Publications

Displaying 201 - 300 of 558
  • Indefrey, P., Gruber, O., Brown, C. M., Hagoort, P., Posse, S., & Kleinschmidt, A. (1998). Lexicality and not syllable frequency determine lateralized premotor activation during the pronunciation of word-like stimuli: An fMRI study. NeuroImage, 7, S4.
  • Indefrey, P., Hagoort, P., Herzog, H., Seitz, R. J., & Brown, C. M. (2001). Syntactic processing in left prefrontal cortex is independent of lexical meaning. Neuroimage, 14, 546-555. doi:10.1006/nimg.2001.0867.

    Abstract

    In language comprehension a syntactic representation is built up even when the input is semantically uninterpretable. We report data on brain activation during syntactic processing, from an experiment on the detection of grammatical errors in meaningless sentences. The experimental paradigm was such that the syntactic processing was distinguished from other cognitive and linguistic functions. The data reveal that in syntactic error detection an area of the left dorsolateral prefrontal cortex, adjacent to Broca’s area, is specifically involved in the syntactic processing aspects, whereas other prefrontal areas subserve general error detection processes.
  • Ischebeck, A., Indefrey, P., Usui, N., Nose, I., Hellwig, F. M., & Taira, M. (2004). Reading in a regular orthography: An fMRI study investigating the role of visual familiarity. Journal of Cognitive Neuroscience, 16(5), 727-741. doi:10.1162/089892904970708.

    Abstract

    In order to separate the cognitive processes associated with phonological encoding and the use of a visual word form lexicon in reading, it is desirable to compare the processing of words presented in a visually familiar form with words in a visually unfamiliar form. Japanese Kana orthography offers this possibility. Two phonologically equivalent but visually dissimilar syllabaries allow the writing of, for example, foreign loanwords in two ways, only one of which is visually familiar. Familiarly written words, unfamiliarly written words, and pseudowords were presented in both Kana syllabaries (yielding six conditions in total) to participants during an fMRI measurement with a silent articulation task (Experiment 1) and a phonological lexical decision task (Experiment 2) using an event-related design. Consistent over two experimental tasks, the three different stimulus types (familiar, unfamiliar, and pseudoword) were found to activate selectively different brain regions previously associated with phonological encoding and word retrieval or meaning. Compatible with the predictions of the dual-route model for reading, pseudowords and visually unfamiliar words, which have to be read using phonological assembly, caused an increase in brain activity in left inferior frontal regions (BA 44/47), as compared to visually familiar words. Visually familiar and unfamiliar words were found to activate a range of areas associated with lexico-semantic processing more strongly than pseudowords, such as the left and right temporo-parietal region (BA 39/40), a region in the left middle/inferior temporal gyrus (BA 20/21), and the posterior cingulate (BA 31).
  • Janse, E., & Klitsch, J. (2004). Auditieve perceptie bij gezonde sprekers en bij sprekers met verworven taalstoornissen. Afasiologie, 26(1), 2-6.
  • Janse, E. (2001). Comparing word-level intelligibility after linear vs. non-linear time-compression. In Proceedings of the VIIth European Conference on Speech Communication and Technology Eurospeech (pp. 1407-1410).
  • Janse, E. (2004). Word perception in fast speech: Artificially time-compressed vs. naturally produced fast speech. Speech Communication, 42, 155-173. doi:10.1016/j.specom.2003.07.001.

    Abstract

    Natural fast speech differs from normal-rate speech with respect to its temporal pattern. Previous results showed that word intelligibility of heavily artificially time-compressed speech could not be improved by making its temporal pattern more similar to that of natural fast speech. This might have been due to the extrapolation of timing rules for natural fast speech to rates that are much faster than can be attained by human speakers. The present study investigates whether, at a speech rate that human speakers can attain, artificially time-compressed speech is easier to process if its timing pattern is similar to that of naturally produced fast speech. Our first experiment suggests, however, that word processing speed was slowed down, relative to linear compression. In a second experiment, word processing of artificially time-compressed speech was compared with processing of naturally produced fast speech. Even when naturally produced fast speech is perfectly intelligible, its less careful articulation, combined with the changed timing pattern, slows down processing, relative to linearly time-compressed speech. Furthermore, listeners preferred artificially time-compressed speech over naturally produced fast speech. These results suggest that linearly time-compressed speech has both a temporal and a segmental advantage over natural fast speech.
  • Jansma, B. M., & Schiller, N. O. (2004). Monitoring syllable boundaries during speech production. Brain and Language, 90(1-3), 311-317. doi:10.1016/S0093-934X(03)00443-7.

    Abstract

    This study investigated the encoding of syllable boundary information during speech production in Dutch. Based on Levelt's model of phonological encoding, we hypothesized segments and syllable boundaries to be encoded in an incremental way. In a selfmonitoring experiment, decisions about the syllable affiliation (first or second syllable) of a pre-specified consonant, which was the third phoneme in a word, were required (e.g., ka.No canoe vs. kaN.sel pulpit ; capital letters indicate pivotal consonants, dots mark syllable boundaries). First syllable responses were faster than second syllable responses, indicating the incremental nature of segmental encoding and syllabification during speech production planning. The results of the experiment are discussed in the context of Levelt 's model of phonological encoding.
  • Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2004). Stem complexity and inflectional encoding in language production. Journal of Psycholinguistic Research, 33(5), 365-381. doi:10.1023/B:JOPR.0000039546.60121.a8.

    Abstract

    Three experiments are reported that examined whether stem complexity plays a role in inflecting polymorphemic words in language production. Experiment 1 showed that preparation effects for words with polymorphemic stems are larger when they are produced among words with constant inflectional structures compared to words with variable inflectional structures and simple stems. This replicates earlier findings for words with monomorphemic stems (Janssen et al., 2002). Experiments 2 and 3 showed that when inflectional structure is held constant, the preparation effects are equally large with simple and compound stems, and with compound and complex adjectival stems. These results indicate that inflectional encoding is blind to the complexity of the stem, which suggests that specific inflectional rather than generic morphological frames guide the generation of inflected forms in speaking words.
  • Janzen, G., & Van Turennout, M. (2004). Selective neural representation of objects relevant for navigation. Nature Neuroscience, 7(6), 673-677. doi:10.1038/nn1257.

    Abstract

    As people find their way through their environment, objects at navigationally relevant locations can serve as crucial landmarks. The parahippocampal gyrus has previously been shown to be involved in object and scene recognition. In the present study, we investigated the neural representation of navigationally relevant locations. Healthy human adults viewed a route through a virtual museum with objects placed at intersections (decision points) or at simple turns (non-decision points). Event-related functional magnetic resonance imaging (fMRI) data were acquired during subsequent recognition of the objects in isolation. Neural activity in the parahippocampal gyrus reflected the navigational relevance of an object's location in the museum. Parahippocampal responses were selectively increased for objects that occurred at decision points, independent of attentional demands. This increase occurred for forgotten as well as remembered objects, showing implicit retrieval of navigational information. The automatic storage of relevant object location in the parahippocampal gyrus provides a part of the neural mechanism underlying successful navigation.
  • Janzen, G., & Weststeijn, C. (2004). Neural representation of object location and route direction: An fMRI study. NeuroImage, 22(Supplement 1), e634-e635.
  • Janzen, G., & Van Turennout, M. (2004). Neuronale Markierung navigationsrelevanter Objekte im räumlichen Gedächtnis: Ein fMRT Experiment. In D. Kerzel (Ed.), Beiträge zur 46. Tagung experimentell arbeitender Psychologen (pp. 125-125). Lengerich: Pabst Science Publishers.
  • Johns, T. G., Perera, R. M., Vitali, A. A., Vernes, S. C., & Scott, A. (2004). Phosphorylation of a glioma-specific mutation of the EGFR [Abstract]. Neuro-Oncology, 6, 317.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies specific for different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every yrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation at tyrosine 845 could be stimulated in vitro by the addition of specific components of the ECM via an integrindependent mechanism. These observations may partially explain why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment
  • Jordan, F., & Gray, R. D. (2001). Comment on Terrell, Kelly and Rainbird. Current Anthropology, 42(1), 114-115.
  • Jordens, P. (2004). Systematiek en dynamiek bij de verwerving van Finietheid. Toegepaste Taalwetenschap in Artikelen, 71, 9-22.

    Abstract

    In early Dutch learner varieties, there is no evidence of finiteness being a functional category. There is no V2nd: no correlation between inflectional morphology and movement. Initially, learners express the illocutive function of finiteness through the use of illocutive markers, with the non-use of an illocutive marker expressing the default illocutive function of assertion. Illocutive markers are functioning as adjuncts with scope over the predicate. Illocutive markers become re-analysed as functional elements.The driving force is the acquisition of the auxiliary verbs that occur with past participles. It leads to a reanalysis of illocutive markers as two separate elements: an auxiliary verb and a scope adverb. The (modal) auxiliary carries illocutive function. Lexical verb-argument structure (including the external argument) occurs within the domain of the auxiliary verb. The predicate as the focus constituent occurs within the domain of a scope adverb. This reanalysis establishes a position for the external argument within the domain of AUX. The acquisition of AUX causes the acquisition of a (hierarchical) structure with a complement as a constituent which represents an underlying verb-argument structure, a predicate as the domain of elements that are in focus, and an external (specifier) position as a landing site for elements with topic function.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Kelly, A., & Melinger, A. (2001). Max-Planck-Institute for Psycholinguistics: Annual Report 2001. Nijmegen: MPI for Psycholinguistics.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G. (1981). De architectuur van het spreken. TTT: Interdisciplinair Tijdschrift voor Taal & Tekstwetenschap, 1, 110-123.
  • Kempen, G. (1998). Comparing and explaining the trajectories of first and second language acquisition: In search of the right mix of psychological and linguistic factors [Commentory]. Bilingualism: Language and Cognition, 1, 29-30. doi:10.1017/S1366728998000066.

    Abstract

    When you compare the behavior of two different age groups which are trying to master the same sensori-motor or cognitive skill, you are likely to discover varying learning routes: different stages, different intervals between stages, or even different orderings of stages. Such heterogeneous learning trajectories may be caused by at least six different types of factors: (1) Initial state: the kinds and levels of skills the learners have available at the onset of the learning episode. (2) Learning mechanisms: rule-based, inductive, connectionist, parameter setting, and so on. (3) Input and feedback characteristics: learning stimuli, information about success and failure. (4) Information processing mechanisms: capacity limitations, attentional biases, response preferences. (5) Energetic variables: motivation, emotional reactions. (6) Final state: the fine-structure of kinds and levels of subskills at the end of the learning episode. This applies to language acquisition as well. First and second language learners probably differ on all six factors. Nevertheless, the debate between advocates and opponents of the Fundamental Difference Hypothesis concerning L1 and L2 acquisition have looked almost exclusively at the first two factors. Those who believe that L1 learners have access to Universal Grammar whereas L2 learners rely on language processing strategies, postulate different learning mechanisms (UG parameter setting in L1, more general inductive strategies in L2 learning). Pienemann opposes this view and, based on his Processability Theory, argues that L1 and L2 learners start out from different initial states: they come to the grammar learning task with different structural hypotheses (SOV versus SVO as basic word order of German).
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses? A corpus study revealing unexpected rigidity. In S. Kepser, & M. Reis (Eds.), Pre-Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: Niemeyer.
  • Kempen, G. (2004). Interactive visualization of syntactic structure assembly for grammar-intensive first- and second-language instruction. In R. Delmonte, P. Delcloque, & S. Tonelli (Eds.), Proceedings of InSTIL/ICALL2004 Symposium on NLP and speech technologies in advanced language learning systems (pp. 183-186). Venice: University of Venice.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses?: A corpus study revealing unexpected rigidity. In Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: University of Tübingen.
  • Kempen, G. (2004). Human grammatical coding: Shared structure formation resources for grammatical encoding and decoding. In Cuny 2004 - The 17th Annual CUNY Conference on Human Sentence Processing. March 25-27, 2004. University of Maryland (pp. 66).
  • Kempen, G., & Van Wijk, C. (1981). Leren formuleren: Hoe uit opstellen een objektieve index voor formuleervaardigheid afgeleid kan worden. Tijdschrift voor Taalbeheersing, 3, 32-44.
  • Kempen, G., & Fokkema, S. (1981). Ten geleide. Nederlands Tijdschrift voor de Psychologie en haar Grensgebieden, 36, 345-346.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1981). Taalpsychologie. In H. Duijker, & P. Vroon (Eds.), Codex Psychologicus (pp. 205-221). Amsterdam: Elsevier.
  • Kemps, R. J. J. K., Ernestus, M., Schreuder, R., & Baayen, R. H. (2004). Processing reduced word forms: The suffix restoration effect. Brain and Language, 90(1-3), 117-127. doi:10.1016/S0093-934X(03)00425-5.

    Abstract

    Listeners cannot recognize highly reduced word forms in isolation, but they can do so when these forms are presented in context (Ernestus, Baayen, & Schreuder, 2002). This suggests that not all possible surface forms of words have equal status in the mental lexicon. The present study shows that the reduced forms are linked to the canonical representations in the mental lexicon, and that these latter representations induce reconstruction processes. Listeners restore suffixes that are partly or completely missing in reduced word forms. A series of phoneme-monitoring experiments reveals the nature of this restoration: the basis for suffix restoration is mainly phonological in nature, but orthography has an influence as well.
  • Kemps, R. J. J. K. (2004). Morphology in auditory lexical processing: Sensitivity to fine phonetic detail and insensitivity to suffix reduction. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.59193.

    Abstract

    This dissertation investigates two seemingly contradictory properties of the speech perception system. On the one hand, listeners are extremely sensitive to the fine phonetic details in the speech signal. These subtle acoustic cues can reduce the temporal ambiguity between words that show initial segmental overlap, and can guide lexical activation. On the other hand, comprehension does not seem to be hampered at all by the drastic reductions that typically occur in casual speech. Complete segments, and sometimes even complete syllables, may be missing, but comprehension is seemingly unaffected. This thesis aims at elucidating how words are represented and accessed in the mental lexicon, by investigating these contradictory phenomena for the domain of morphology

    Additional information

    full text via Radboud Repository
  • Kidd, E. (2004). Grammars, parsers, and language acquisition. Journal of Child Language, 31(2), 480-483. doi:10.1017/S0305000904006117.

    Abstract

    Drozd's critique of Crain & Thornton's (C&T) (1998) book Investigations in Universal Grammar (IUG) raises many issues concerning theory and experimental design within generative approaches to language acquisition. I focus here on one of the strongest theoretical claims of the Modularity Matching Model (MMM): continuity of processing. For reasons different to Drozd, I argue that the assumption is tenuous. Furthermore, I argue that the focus of the MMM and the methodological prescriptions contained in IUG are too narrow to capture language acquisition.
  • Kidd, E., Bavin, E. L., & Rhodes, B. (2001). Two-year-olds' knowledge of verbs and argument structures. In M. Almgren, A. Barreña, M.-J. Ezeuzabarrena, I. Idiazabal, & B. MacWhinney (Eds.), Research on child language acquisition: Proceedings of the 8th Conference of the International Association for the Study of Child language (pp. 1368-1382). Sommerville: Cascadilla Press.
  • Kircher, T. T. J., Brammer, M. J., Levelt, W. J. M., Bartels, M., & McGuire, P. K. (2004). Pausing for thought: Engagement of left temporal cortex during pauses in speech. NeuroImage, 21(1), 84-90. doi:10.1016/j.neuroimage.2003.09.041.

    Abstract

    Pauses during continuous speech, particularly those that occur within clauses, are thought to reflect the planning of forthcoming verbal output. We used functional Magnetic Resonance Imaging (fMRI) to examine their neural correlates. Six volunteers were scanned while describing seven Rorschach inkblots, producing 3 min of speech per inkblot. In an event-related design, the level of blood oxygenation level dependent (BOLD) contrast during brief speech pauses (mean duration 1.3 s, SD 0.3 s) during overt speech was contrasted with that during intervening periods of articulation. We then examined activity associated with pauses that occurred within clauses and pauses that occurred between grammatical junctions. Relative to articulation during speech, pauses were associated with activation in the banks of the left superior temporal sulcus (BA 39/22), at the temporoparietal junction. Continuous speech was associated with greater activation bilaterally in the inferior frontal (BA 44/45), middle frontal (BA 8) and anterior cingulate (BA 24) gyri, the middle temporal sulcus (BA 21/22), the occipital cortex and the cerebellum. Left temporal activation was evident during pauses that occurred within clauses but not during pauses at grammatical junctions. In summary, articulation during continuous speech involved frontal, temporal and cerebellar areas, while pausing was associated with activity in the left temporal cortex, especially when this occurred within a clause. The latter finding is consistent with evidence that within-clause pauses are a correlate of speech planning and in particular lexical retrieval.
  • Kita, S., Danziger, E., & Stolz, C. (2001). Cultural specificity of spatial schemas, as manifested in spontaneous gestures. In M. Gattis (Ed.), Spatial Schemas and Abstract Thought (pp. 115-146). Cambridge, MA, USA: MIT Press.
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S. (2001). Locally-anchored spatial gestures, version 2: Historical description of the local environment as a gesture elicitation task. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 132-135). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874647.

    Abstract

    Gesture is an integral part of face-to-face communication, and provides a rich area for cross-cultural comparison. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. For example, such gestures may point to a location or a thing, trace the shape of a path, or indicate the direction of a particular area. The goal of this task is to elicit locally-anchored spatial gestures across different cultures. The task follows an interview format, where one participant prompts another to talk in detail about a specific area that the main speaker knows well. The data can be used for additional purposes such as the investigation of demonstratives.
  • Kita, S. (2001). Recording recommendations for gesture studies. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 130-131). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (Ed.). (2004). Philologie auf neuen Wegen [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 136.
  • Klein, W. (Ed.). (2004). Universitas [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik (LiLi), 134.
  • Klein, W. (2004). Vom Wörterbuch zum digitalen lexikalischen System. Zeitschrift für Literaturwissenschaft und Linguistik, 136, 10-55.
  • Klein, W., & Rath, R. (1981). Automatische Lemmatisierung deutscher Flexionsformen. In R. Herzog (Ed.), Computer in der Übersetzungswissenschaft (pp. 94-142). Framkfurt am Main, Bern: Verlag Peter Lang.
  • Klein, W., & Levelt, W. J. M. (Eds.). (1981). Crossing the boundaries in linguistics: Studies presented to Manfred Bierwisch. Dordrecht: Reidel.
  • Klein, W. (2001). Das Ende vor Augen: Deutsch als Wissenschaftssprache. In F. Debus, F. Kollmann, & U. Pörken (Eds.), Deutsch als Wissenschaftssprache im 20. Jahrhundert (pp. 289-293). Mainz: Akademie der Wissenschaften und der Literatur.
  • Klein, W. (2001). Deiktische Orientierung. In M. Haspelmath, E. König, W. Oesterreicher, & W. Raible (Eds.), Sprachtypologie und sprachliche Universalien: Vol. 1/1 (pp. 575-590). Berlin: de Gruyter.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (2001). Ein Gemeinwesen, in dem das Volk herrscht, darf nicht von Gesetzen beherrscht werden, die das Volk nicht versteht. Rechtshistorisches Journal, 20, 621-628.
  • Klein, W. (1981). Eine kommentierte Bibliographie zur Computerlinguistik. In R. Herzog (Ed.), Computer in der Übersetzungswissenschaft (pp. 95-142). Frankfurt am Main: Lang.
  • Klein, W. (2001). Elementary forms of linguistic organisation. In S. Ward, & J. Trabant (Eds.), The origins of language (pp. 81-102). Berlin: Mouton de Gruyter.
  • Klein, W. (2001). Die Linguistik ist anders geworden. In S. Anschütz, S. Kanngießer, & G. Rickheit (Eds.), A Festschrift for Manfred Briegel: Spektren der Linguistik (pp. 51-72). Wiesbaden: Deutscher Universitätsverlag.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (2004). Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts (DWDS). In J. Scharnhorst (Ed.), Sprachkultur und Lexikographie (pp. 281-311). Berlin: Peter Lang.
  • Klein, W. (2004). Auf der Suche nach den Prinzipien, oder: Warum die Geisteswissenschaften auf dem Rückzug sind. Zeitschrift für Literaturwissenschaft und Linguistik, 134, 19-44.
  • Klein, W. (2004). Im Lauf der Jahre. Linguistische Berichte, 200, 397-407.
  • Klein, W. (1981). Forschungsprojekt "Zweitspracherwerb ausländischer Arbeiter". Studium Linguistik, 11, 84-89.
  • Klein, W. (1981). Knowing a language and knowing to communicate: A case study in foreign workers' communication. In A. Vermeer (Ed.), Language problems of minority groups (pp. 75-95). Tilburg: Tilburg University.
  • Klein, W. (1981). L'acquisition des pronoms personnels allemands par des travailleurs espagnols et italiens. GRECO, 13, 19-31.
  • Klein, W. (2001). Lexicology and lexicography. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 13 (pp. 8764-8768). Amsterdam: Elsevier Science.
  • Klein, W. (1981). Logik der Argumentation. In Institut für deutsche Sprache (Ed.), Dialogforschung: Jahrbuch 1980 des Instituts für deutsche Sprache (pp. 226-264). Düsseldorf: Schwann.
  • Klein, W. (Ed.). (1998). Kaleidoskop [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (112).
  • Klein, W. (1998). The contribution of second language acquisition research. Language Learning, 48, 527-550. doi:10.1111/0023-8333.00057.

    Abstract

    During the last 25 years, second language acquisition (SLA) research hasmade considerable progress, but is still far from proving a solid basis for foreign language teaching, or from a general theory of SLA. In addition, its status within the linguistic disciplines is still very low. I argue this has not much to do with low empirical or theoretical standards in the field—in this regard, SLA research is fully competitive—but with a particular perspective on the acquisition process: SLA researches learners' utterances as deviations from a certain target, instead of genuine manifestations of underlying language capacity; it analyses them in terms of what they are not rather than what they are. For some purposes such a "target deviation perspective" makes sense, but it will not help SLA researchers to substantially and independently contribute to a deeper understanding of the structure and function of the human language faculty. Therefore, these findings will remain of limited interest to other scientists until SLA researchers consider learner varieties a normal, in fact typical, manifestation of this unique human capacity.
  • Klein, W. (1981). Some rules of regular ellipsis in German. In W. Klein, & W. J. M. Levelt (Eds.), Crossing the boundaries in linguistics: Studies presented to Manfred Bierwisch (pp. 51-78). Dordrecht: Reidel.
  • Klein, W. (2001). Second language acquisition. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 20 (pp. 13768-13771). Amsterdam: Elsevier science.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W. (2004). Was die Geisteswissenschaften leider noch von den Naturwissenschaften unterscheidet. Gegenworte, 13, 79-84.
  • Klein, W. (2001). Time and again. In C. Féry, & W. Sternefeld (Eds.), Audiatur vox sapientiae: A festschrift for Arnim von Stechow (pp. 267-286). Berlin: Akademie Verlag.
  • Klein, W. (2001). Typen und Konzepte des Spracherwerbs. In L. Götze, G. Helbig, G. Henrici, & H. Krumm (Eds.), Deutsch als Fremdsprache (pp. 604-616). Berlin: de Gruyter.
  • Klein, W. (1998). Von der einfältigen Wißbegierde. Zeitschrift für Literaturwissenschaft und Linguistik, 112, 6-13.
  • Knösche, T. R., & Bastiaansen, M. C. M. (2001). Does the Hilbert transform improve accuracy and time resolution of ERD/ERS? Biomedizinische Technik, 46(2), 106-108.
  • Köster, O., Hess, M. M., Schiller, N. O., & Künzel, H. J. (1998). The correlation between auditory speech sensitivity and speaker recognition ability. Forensic Linguistics: The international Journal of Speech, Language and the Law, 5, 22-32.

    Abstract

    In various applications of forensic phonetics the question arises as to how far aural-perceptual speaker recognition performance is reliable. Therefore, it is necessary to examine the relationship between speaker recognition results and human perception/production abilities like musicality or speech sensitivity. In this study, performance in a speaker recognition experiment and a speech sensitivity test are correlated. The results show a moderately significant positive correlation between the two tasks. Generally, performance in the speaker recognition task was better than in the speech sensitivity test. Professionals in speech and singing yielded a more homogeneous correlation than non-experts. Training in speech as well as choir-singing seems to have a positive effect on performance in speaker recognition. It may be concluded, firstly, that in cases where the reliability of voice line-up results or the credibility of a testimony have to be considered, the speech sensitivity test could be a useful indicator. Secondly, the speech sensitivity test might be integrated into the canon of possible procedures for the accreditation of forensic phoneticians. Both tests may also be used in combination.
  • Krämer, I. (1998). Children's interpretations of indefinite object noun phrases. Linguistics in the Netherlands, 1998, 163-174. doi:10.1075/avt.15.15kra.
  • Krott, A., Hagoort, P., & Baayen, R. H. (2004). Sublexical units and supralexical combinatories in the processing of interfixed Dutch compounds. Language and Cognitive Processes, 19(3), 453-471. doi:10.1080/769813936.

    Abstract

    This study addresses the supralexical inferential processes underlying wellformedness judgements and latencies for a specic sublexical unit that appears in Dutch compounds, the interfix. Production studies have shown that the selection of interfixes in novel Dutch compounds and the speed of
    this selection is primarily determined by the distribution of interfixes in existing compounds that share the left constituent with the target compound, i.e. the ‘‘left constituent family’’. In this paper, we consider the question whether constituent families also affect wellformedness decisions of novel as well as existing Dutch compounds in comprehension. We visually presented compounds containing interfixes that were either in line with the bias of the left constituent family or not. In the case of existing compounds, we also presented variants with replaced interfixes. As in production, the bias of the left constituent family emerged as a crucial predictor for both acceptance rates and response latencies. This result supports the hypothesis that, as in production, constituent families are (co-)activated in comprehension. We argue that this co-activation is part of a supralexical inferential process, and we discuss how our data might be interpreted within sublexical and supralexical theories of morphological processing.
  • Krott, A., Libben, G., Jarema, G., Dressler, W., Schreuder, R., & Baayen, R. H. (2004). Probability in the grammar of German and Dutch: Interfixation in triconstituent compounds. Language and Speech, 47(1), 83-106.

    Abstract

    This study addresses the possibility that interfixes in multiconstituent nominal compounds in German and Dutch are functional as markers of immediate constituent structure.We report a lexical statistical survey of interfixation in the lexicons of German and Dutch which shows that all interfixes of German and one interfix of Dutch are significantly more likely to appear at the major constituent boundary than expected under chance conditions. A series of experiments provides evidence that speakers of German and Dutch are sensitive to the probabilistic cues to constituent structure provided by the interfixes. Thus, our data provide evidence that probability is part and parcel of grammatical competence.
  • Krott, A. (2001). Analogy in morphology: The selection of linking elements in Dutch compounds. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057602.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder[Letters to Nature]. Nature, 413, 519-523. doi:10.1038/35097076.

    Abstract

    Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity. Although studies of twins consistently indicate that a significant genetic component is involved, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language
  • De Lange, F. P., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Werf, S. P., Van der Meer, J. W. M., & Toni, I. (2004). Neural correlates of the chronic fatigue syndrom: An fMRI study. Brain, 127(9), 1948-1957. doi:10.1093/brain/awh225.

    Abstract

    Chronic fatigue syndrome (CFS) is characterized by a debilitating fatigue of unknown aetiology. Patients who suffer from CFS report a variety of physical complaints as well as neuropsychological complaints. Therefore, it is conceivable that the CNS plays a role in the pathophysiology of CFS. The purpose of this study was to investigate neural correlates of CFS, and specifically whether there exists a linkage between disturbances in the motor system and CFS. We measured behavioural performance and cerebral activity using rapid event-related functional MRI in 16 CFS patients and 16 matched healthy controls while they were engaged in a motor imagery task and a control visual imagery task. CFS patients were considerably slower on performance of both tasks, but the increase in reaction time with increasing task load was similar between the groups. Both groups used largely overlapping neural resources. However, during the motor imagery task, CFS patients evoked stronger responses in visually related structures. Furthermore, there was a marked between-groups difference during erroneous performance. In both groups, dorsal anterior cingulate cortex was specifically activated during error trials. Conversely, ventral anterior cingulate cortex was active when healthy controls made an error, but remained inactive when CFS patients made an error. Our results support the notion that CFS may be associated with dysfunctional motor planning. Furthermore, the between-groups differences observed during erroneous performance point to motivational disturbances as a crucial component of CFS.
  • Lausberg, H., & Kita, S. (2001). Hemispheric specialization in nonverbal gesticulation investigated in patients with callosal disconnection. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité: Interactions et comportements multimodaux dans la communication. Actes du colloque ORAGE 2001 (pp. 266-270). Paris, France: Éditions L'Harmattan.
  • Ledberg, A., Fransson, P., Larsson, J., & Petersson, K. M. (2001). A 4D approach to the analysis of functional brain images: Application to fMRI data. Human Brain Mapping, 13, 185-198. doi:10.1002/hbm.1032.

    Abstract

    This paper presents a new approach to functional magnetic resonance imaging (FMRI) data analysis. The main difference lies in the view of what comprises an observation. Here we treat the data from one scanning session (comprising t volumes, say) as one observation. This is contrary to the conventional way of looking at the data where each session is treated as t different observations. Thus instead of viewing the v voxels comprising the 3D volume of the brain as the variables, we suggest the usage of the vt hypervoxels comprising the 4D volume of the brain-over-session as the variables. A linear model is fitted to the 4D volumes originating from different sessions. Parameter estimation and hypothesis testing in this model can be performed with standard techniques. The hypothesis testing generates 4D statistical images (SIs) to which any relevant test statistic can be applied. In this paper we describe two test statistics, one voxel based and one cluster based, that can be used to test a range of hypotheses. There are several benefits in treating the data from each session as one observation, two of which are: (i) the temporal characteristics of the signal can be investigated without an explicit model for the blood oxygenation level dependent (BOLD) contrast response function, and (ii) the observations (sessions) can be assumed to be independent and hence inference on the 4D SI can be made by nonparametric or Monte Carlo methods. The suggested 4D approach is applied to FMRI data and is shown to accurately detect the expected signal
  • Levelt, W. J. M., Meyer, A. S., & Roelofs, A. (2004). Relations of lexical access to neural implementation and syntactic encoding [author's response]. Behavioral and Brain Sciences, 27, 299-301. doi:10.1017/S0140525X04270078.

    Abstract

    How can one conceive of the neuronal implementation of the processing model we proposed in our target article? In his commentary (Pulvermüller 1999, reprinted here in this issue), Pulvermüller makes various proposals concerning the underlying neural mechanisms and their potential localizations in the brain. These proposals demonstrate the compatibility of our processing model and current neuroscience. We add further evidence on details of localization based on a recent meta-analysis of neuroimaging studies of word production (Indefrey & Levelt 2000). We also express some minor disagreements with respect to Pulvermüller’s interpretation of the “lemma” notion, and concerning his neural modeling of phonological code retrieval. Branigan & Pickering discuss important aspects of syntactic encoding, which was not the topic of the target article. We discuss their well-taken proposal that multiple syntactic frames for a single verb lemma are represented as independent nodes, which can be shared with other verbs, such as accounting for syntactic priming in speech production. We also discuss how, in principle, the alternative multiple-frame-multiplelemma account can be tested empirically. The available evidence does not seem to support that account.
  • Levelt, W. J. M. (2004). Speech, gesture and the origins of language. European Review, 12(4), 543-549. doi:10.1017/S1062798704000468.

    Abstract

    During the second half of the 19th century, the psychology of language was invented as a discipline for the sole purpose of explaining the evolution of spoken language. These efforts culminated in Wilhelm Wundt’s monumental Die Sprache of 1900, which outlined the psychological mechanisms involved in producing utterances and considered how these mechanisms could have evolved. Wundt assumes that articulatory movements were originally rather arbitrary concomitants of larger, meaningful expressive bodily gestures. The sounds such articulations happened to produce slowly acquired the meaning of the gesture as a whole, ultimately making the gesture superfluous. Over a century later, gestural theories of language origins still abound. I argue that such theories are unlikely and wasteful, given the biological, neurological and genetic evidence.
  • Levelt, W. J. M. (2001). The architecture of normal spoken language use. In G. Gupta (Ed.), Cognitive science: Issues and perspectives (pp. 457-473). New Delhi: Icon Publications.
  • Levelt, W. J. M. (2004). Een huis voor kunst en wetenschap. Boekman: Tijdschrift voor Kunst, Cultuur en Beleid, 16(58/59), 212-215.
  • Levelt, W. J. M., Mills, A., & Karmiloff-Smith, A. (1981). Child language research in ESF Countries: An inventory. Strasbourg: European Science Foundation.
  • Levelt, W. J. M. (2001). De vlieger die (onverwacht) wel opgaat. Natuur & Techniek, 69(6), 60.
  • Levelt, W. J. M. (2001). Defining dyslexia. Science, 292, 1300-1301.
  • Levelt, W. J. M. (1981). Déjà vu? Cognition, 10, 187-192. doi:10.1016/0010-0277(81)90044-5.
  • Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10(5), 553-567. doi:10.1162/089892998562960.

    Abstract

    The purpose of this study was to relate a psycholinguistic processing model of picture naming to the dynamics of cortical activation during picture naming. The activation was recorded from eight Dutch subjects with a whole-head neuromagnetometer. The processing model, based on extensive naming latency studies, is a stage model. In preparing a picture's name, the speaker performs a chain of specific operations. They are, in this order, computing the visual percept, activating an appropriate lexical concept, selecting the target word from the mental lexicon, phonological encoding, phonetic encoding, and initiation of articulation. The time windows for each of these operations are reasonably well known and could be related to the peak activity of dipole sources in the individual magnetic response patterns. The analyses showed a clear progression over these time windows from early occipital activation, via parietal and temporal to frontal activation. The major specific findings were that (1) a region in the left posterior temporal lobe, agreeing with the location of Wernicke's area, showed prominent activation starting about 200 msec after picture onset and peaking at about 350 msec, (i.e., within the stage of phonological encoding), and (2) a consistent activation was found in the right parietal cortex, peaking at about 230 msec after picture onset, thus preceding and partly overlapping with the left temporal response. An interpretation in terms of the management of visual attention is proposed.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (2004). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience [CD-ROM] (3rd). Amsterdam: Elsevier.
  • Levelt, W. J. M., & Maassen, B. (1981). Lexical search and order of mention in sentence production. In W. Klein, & W. J. M. Levelt (Eds.), Crossing the boundaries in linguistics (pp. 221-252). Dordrecht: Reidel.
  • Levelt, W. J. M., & Schiller, N. O. (1998). Is the syllable frame stored? [Commentary on the BBS target article 'The frame/content theory of evolution of speech production' by Peter F. McNeilage]. Behavioral and Brain Sciences, 21, 520.

    Abstract

    This commentary discusses whether abstract metrical frames are stored. For stress-assigning languages (e.g., Dutch and English), which have a dominant stress pattern, metrical frames are stored only for words that deviate from the default stress pattern. The majority of the words in these languages are produced without retrieving any independent syllabic or metrical frame.
  • Levelt, W. J. M. (2001). Relations between speech production and speech perception: Some behavioral and neurological observations. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honour of Jacques Mehler (pp. 241-256). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98, 13464-13471. doi:10.1073/pnas.231459498.

    Abstract

    A core operation in speech production is the preparation of words from a semantic base. The theory of lexical access reviewed in this article covers a sequence of processing stages beginning with the speaker’s focusing on a target concept and ending with the initiation of articulation. The initial stages of preparation are concerned with lexical selection, which is zooming in on the appropriate lexical item in the mental lexicon. The following stages concern form encoding, i.e., retrieving a word’s morphemic phonological codes, syllabifying the word, and accessing the corresponding articulatory gestures. The theory is based on chronometric measurements of spoken word production, obtained, for instance, in picture-naming tasks. The theory is largely computationally implemented. It provides a handle on the analysis of multiword utterance production as well as a guide to the analysis and design of neuroimaging studies of spoken utterance production.
  • Levelt, W. J. M. (1981). The speaker's linearization problem [and Discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 295, 305-315. doi:10.1098/rstb.1981.0142.

    Abstract

    The process of speaking is traditionally regarded as a mapping of thoughts (intentions, feelings, etc.) onto language. One requirement that this mapping has to meet is that the units of information to be expressed be strictly ordered. The channel of speech largely prohibits the simultaneous expression of multiple propositions: the speaker has a linearization problem - that is, a linear order has to be determined over any knowledge structure to be formulated. This may be relatively simple if the informational structure has itself an intrinsic linear arrangement, as often occurs with event structures, but it requires special procedures if the structure is more complex, as is often the case in two- or three-dimensional spatial patterns. How, for instance, does a speaker proceed in describing his home, or the layout of his town? Two powerful constraints on linearization derive, on the one hand, from 'mutual knowledge' and, on the other, from working memory limitations. Mutual knowledge may play a role in that the listener can be expected to derive different implicatures from different orderings (compare 'she married and became pregnant' with 'she became pregnant and married'). Mutual knowledge determinants of linearization are essentially pragmatic and cultural, and dependent on the content of discourse. Working memory limitations affect linearization in that a speaker's linearization strategy will minimize memory load during the process of formulating. A multidimensional structure is broken up in such a way that the number of 'return addresses' to be kept in memory will be minimized. This is attained by maximizing the connectivity of the discourse, and by backtracking to stored addresses in a first-in-last-out fashion. These memory determinants of linearization are presumably biological, and independent of the domain of discourse. An important question is whether the linearization requirement is enforced by the oral modality of speech or whether it is a deeper modality-independent property of language use.
  • Levelt, W. J. M. (1998). The genetic perspective in psycholinguistics, or: Where do spoken words come from? Journal of Psycholinguistic Research, 27(2), 167-180. doi:10.1023/A:1023245931630.

    Abstract

    The core issue in the 19-century sources of psycholinguistics was the question, "Where does language come from?'' This genetic perspective unified the study of the ontogenesis, the phylogenesis, the microgenesis, and to some extent the neurogenesis of language. This paper makes the point that this original perspective is still a valid and attractive one. It is exemplified by a discussion of the genesis of spoken words.
  • Levelt, W. J. M. (2001). Woorden ophalen. Natuur en Techniek, 69(10), 74.

Share this page