellaoui, A., Bartels, M., Baselmans, B. M. L., Ligthart, L., St Pourcain, B., Boomsma, D. I., Munafò, M. R., & Middeldorp, C. M. (2017). Genetic overlap between schizophrenia and developmental psychopathology: Longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophrenia Bulletin, 43(6), 1197-1207. doi:10.1093/schbul/sbx031.

    Abstract

    Background: Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Methods: Polygenic risk scores (PRS), reflecting an individual’s genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Results: Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. Conclusion: By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology.
  • Nivard, M. G., Lubke, G. H., Dolan, C. V., Evans, D. M., St Pourcain, B., Munafo, M. R., & Middeldorp, C. M. (2017). Joint developmental trajectories of internalizing and externalizing disorders between childhood and adolescence. Development and Psychopathology, 29(3), 919-928. doi:10.1017/S0954579416000572.

    Abstract

    This study sought to identify trajectories of DSM-IV based internalizing (INT) and externalizing (EXT) problem scores across childhood and adolescence and to provide insight into the comorbidity by modeling the co-occurrence of INT and EXT trajectories. INT and EXT were measured repeatedly between age 7 and age 15 years in over 7,000 children and analyzed using growth mixture models. Five trajectories were identified for both INT and EXT, including very low, low, decreasing, and increasing trajectories. In addition, an adolescent onset trajectory was identified for INT and a stable high trajectory was identified for EXT. Multinomial regression showed that similar EXT and INT trajectories were associated. However, the adolescent onset INT trajectory was independent of high EXT trajectories, and persisting EXT was mainly associated with decreasing INT. Sex and early life environmental risk factors predicted EXT and, to a lesser extent, INT trajectories. The association between trajectories indicates the need to consider comorbidity when a child presents with INT or EXT disorders, particularly when symptoms start early. This is less necessary when INT symptoms start at adolescence. Future studies should investigate the etiology of co-occurring INT and EXT and the specific treatment needs of these severely affected children.
  • Noble, C., Sala, G., Peter, M., Lingwood, J., Rowland, C. F., Gobet, F., & Pine, J. (2019). The impact of shared book reading on children's language skills: A meta-analysis. Educational Research Review, 28: 100290. doi:10.1016/j.edurev.2019.100290.

    Abstract

    Shared book reading is thought to have a positive impact on young children's language development, with shared reading interventions often run in an attempt to boost children's language skills. However, despite the volume of research in this area, a number of issues remain outstanding. The current meta-analysis explored whether shared reading interventions are equally effective (a) across a range of study designs; (b) across a range of different outcome variables; and (c) for children from different SES groups. It also explored the potentially moderating effects of intervention duration, child age, use of dialogic reading techniques, person delivering the intervention and mode of intervention delivery.

    Our results show that, while there is an effect of shared reading on language development, this effect is smaller than reported in previous meta-analyses (
     = 0.194, p = .002). They also show that this effect is moderated by the type of control group used and is negligible in studies with active control groups (  = 0.028, p = .703). Finally, they show no significant effects of differences in outcome variable (ps ≥ .286), socio-economic status (p = .658), or any of our other potential moderators (ps ≥ .077), and non-significant effects for studies with follow-ups (  = 0.139, p = .200). On the basis of these results, we make a number of recommendations for researchers and educators about the design and implementation of future shared reading interventions.

    Additional information

    Supplementary data
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., McQueen, J. M., Cutler, A., & Butterfield, S. (1997). The possible-word constraint in the segmentation of continuous speech. Cognitive Psychology, 34, 191-243. doi:10.1006/cogp.1997.0671.

    Abstract

    We propose that word recognition in continuous speech is subject to constraints on what may constitute a viable word of the language. This Possible-Word Constraint (PWC) reduces activation of candidate words if their recognition would imply word status for adjacent input which could not be a word - for instance, a single consonant. In two word-spotting experiments, listeners found it much harder to detectapple,for example, infapple(where [f] alone would be an impossible word), than invuffapple(wherevuffcould be a word of English). We demonstrate that the PWC can readily be implemented in a competition-based model of continuous speech recognition, as a constraint on the process of competition between candidate words; where a stretch of speech between a candidate word and a (known or likely) word boundary is not a possible word, activation of the candidate word is reduced. This implementation accurately simulates both the present results and data from a range of earlier studies of speech segmentation.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Nuthmann, A., De Groot, F., Huettig, F., & Olivers, C. L. N. (2019). Extrafoveal attentional capture by object semantics. PLoS One, 14(5): e0217051. doi:10.1371/journal.pone.0217051.

    Abstract

    There is ongoing debate on whether object meaning can be processed outside foveal vision, making semantics available for attentional guidance. Much of the debate has centred on whether objects that do not fit within an overall scene draw attention, in complex displays that are often difficult to control. Here, we revisited the question by reanalysing data from three experiments that used displays consisting of standalone objects from a carefully controlled stimulus set. Observers searched for a target object, as per auditory instruction. On the critical trials, the displays contained no target but objects that were semantically related to the target, visually related, or unrelated. Analyses using (generalized) linear mixed-effects models showed that, although visually related objects attracted most attention, semantically related objects were also fixated earlier in time than unrelated objects. Moreover, semantic matches affected the very first saccade in the display. The amplitudes of saccades that first entered semantically related objects were larger than 5° on average, confirming that object semantics is available outside foveal vision. Finally, there was no semantic capture of attention for the same objects when observers did not actively look for the target, confirming that it was not stimulus-driven. We discuss the implications for existing models of visual cognition.
  • Ocklenburg, S., Schmitz, J., Moinfar, Z., Moser, D., Klose, R., Lor, S., Kunz, G., Tegenthoff, M., Faustmann, P., Francks, C., Epplen, J. T., Kumsta, R., & Güntürkün, O. (2017). Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife, 6: e22784. doi:10.7554/eLife.22784.001.

    Abstract

    Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest that molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans
  • O’Meara, C., Kung, S. S., & Majid, A. (2019). The challenge of olfactory ideophones: Reconsidering ineffability from the Totonac-Tepehua perspective. International Journal of American Linguistics, 85(2), 173-212. doi:10.1086/701801.

    Abstract

    Olfactory impressions are said to be ineffable, but little systematic exploration has been done to substantiate this. We explored olfactory language in Huehuetla Tepehua—a Totonac-Tepehua language spoken in Hidalgo, Mexico—which has a large inventory of ideophones, words with sound-symbolic properties used to describe perceptuomotor experiences. A multi-method study found Huehuetla Tepehua has 45 olfactory ideophones, illustrating intriguing sound-symbolic alternation patterns. Elaboration in the olfactory domain is not unique to this language; related Totonac-Tepehua languages also have impressive smell lexicons. Comparison across these languages shows olfactory and gustatory terms overlap in interesting ways, mirroring the physiology of smelling and tasting. However, although cognate taste terms are formally similar, olfactory terms are less so. We suggest the relative instability of smell vocabulary in comparison with those of taste likely results from the more varied olfactory experiences caused by the mutability of smells in different environments.
  • Ortega, G., Schiefner, A., & Ozyurek, A. (2019). Hearing non-signers use their gestures to predict iconic form-meaning mappings at first exposure to sign. Cognition, 191: 103996. doi:10.1016/j.cognition.2019.06.008.

    Abstract

    The sign languages of deaf communities and the gestures produced by hearing people are communicative systems that exploit the manual-visual modality as means of expression. Despite their striking differences they share the property of iconicity, understood as the direct relationship between a symbol and its referent. Here we investigate whether non-signing hearing adults exploit their implicit knowledge of gestures to bootstrap accurate understanding of the meaning of iconic signs they have never seen before. In Study 1 we show that for some concepts gestures exhibit systematic forms across participants, and share different degrees of form overlap with the signs for the same concepts (full, partial, and no overlap). In Study 2 we found that signs with stronger resemblance with signs are more accurately guessed and are assigned higher iconicity ratings by non-signers than signs with low overlap. In addition, when more people produced a systematic gesture resembling a sign, they assigned higher iconicity ratings to that sign. Furthermore, participants had a bias to assume that signs represent actions and not objects. The similarities between some signs and gestures could be explained by deaf signers and hearing gesturers sharing a conceptual substrate that is rooted in our embodied experiences with the world. The finding that gestural knowledge can ease the interpretation of the meaning of novel signs and predicts iconicity ratings is in line with embodied accounts of cognition and the influence of prior knowledge to acquire new schemas. Through these mechanisms we propose that iconic gestures that overlap in form with signs may serve as some type of ‘manual cognates’ that help non-signing adults to break into a new language at first exposure.

    Additional information

    Supplementary Materials
  • Ortega, G. (2017). Iconicity and sign lexical acquisition: A review. Frontiers in Psychology, 8: 1280. doi:10.3389/fpsyg.2017.01280.

    Abstract

    The study of iconicity, defined as the direct relationship between a linguistic form and its referent, has gained momentum in recent years across a wide range of disciplines. In the spoken modality, there is abundant evidence showing that iconicity is a key factor that facilitates language acquisition. However, when we look at sign languages, which excel in the prevalence of iconic structures, there is a more mixed picture, with some studies showing a positive effect and others showing a null or negative effect. In an attempt to reconcile the existing evidence the present review presents a critical overview of the literature on the acquisition of a sign language as first (L1) and second (L2) language and points at some factor that may be the source of disagreement. Regarding sign L1 acquisition, the contradicting findings may relate to iconicity being defined in a very broad sense when a more fine-grained operationalisation might reveal an effect in sign learning. Regarding sign L2 acquisition, evidence shows that there is a clear dissociation in the effect of iconicity in that it facilitates conceptual-semantic aspects of sign learning but hinders the acquisition of the exact phonological form of signs. It will be argued that when we consider the gradient nature of iconicity and that signs consist of a phonological form attached to a meaning we can discern how iconicity impacts sign learning in positive and negative ways
  • Ortega, G., Sumer, B., & Ozyurek, A. (2017). Type of iconicity matters in the vocabulary development of signing children. Developmental Psychology, 53(1), 89-99. doi:10.1037/dev0000161.

    Abstract

    Recent research on signed as well as spoken language shows that the iconic features of the target language might play a role in language development. Here, we ask further whether different types of iconic depictions modulate children’s preferences for certain types of sign-referent links during vocabulary development in sign language. Results from a picture description task indicate that lexical signs with 2 possible variants are used in different proportions by deaf signers from different age groups. While preschool and school-age children favored variants representing actions associated with their referent (e.g., a writing hand for the sign PEN), adults preferred variants representing the perceptual features of those objects (e.g., upward index finger representing a thin, elongated object for the sign PEN). Deaf parents interacting with their children, however, used action- and perceptual-based variants in equal proportion and favored action variants more than adults signing to other adults. We propose that when children are confronted with 2 variants for the same concept, they initially prefer action-based variants because they give them the opportunity to link a linguistic label to familiar schemas linked to their action/motor experiences. Our results echo findings showing a bias for action-based depictions in the development of iconic co-speech gestures suggesting a modality bias for such representations during development.
  • Ostarek, M., & Huettig, F. (2017). Spoken words can make the invisible visible – Testing the involvement of low-level visual representations in spoken word processing. Journal of Experimental Psychology: Human Perception and Performance, 43, 499-508. doi:10.1037/xhp0000313.

    Abstract

    The notion that processing spoken (object) words involves activation of category-specific representations in visual cortex is a key prediction of modality-specific theories of representation that contrasts with theories assuming dedicated conceptual representational systems abstracted away from sensorimotor systems. In the present study, we investigated whether participants can detect otherwise invisible pictures of objects when they are presented with the corresponding spoken word shortly before the picture appears. Our results showed facilitated detection for congruent ("bottle" -> picture of a bottle) vs. incongruent ("bottle" -> picture of a banana) trials. A second experiment investigated the time-course of the effect by manipulating the timing of picture presentation relative to word onset and revealed that it arises as soon as 200-400ms after word onset and decays at 600ms after word onset. Together, these data strongly suggest that spoken words can rapidly activate low-level category-specific visual representations that affect the mere detection of a stimulus, i.e. what we see. More generally our findings fit best with the notion that spoken words activate modality-specific visual representations that are low-level enough to provide information related to a given token and at the same time abstract enough to be relevant not only for previously seen tokens but also for generalizing to novel exemplars one has never seen before.
  • Ostarek, M., Joosen, D., Ishag, A., De Nijs, M., & Huettig, F. (2019). Are visual processes causally involved in “perceptual simulation” effects in the sentence-picture verification task? Cognition, 182, 84-94. doi:10.1016/j.cognition.2018.08.017.

    Abstract

    Many studies have shown that sentences implying an object to have a certain shape produce a robust reaction time advantage for shape-matching pictures in the sentence-picture verification task. Typically, this finding has been interpreted as evidence for perceptual simulation, i.e., that access to implicit shape information involves the activation of modality-specific visual processes. It follows from this proposal that disrupting visual processing during sentence comprehension should interfere with perceptual simulation and obliterate the match effect. Here we directly test this hypothesis. Participants listened to sentences while seeing either visual noise that was previously shown to strongly interfere with basic visual processing or a blank screen. Experiments 1 and 2 replicated the match effect but crucially visual noise did not modulate it. When an interference technique was used that targeted high-level semantic processing (Experiment 3) however the match effect vanished. Visual noise specifically targeting high-level visual processes (Experiment 4) only had a minimal effect on the match effect. We conclude that the shape match effect in the sentence-picture verification paradigm is unlikely to rely on perceptual simulation.
  • Ostarek, M., & Huettig, F. (2017). A task-dependent causal role for low-level visual processes in spoken word comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(8), 1215-1224. doi:10.1037/xlm0000375.

    Abstract

    It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual representations contribute functionally to concrete word comprehension using an interference paradigm. We interfered with basic visual processing while participants performed a concreteness task (Experiment 1), a lexical decision task (Experiment 2), and a word class judgment task (Experiment 3). We found that visual noise interfered more with concrete vs. abstract word processing, but only when the task required visual information to be accessed. This suggests that basic visual processes can be causally involved in language comprehension, but that their recruitment is not automatic and rather depends on the type of information that is required in a given task situation.

    Additional information

    XLM-2016-2822_supp.docx
  • Ostarek, M., & Vigliocco, G. (2017). Reading sky and seeing a cloud: On the relevance of events for perceptual simulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 579-590. doi:10.1037/xlm0000318.

    Abstract

    Previous research has shown that processing words with an up/down association (e.g., bird, foot) can influence the subsequent identification of visual targets in congruent location (at the top/bottom of the screen). However, as facilitation and interference were found under similar conditions, the nature of the underlying mechanisms remained unclear. We propose that word comprehension relies on the perceptual simulation of a prototypical event involving the entity denoted by a word in order to provide a general account of the different findings. In three experiments, participants had to discriminate between two target pictures appearing at the top or the bottom of the screen by pressing the left vs. right button. Immediately before the targets appeared, they saw an up/down word belonging to the target’s event, an up/down word unrelated to the target, or a spatially neutral control word. Prime words belonging to target event facilitated identification of targets at 250ms SOA (experiment 1), but only when presented in the vertical location where they are typically seen, indicating that targets were integrated in the simulations activated by the prime words. Moreover, at the same SOA, there was a robust facilitation effect for targets appearing in their typical location regardless of the prime type. However, when words were presented for 100ms (experiment 2) or 800ms (experiment 3), only a location non-specific priming effect was found, suggesting that the visual system was not activated. Implications for theories of semantic processing are discussed.
  • Ostarek, M., Van Paridon, J., & Montero-Melis, G. (2019). Sighted people’s language is not helpful for blind individuals’ acquisition of typical animal colors. Proceedings of the National Academy of Sciences of the United States of America, 116(44), 21972-21973. doi:10.1073/pnas.1912302116.
  • Ostarek, M., & Huettig, F. (2019). Six challenges for embodiment research. Current Directions in Psychological Science, 28(6), 593-599. doi:10.1177/0963721419866441.

    Abstract

    20 years after Barsalou's seminal perceptual symbols paper (Barsalou, 1999), embodied cognition, the notion that cognition involves simulations of sensory, motor, or affective states, has moved in status from an outlandish proposal advanced by a fringe movement in psychology to a mainstream position adopted by large numbers of researchers in the psychological and cognitive (neuro)sciences. While it has generated highly productive work in the cognitive sciences as a whole, it had a particularly strong impact on research into language comprehension. The view of a mental lexicon based on symbolic word representations, which are arbitrarily linked to sensory aspects of their referents, for example, was generally accepted since the cognitive revolution in the 1950s. This has radically changed. Given the current status of embodiment as a main theory of cognition, it is somewhat surprising that a close look at the state of the affairs in the literature reveals that the debate about the nature of the processes involved in language comprehension is far from settled and key questions remain unanswered. We present several suggestions for a productive way forward.
  • Otake, T., Yoneyama, K., Cutler, A., & van der Lugt, A. (1996). The representation of Japanese moraic nasals. Journal of the Acoustical Society of America, 100, 3831-3842. doi:10.1121/1.417239.

    Abstract

    Nasal consonants in syllabic coda position in Japanese assimilate to the place of articulation of a following consonant. The resulting forms may be perceived as different realizations of a single underlying unit, and indeed the kana orthographies represent them with a single character. In the present study, Japanese listeners' response time to detect nasal consonants was measured. Nasals in coda position, i.e., moraic nasals, were detected faster and more accurately than nonmoraic nasals, as reported in previous studies. The place of articulation with which moraic nasals were realized affected neither response time nor accuracy. Non-native subjects who knew no Japanese, given the same materials with the same instructions, simply failed to respond to moraic nasals which were realized bilabially. When the nasals were cross-spliced across place of articulation contexts the Japanese listeners still showed no significant place of articulation effects, although responses were faster and more accurate to unspliced than to cross-spliced nasals. When asked to detect the phoneme following the (cross-spliced) moraic nasal, Japanese listeners showed effects of mismatch between nasal and context, but non-native listeners did not. Together, these results suggest that Japanese listeners are capable of very rapid abstraction from phonetic realization to a unitary representation of moraic nasals; but they can also use the phonetic realization of a moraic nasal effectively to obtain anticipatory information about following phonemes.
  • Ozker, M., Schepers, I., Magnotti, J., Yoshor, D., & Beauchamp, M. (2017). A double dissociation between anterior and posterior superior temporal gyrus for processing audiovisual speech demonstrated by electrocorticography. Journal of Cognitive Neuroscience, 29(6), 1044-1060. doi:10.1162/jocn_a_01110.

    Abstract

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.
  • Ozyurek, A. (1996). How children talk about a conversation. Journal of Child Language, 23(3), 693-714. doi:10.1017/S0305000900009004.

    Abstract

    This study investigates how children of different ages talk about a conversation that they have witnessed. 48 Turkish children, five, nine and thirteen years in age, saw a televised dialogue between two Sesame Street characters (Bert and Ernie). Afterward, they narrated what they had seen and heard. Their reports were analysed for the development of linguistic devices used to orient their listeners to the relevant properties of a conversational exchange. Each utterance in the child's narrative was analysed as to its conversational role: (1) whether the child used direct or indirect quotation frames; (2) whether the child marked the boundaries of conversational turns using speakers' names and (3) whether the child used a marker for pairing of utterances made by different speakers (agreement-disagreement, request-refusal, questioning-answering). Within pairings, children's use of (a) the temporal and evaluative connectivity markers and (b) the kind of verb of saying were identified. The data indicate that there is a developmental change in children's ability to use appropriate linguistic means to orient their listeners to the different properties of a conversation. The development and use of these linguistic means enable the child to establish different social roles in a narrative interaction. The findings are interpreted in terms of the child's social-communicative development from being a ' character' to becoming a ' narrator' and ' author' of the reported conversation in the narrative situation.
  • Ozyurek, A., & Trabasso, T. (1997). Evaluation during the understanding of narratives. Discourse Processes, 23(3), 305-337. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=hlh&AN=12673020&site=ehost-live.

    Abstract

    Evaluation plays a role in the telling and understanding of narratives, in communicative interaction, emotional understanding, and in psychological well-being. This article reports a study of evaluation by describing how readers monitor the concerns of characters over the course of a narrative. The main hypothesis is that readers tract the well-being via the expression of a character's internal states. Reader evaluations were revealed in think aloud protocols obtained during reading of narrative texts, one sentence at a time. Five kinds of evaluative inferences were found: appraisals (good versus bad), preferences (like versus don't like), emotions (happy versus frustrated), goals (want versus don't want), or purposes (to attain or maintain X versus to prevent or avoid X). Readers evaluated all sentences. The mean rate of evaluation per sentence was 0.55. Positive and negative evaluations over the course of the story indicated that things initially went badly for characters, improved with the formulation and execution of goal plans, declined with goal failure, and improved as characters formulated new goals and succeeded. The kind of evaluation made depended upon the episodic category of the event and the event's temporal location in the story. Evaluations also served to explain or predict events. In making evaluations, readers stayed within the frame of the story and perspectives of the character or narrator. They also moved out of the narrative frame and addressed evaluations towards the experimenter in a communicative context.
  • Peeters, D., Vanlangendonck, F., Rüschemeyer, S.-A., & Dijkstra, T. (2019). Activation of the language control network in bilingual visual word recognition. Cortex, 111, 63-73. doi:10.1016/j.cortex.2018.10.012.

    Abstract

    Research into bilingual language production has identified a language control network that subserves control operations when bilinguals produce speech. Here we explore which brain areas are recruited for control purposes in bilingual language comprehension. In two experimental fMRI sessions, Dutch-English unbalanced bilinguals read words that differed in cross-linguistic form and meaning overlap across their two languages. The need for control operations was further manipulated by varying stimulus list composition across the two experimental sessions. We observed activation of the language control network in bilingual language comprehension as a function of both cross-linguistic form and meaning overlap and stimulus list composition. These findings suggest that the language control network is shared across bilingual language production and comprehension. We argue that activation of the language control network in language comprehension allows bilinguals to quickly and efficiently grasp the context-relevant meaning of words.

    Additional information

    1-s2.0-S0010945218303459-mmc1.docx
  • Peeters, D., Snijders, T. M., Hagoort, P., & Ozyurek, A. (2017). Linking language to the visual world: Neural correlates of comprehending verbal reference to objects through pointing and visual cues. Neuropsychologia, 95, 21-29. doi:10.1016/j.neuropsychologia.2016.12.004.

    Abstract

    In everyday communication speakers often refer in speech and/or gesture to objects in their immediate environment, thereby shifting their addressee's attention to an intended referent. The neurobiological infrastructure involved in the comprehension of such basic multimodal communicative acts remains unclear. In an event-related fMRI study, we presented participants with pictures of a speaker and two objects while they concurrently listened to her speech. In each picture, one of the objects was singled out, either through the speaker's index-finger pointing gesture or through a visual cue that made the object perceptually more salient in the absence of gesture. A mismatch (compared to a match) between speech and the object singled out by the speaker's pointing gesture led to enhanced activation in left IFG and bilateral pMTG, showing the importance of these areas in conceptual matching between speech and referent. Moreover, a match (compared to a mismatch) between speech and the object made salient through a visual cue led to enhanced activation in the mentalizing system, arguably reflecting an attempt to converge on a jointly attended referent in the absence of pointing. These findings shed new light on the neurobiological underpinnings of the core communicative process of comprehending a speaker's multimodal referential act and stress the power of pointing as an important natural device to link speech to objects.
  • Peeters, D. (2019). Virtual reality: A game-changing method for the language sciences. Psychonomic Bulletin & Review, 26(3), 894-900. doi:10.3758/s13423-019-01571-3.

    Abstract

    This paper introduces virtual reality as an experimental method for the language sciences and provides a review of recent studies using the method to answer fundamental, psycholinguistic research questions. It is argued that virtual reality demonstrates that ecological validity and
    experimental control should not be conceived of as two extremes on a continuum, but rather as two orthogonal factors. Benefits of using virtual reality as an experimental method include that in a virtual environment, as in the real world, there is no artificial spatial divide between participant and stimulus. Moreover, virtual reality experiments do not necessarily have to include a repetitive trial structure or an unnatural experimental task. Virtual agents outperform experimental confederates in terms of the consistency and replicability of their behaviour, allowing for reproducible science across participants and research labs. The main promise of virtual reality as a tool for the experimental language sciences, however, is that it shifts theoretical focus towards the interplay between different modalities (e.g., speech, gesture, eye gaze, facial expressions) in dynamic and communicative real-world environments, complementing studies that focus on one modality (e.g. speech) in isolation.

Share this page