Publications

Displaying 201 - 230 of 230
  • Seuren, P. A. M. (1995). Reflections on negation. In H. C. M. De Swart, & L. J. M. Bergmans (Eds.), Perspectives on Negation. Essays in honour of Johan J. de Iongh on his 80th birthday (pp. 153-176). Tilburg: Tilburg University Press.
  • Seuren, P. A. M. (1979). Wat is semantiek? In B. Tervoort (Ed.), Wetenschap en taal: Een nieuwe reeks benaderingen van het verschijnsel taal (pp. 135-162). Muiderberg: Coutinho.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Skiba, R. (2003). Computer Analysis: Corpus based language research. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgil (Eds.), Handbook ''Sociolinguistics'' (2nd ed.) (pp. 1250-1260). Berlin: de Gruyter.
  • Skiba, R. (2010). Polnisch. In S. Colombo-Scheffold, P. Fenn, S. Jeuk, & J. Schäfer (Eds.), Ausländisch für Deutsche. Sprachen der Kinder - Sprachen im Klassenzimmer (2. korrigierte und erweiterte Auflage, pp. 165-176). Freiburg: Fillibach.
  • Skiba, R., & Steinmüller, U. (1995). Pragmatics of compositional word formation in technical languages. In H. Pishwa, & K. Maroldt (Eds.), The development of morphological systematicity: A cross-linguistic perspective (pp. 305-321). Tübingen: Narr.
  • Stassen, H., & Levelt, W. J. M. (1979). Systems, automata, and grammars. In J. Michon, E. Eijkman, & L. De Klerk (Eds.), Handbook of psychonomics: Vol. 1 (pp. 187-243). Amsterdam: North Holland.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Terrill, A. (2010). Complex predicates and complex clauses in Lavukaleve. In J. Bowden, N. P. Himmelman, & M. Ross (Eds.), A journey through Austronesian and Papuan linguistic and cultural space: Papers in honour of Andrew K. Pawley (pp. 499-512). Canberra: Pacific Linguistics.
  • Thomassen, A. J., & Kempen, G. (1979). Memory. In J. A. Michon, E. Eijkman, & L. Klerk (Eds.), Handbook of psychonomics (pp. 75-137 ). Amsterdam: North-Holland Publishing Company.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1995). Characterizing the application of computer simulations in education: Instructional criteria. In A. Ram, & D. B. Leake (Eds.), Goal-driven learning (pp. 381-392). Cambridge, M: MIT Press.
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Valin Jr., R. D. (2010). Role and reference grammar as a framework for linguistic analysis. In B. Heine, & H. Narrog (Eds.), The Oxford handbook of linguistic analysis (pp. 703-738). Oxford: Oxford University Press.
  • Van Valin Jr., R. D. (1995). Toward a functionalist account of so-called ‘extraction constraints’. In B. Devriendt (Ed.), Complex structures: A functionalist perspective (pp. 29-60). Berlin: Mouton de Gruyter.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Weber, A., Crocker, M., & Knoeferle, P. (2010). Conflicting constraints in resource-adaptive language comprehension. In M. W. Crocker, & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 119-141). New York: Springer.

    Abstract

    The primary goal of psycholinguistic research is to understand the architectures and mechanisms that underlie human language comprehension and production. This entails an understanding of how linguistic knowledge is represented and organized in the brain and a theory of how that knowledge is accessed when we use language. Research has traditionally emphasized purely linguistic aspects of on-line comprehension, such as the influence of lexical, syntactic, semantic and discourse constraints, and their tim -course. It has become increasingly clear, however, that nonlinguistic information, such as the visual environment, are also actively exploited by situated language comprehenders.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Wilkins, D. (1995). Towards a Socio-Cultural Profile of the Communities We Work With. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 70-79). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513481.

    Abstract

    Field data are drawn from a particular speech community at a certain place and time. The intent of this survey is to enrich understanding of the various socio-cultural contexts in which linguistic and “cognitive” data may have been collected, so that we can explore the role which societal, cultural and contextual factors may play in this material. The questionnaire gives guidelines concerning types of ethnographic information that are important to cross-cultural and cross-linguistic enquiry, and will be especially useful to researchers who do not have specialised training in anthropology.
  • Wilkins, D., Pederson, E., & Levinson, S. C. (1995). Background questions for the "enter"/"exit" research. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 14-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003935.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This document outlines topics concerning the investigation of “enter” and “exit” events. It helps contextualise research tasks that examine this domain (see 'Motion Elicitation' and 'Enter/Exit animation') and gives some pointers about what other questions can be explored.
  • Wilkins, D. (1995). Motion elicitation: "moving 'in(to)'" and "moving 'out (of)'". In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 4-12). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003391.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This task investigates the expression of “enter” and “exit” activities, that is, events involving motion in(to) and motion out (of) container-like items. The researcher first uses particular stimuli (a ball, a cup, rice, etc.) to elicit descriptions of enter/exit events from one consultant, and then asks another consultant to demonstrate the event based on these descriptions. See also the related entries Enter/Exit Animation and Background Questions for Enter/Exit Research.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Wittenburg, P., & Trilsbeek, P. (2010). Digital archiving - a necessity in documentary linguistics. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving and revitalization (pp. 111-136). Canberra: Pacific Linguistics.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page