Publications

Displaying 201 - 218 of 218
  • Van Valin Jr., R. D. (2013). Lexical representation, co-composition, and linking syntax and semantics. In J. Pustejovsky, P. Bouillon, H. Isahara, K. Kanzaki, & C. Lee (Eds.), Advances in generative lexicon theory (pp. 67-107). Dordrecht: Springer.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Heugten, M., Bergmann, C., & Cristia, A. (2015). The Effects of Talker Voice and Accent on Young Children's Speech Perception. In S. Fuchs, D. Pape, C. Petrone, & P. Perrier (Eds.), Individual Differences in Speech Production and Perception (pp. 57-88). Bern: Peter Lang.

    Abstract

    Within the first few years of life, children acquire many of the building blocks of their native language. This not only involves knowledge about the linguistic structure of spoken language, but also knowledge about the way in which this linguistic structure surfaces in their speech input. In this chapter, we review how infants and toddlers cope with differences between speakers and accents. Within the context of milestones in early speech perception, we examine how voice and accent characteristics are integrated during language processing, looking closely at the advantages and disadvantages of speaker and accent familiarity, surface-level deviation between two utterances, variability in the input, and prior speaker exposure. We conclude that although deviation from the child’s standard can complicate speech perception early in life, young listeners can overcome these additional challenges. This suggests that early spoken language processing is flexible and adaptive to the listening situation at hand.
  • Van Valin Jr., R. D. (2008). Some remarks on universal grammar. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 311-320). New York: Psychology Press.
  • Van Valin Jr., R. D. (2008). RPs and the nature of lexical and syntactic categories in role and reference grammar. In R. D. Van Valin Jr. (Ed.), Investigations of the syntax-semantics-pragmatics interface (pp. 161-178). Amsterdam: Benjamins.
  • Verkerk, A., & Lestrade, S. (2008). The encoding of adjectives. In M. Van Koppen, & B. Botma (Eds.), Linguistics in the Netherlands 2008 (pp. 157-168). Amsterdam: Benjamins.

    Abstract

    In this paper, we will give a unified account of the cross-linguistic variation in the encoding of adjectives in predicative and attributive constructions. Languages may differ in the encoding strategy of adjectives in the predicative domain (Stassen 1997), and sometimes change this strategy in the attributive domain (Verkerk 2007). We will show that the interaction of two principles, that of faithfulness to the semantic class of a lexical root and that of faithfulness to discourse functions, can account for all attested variation in the encoding of adjectives.
  • Vernes, S. C., & Fisher, S. E. (2013). Genetic pathways implicated in speech and language. In S. Helekar (Ed.), Animal models of speech and language disorders (pp. 13-40). New York: Springer. doi:10.1007/978-1-4614-8400-4_2.

    Abstract

    Disorders of speech and language are highly heritable, providing strong
    support for a genetic basis. However, the underlying genetic architecture is complex,
    involving multiple risk factors. This chapter begins by discussing genetic loci associated
    with common multifactorial language-related impairments and goes on to
    detail the only gene (known as FOXP2) to be directly implicated in a rare monogenic
    speech and language disorder. Although FOXP2 was initially uncovered in
    humans, model systems have been invaluable in progressing our understanding of
    the function of this gene and its associated pathways in language-related areas of the
    brain. Research in species from mouse to songbird has revealed effects of this gene
    on relevant behaviours including acquisition of motor skills and learned vocalisations
    and demonstrated a role for Foxp2 in neuronal connectivity and signalling,
    particularly in the striatum. Animal models have also facilitated the identification of
    wider neurogenetic networks thought to be involved in language development and
    disorder and allowed the investigation of new candidate genes for disorders involving
    language, such as CNTNAP2 and FOXP1. Ongoing work in animal models promises
    to yield new insights into the genetic and neural mechanisms underlying human
    speech and language
  • Weber, A. (2008). What eye movements can tell us about spoken-language processing: A psycholinguistic survey. In C. M. Riehl (Ed.), Was ist linguistische Evidenz: Kolloquium des Zentrums Sprachenvielfalt und Mehrsprachigkeit, November 2006 (pp. 57-68). Aachen: Shaker.
  • Widlok, T., Rapold, C. J., & Hoymann, G. (2008). Multimedia analysis in documentation projects: Kinship, interrogatives and reciprocals in ǂAkhoe Haiǁom. In K. D. Harrison, D. S. Rood, & A. Dwyer (Eds.), Lessons from documented endangered languages (pp. 355-370). Amsterdam: Benjamins.

    Abstract

    This contribution emphasizes the role of multimedia data not only for archiving languages but also for creating opportunities for innovative analyses. In the case at hand, video material was collected as part of the documentation of Akhoe Haiom, a Khoisan language spoken in northern Namibia. The multimedia documentation project brought together linguistic and anthropological work to highlight connections between specialized domains, namely kinship terminology, interrogatives and reciprocals. These connections would have gone unnoticed or undocumented in more conventional modes of language description. It is suggested that such an approach may be particularly appropriate for the documentation of endangered languages since it directs the focus of attention away from isolated traits of languages towards more complex practices of communication that are also frequently threatened with extinction.
  • Widlok, T. (2008). The dilemmas of walking: A comparative view. In T. Ingold, & J. L. Vergunst (Eds.), Ways of walking: Ethnography and practice on foot (pp. 51-66). Aldershot: Ashgate.
  • Willems, R. M. (2015). Cognitive neuroscience of natural language use: Introduction. In Cognitive neuroscience of natural language use (pp. 1-7). Cambridge: Cambridge University Press.
  • Windhouwer, M., Petro, J., Newskaya, I., Drude, S., Aristar-Dry, H., & Gippert, J. (2013). Creating a serialization of LMF: The experience of the RELISH project. In G. Francopoulo (Ed.), LMF - Lexical Markup Framework (pp. 215-226). London: Wiley.
  • Windhouwer, M., & Wright, S. E. (2013). LMF and the Data Category Registry: Principles and application. In G. Francopoulo (Ed.), LMF: Lexical Markup Framework (pp. 41-50). London: Wiley.
  • Wittenburg, P., & Ringersma, J. (2013). Metadata description for lexicons. In R. H. Gouws, U. Heid, W. Schweickard, & H. E. Wiegand (Eds.), Dictionaries: An international encyclopedia of lexicography: Supplementary volume: Recent developments with focus on electronic and computational lexicography (pp. 1329-1335). Berlin: Mouton de Gruyter.
  • Wright, S. E., Windhouwer, M., Schuurman, I., & Kemps-Snijders, M. (2013). Community efforts around the ISOcat Data Category Registry. In I. Gurevych, & J. Kim (Eds.), The People's Web meets NLP: Collaboratively constructed language resources (pp. 349-374). New York: Springer.

    Abstract

    The ISOcat Data Category Registry provides a community computing environment for creating, storing, retrieving, harmonizing and standardizing data category specifications (DCs), used to register linguistic terms used in various fields. This chapter recounts the history of DC documentation in TC 37, beginning from paper-based lists created for lexicographers and terminologists and progressing to the development of a web-based resource for a much broader range of users. While describing the considerable strides that have been made to collect a very large comprehensive collection of DCs, it also outlines difficulties that have arisen in developing a fully operative web-based computing environment for achieving consensus on data category names, definitions, and selections and describes efforts to overcome some of the present shortcomings and to establish positive working procedures designed to engage a wide range of people involved in the creation of language resources.
  • Zwitserlood, I. (2008). Morphology below the level of the sign - frozen forms and classifier predicates. In J. Quer (Ed.), Proceedings of the 8th Conference on Theoretical Issues in Sign Language Research (TISLR) (pp. 251-272). Hamburg: Signum Verlag.

    Abstract

    The lexicons of many sign languages hold large proportions of “frozen” forms, viz. signs that are generally considered to have been formed productively (as classifier predicates), but that have diachronically undergone processes of lexicalisation. Nederlandse Gebarentaal (Sign Language of the Netherlands; henceforth: NGT) also has many of these signs (Van der Kooij 2002, Zwitserlood 2003). In contrast to the general view on “frozen” forms, a few researchers claim that these signs may be formed according to productive sign formation rules, notably Brennan (1990) for BSL, and Meir (2001, 2002) for ISL. Following these claims, I suggest an analysis of “frozen” NGT signs as morphologically complex, using the framework of Distributed Morphology. The signs in question are derived in a similar way as classifier predicates; hence their similar form (but diverging characteristics). I will indicate how and why the structure and use of classifier predicates and “frozen” forms differ. Although my analysis focuses on NGT, it may also be applicable to other sign languages.
  • Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2013). Expression of multiple entities in Turkish Sign Language (TİD). In E. Arik (Ed.), Current Directions in Turkish Sign Language Research (pp. 272-302). Newcastle upon Tyne: Cambridge Scholars Publishing.

    Abstract

    This paper reports on an exploration of the ways in which multiple entities are expressed in Turkish Sign Language (TİD). The (descriptive and quantitative) analyses provided are based on a corpus of both spontaneous data and specifically elicited data, in order to provide as comprehensive an account as possible. We have found several devices in TİD for expression of multiple entities, in particular localization, spatial plural predicate inflection, and a specific form used to express multiple entities that are side by side in the same configuration (not reported for any other sign language to date), as well as numerals and quantifiers. In contrast to some other signed languages, TİD does not appear to have a productive system of plural reduplication. We argue that none of the devices encountered in the TİD data is a genuine plural marking device and that the plural interpretation of multiple entity localizations and plural predicate inflections is a by-product of the use of space to indicate the existence or the involvement in an event of multiple entities.

Share this page