Publications

Displaying 1 - 100 of 132
  • Akita, K., & Dingemanse, M. (2019). Ideophones (Mimetics, Expressives). In Oxford Research Encyclopedia for Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.477.

    Abstract

    Ideophones, also termed “mimetics” or “expressives,” are marked words that depict sensory imagery. They are found in many of the world’s languages, and sizable lexical classes of ideophones are particularly well-documented in languages of Asia, Africa, and the Americas. Ideophones are not limited to onomatopoeia like meow and smack, but cover a wide range of sensory domains, such as manner of motion (e.g., plisti plasta ‘splish-splash’ in Basque), texture (e.g., tsaklii ‘rough’ in Ewe), and psychological states (e.g., wakuwaku ‘excited’ in Japanese). Across languages, ideophones stand out as marked words due to special phonotactics, expressive morphology including certain types of reduplication, and relative syntactic independence, in addition to production features like prosodic foregrounding and common co-occurrence with iconic gestures.

    Three intertwined issues have been repeatedly debated in the century-long literature on ideophones. (a) Definition: Isolated descriptive traditions and cross-linguistic variation have sometimes obscured a typologically unified view of ideophones, but recent advances show the promise of a prototype definition of ideophones as conventionalised depictions in speech, with room for language-specific nuances. (b) Integration: The variable integration of ideophones across linguistic levels reveals an interaction between expressiveness and grammatical integration, and has important implications for how to conceive of dependencies between linguistic systems. (c) Iconicity: Ideophones form a natural laboratory for the study of iconic form-meaning associations in natural languages, and converging evidence from corpus and experimental studies suggests important developmental, evolutionary, and communicative advantages of ideophones.
  • Ameka, F. K. (2005). "The woman is seeable" and "The woman perceives seeing": Undergoer voice constructions in Ewe and Likpe. In M. Dakubu, & E. Osam (Eds.), Studies in languages of the Volta Basin (pp. 43-62). Legon: University of Ghana. Department of Linguistics.
  • Ameka, F. K. (2005). Forms of secondary predication in serializing languages: On depictives in Ewe. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification: The typology of depictives (pp. 335-378). Oxford: Oxford University Press.
  • Ameka, F. K. (2005). Multiverb constructions on the West African littoral: Microvariation and areal typology. In M. Vulchanova, & T. A. Afarli (Eds.), Grammar and beyond: Essays in honour of Lars Hellan (pp. 15-42). Oslo: Novus.
  • Baayen, R. H. (2005). Data mining at the intersection of psychology and linguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 69-83). Mahwah: Erlbaum.
  • Bauer, B. L. M. (2005). Innovation in Old French syntax and its Latin origins. In S. Kiss, L. Mondin, & G. Salvi (Eds.), Latin et langues romanes: Etudes de linguistique offertes à Jozsef Herman à l’occasion de son 80ème anniversaire (pp. 507-521). Tübingen: Niemeyer.
  • Bauer, B. L. M. (2005). Living in two worlds. In W. R. Louis (Ed.), Burnt orange Britannia (pp. 732-744). Austin: Harry Ransom Humanities Research Center.
  • Bickel, B. (1991). Der Hang zur Exzentrik - Annäherungen an das kognitive Modell der Relativkonstruktion. In W. Bisang, & P. Rinderknecht (Eds.), Von Europa bis Ozeanien - von der Antinomie zum Relativsatz (pp. 15-37). Zurich, Switzerland: Seminar für Allgemeine Sprachwissenschaft der Universität.
  • Blomert, L., & Hagoort, P. (1987). Neurobiologische en neuropsychologische aspecten van dyslexie. In J. Hamers, & A. Van der Leij (Eds.), Dyslexie 87 (pp. 35-44). Lisse: Swets and Zeitlinger.
  • Bowerman, M. (2005). Why can't you "open" a nut or "break" a cooked noodle? Learning covert object categories in action word meanings. In L. Gershkoff-Stowe, & D. H. Rakison (Eds.), Building object categories in developmental time (pp. 209-243). Mahwah, NJ: Erlbaum.
  • Bowerman, M. (1987). Commentary: Mechanisms of language acquisition. In B. MacWhinney (Ed.), Mechanisms of language acquisition (pp. 443-466). Hillsdale, N.J.: Lawrence Erlbaum.
  • Bowerman, M. (2005). Linguistics. In B. Hopkins (Ed.), The Cambridge encyclopedia of child development (pp. 497-501). Cambridge: Cambridge University Press.
  • Bowerman, M. (1986). First steps in acquiring conditionals. In E. C. Traugott, A. G. t. Meulen, J. S. Reilly, & C. A. Ferguson (Eds.), On conditionals (pp. 285-308). Cambridge University Press.

    Abstract

    This chapter is about the initial flowering of conditionals, if-(then) constructions, in children's spontaneous speech. It is motivated by two major theoretical interests. The first and most immediate is to understand the acquisition process itself. Conditionals are conceptually, and in many languages morphosyntactically, complex. What aspects of cognitive and grammatical development are implicated in their acquisition? Does learning take place in the context of particular interactions with other speakers? Where do conditionals fit in with the acquisition of other complex sentences? What are the semantic, syntactic and pragmatic properties of the first conditionals? Underlying this first interest is a second, more strictly linguistic one. Research of recent years has found increasing evidence that natural languages are constrained in certain ways. The source of these constraints is not yet clearly understood, but it is widely assumed that some of them derive ultimately from properties of children's capacity for language acquisition.

    Files private

    Request files
  • Bowerman, M. (1982). Reorganizational processes in lexical and syntactic development. In E. Wanner, & L. Gleitman (Eds.), Language acquisition: The state of the art (pp. 319-346). New York: Academic Press.
  • Bowerman, M. (1982). Starting to talk worse: Clues to language acquisition from children's late speech errors. In S. Strauss (Ed.), U shaped behavioral growth (pp. 101-145). New York: Academic Press.
  • Brown, P. (2005). Linguistic politeness. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the science of language and society (pp. 1410-1416). Berlin: Mouton de Gruyter.

    Abstract

    This is an encyclopedia entry surveying research and theoretical approaches to politeness phenomena in language usage.
  • Brown, P. (1991). Sind Frauen höflicher? Befunde aus einer Maya-Gemeinde. In S. Günther, & H. Kotthoff (Eds.), Von fremden Stimmen: Weibliches und männliches Sprechen im Kulturvergleich. Frankfurt am Main: Suhrkamp.

    Abstract

    This is a German translation of Brown 1980, How and why are women more polite: Some evidence from a Mayan community.
  • Burenkova, O. V., & Fisher, S. E. (2019). Genetic insights into the neurobiology of speech and language. In E. Grigorenko, Y. Shtyrov, & P. McCardle (Eds.), All About Language: Science, Theory, and Practice. Baltimore, MD: Paul Brookes Publishing, Inc.
  • Clark, E. V., & Bowerman, M. (1986). On the acquisition of final voiced stops. In J. A. Fishman (Ed.), The Fergusonian impact: in honor of Charles A. Ferguson on the occasion of his 65th birthday. Volume 1: From phonology to society (pp. 51-68). Berlin: Mouton de Gruyter.
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A. (1991). Linguistic rhythm and speech segmentation. In J. Sundberg, L. Nord, & R. Carlson (Eds.), Music, language, speech and brain (pp. 157-166). London: Macmillan.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A. (1987). Speaking for listening. In A. Allport, D. MacKay, W. Prinz, & E. Scheerer (Eds.), Language perception and production: Relationships between listening, speaking, reading and writing (pp. 23-40). London: Academic Press.

    Abstract

    Speech production is constrained at all levels by the demands of speech perception. The speaker's primary aim is successful communication, and to this end semantic, syntactic and lexical choices are directed by the needs of the listener. Even at the articulatory level, some aspects of production appear to be perceptually constrained, for example the blocking of phonological distortions under certain conditions. An apparent exception to this pattern is word boundary information, which ought to be extremely useful to listeners, but which is not reliably coded in speech. It is argued that the solution to this apparent problem lies in rethinking the concept of the boundary of the lexical access unit. Speech rhythm provides clear information about the location of stressed syllables, and listeners do make use of this information. If stressed syllables can serve as the determinants of word lexical access codes, then once again speakers are providing precisely the necessary form of speech information to facilitate perception.
  • Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.

    Abstract

    This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language.
  • Dimroth, C., & Watorek, M. (2005). Additive scope particles in advanced learner and native speaker discourse. In Hendriks, & Henriëtte (Eds.), The structure of learner varieties (pp. 461-488). Berlin: Mouton de Gruyter.
  • Dingemanse, M. (2019). 'Ideophone' as a comparative concept. In K. Akita, & P. Pardeshi (Eds.), Ideophones, Mimetics, and Expressives (pp. 13-33). Amsterdam: John Benjamins. doi:10.1075/ill.16.02din.

    Abstract

    This chapter makes the case for ‘ideophone’ as a comparative concept: a notion that captures a recurrent typological pattern and provides a template for understanding language-specific phenomena that prove similar. It revises an earlier definition to account for the observation that ideophones typically form an open lexical class, and uses insights from canonical typology to explore the larger typological space. According to the resulting definition, a canonical ideophone is a member of an open lexical class of marked words that depict sensory imagery. The five elements of this definition can be seen as dimensions that together generate a possibility space to characterise cross-linguistic diversity in depictive means of expression. This approach allows for the systematic comparative treatment of ideophones and ideophone-like phenomena. Some phenomena in the larger typological space are discussed to demonstrate the utility of the approach: phonaesthemes in European languages, specialised semantic classes in West-Chadic, diachronic diversions in Aslian, and depicting constructions in signed languages.
  • Dirksmeyer, T. (2005). Why do languages die? Approaching taxonomies, (re-)ordering causes. In J. Wohlgemuth, & T. Dirksmeyer (Eds.), Bedrohte Vielfalt. Aspekte des Sprach(en)tods – Aspects of language death (pp. 53-68). Berlin: Weißensee.

    Abstract

    Under what circumstances do languages die? Why has their “mortality rate” increased dramatically in the recent past? What “causes of death” can be identified for historical cases, to what extent are these generalizable, and how can they be captured in an explanatory theory? In pursuing these questions, it becomes apparent that in typical cases of language death various causes tend to interact in multiple ways. Speakers’ attitudes towards their language play a critical role in all of this. Existing categorial taxonomies do not succeed in modeling the complex relationships between these factors. Therefore, an alternative, dimensional approach is called for to more adequately address (and counter) the causes of language death in a given scenario.
  • Doherty, M., & Klein, W. (Eds.). (1991). Übersetzung [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (84).
  • Drude, S. (2005). A contribuição alemã à Lingüística e Antropologia dos índios do Brasil, especialmente da Amazônia. In J. J. A. Alves (Ed.), Múltiplas Faces da Históriadas Ciência na Amazônia (pp. 175-196). Belém: EDUFPA.
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Friederici, A., & Levelt, W. J. M. (1987). Sprache. In K. Immelmann, K. Scherer, & C. Vogel (Eds.), Funkkolleg Psychobiologie (pp. 58-87). Weinheim: Beltz.
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Heeschen, V., Eibl-Eibesfeldt, I., Grammer, K., Schiefenhövel, W., & Senft, G. (1986). Sprachliches Verhalten. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1986 (pp. 394-396). Göttingen: Vandenhoeck and Ruprecht.
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Janzen, G. (2005). Wie das mensliche Gehirn Orientierung ermöglicht. In G. Plehn (Ed.), Jahrbuch der Max-Planck-Gesellschaft (pp. 599-601). Göttingen: Vandenhoeck & Ruprecht.
  • Johnsrude, I., Davis, M., & Hervais-Adelman, A. (2005). From sound to meaning: Hierarchical processing in speech comprehension. In D. Pressnitzer, S. McAdams, A. DeCheveigne, & L. Collet (Eds.), Auditory Signal Processing: Physiology, Psychoacoustics, and Models (pp. 299-306). New York: Springer.
  • Jordan, F., & Mace, R. (2005). The evolution of human sex-ratio at birth: A bio-cultural analysis. In R. Mace, C. J. Holden, & S. Shennan (Eds.), The evolution of cultural diversity: A phylogenetic approach (pp. 207-216). London: UCL Press.
  • Kempen, G., & Harbusch, K. (2005). The relationship between grammaticality ratings and corpus frequencies: A case study into word order variability in the midfield of German clauses. In S. Kepser, & M. Reis (Eds.), Linguistic evidence - emperical, theoretical, and computational perspectives (pp. 329-349). Berlin: Mouton de Gruyter.
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Semdt, K. (1987). Author environments: Fifth generation text processors. In Commission of the European Communities. Directorate-General for Telecommunications, Information Industries, and Innovation (Ed.), Esprit'86: Results and achievements (pp. 365-372). Amsterdam: Elsevier Science Publishers.
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Smedt, K. (1987). Author environments: Fifth generation text processors. In Commission of the European Communities. Directorate-General for Telecommunications, Information Industries, and Innovation (Ed.), Esprit'86: Results and achievements (pp. 365-372). Amsterdam: Elsevier Science Publishers.
  • Kempen, G. (1986). Beyond word processing. In E. Cluff, & G. Bunting (Eds.), Information management yearbook 1986 (pp. 178-181). London: IDPM Publications.
  • Kempen, G. (1986). Kunstmatige intelligentie en gezond verstand. In P. Hagoort, & R. Maessen (Eds.), Geest, computer, kunst (pp. 118-123). Utrecht: Stichting Grafiet.
  • Klein, W. (2005). Söldner des Wissens. In R. Kiesow, R. Ogorek, & S. Simitis (Eds.), Summa: Dieter Simon zum 70. Geburtstag (pp. 319-332). Frankfurt am Main: Klostermann.
  • Klein, W., & Dimroth, C. (Eds.). (2005). Spracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 140.
  • Klein, W. (2005). The grammar of varieties. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the Science of Language and Society (pp. 1163-1171). Berlin: Walter de Gruyter.
  • Klein, W., & Perdue, C. (1986). Comment résourdre une tache verbale complexe avec peu de moyens linguistiques? In A. Giacomi, & D. Véronique (Eds.), Acquisition d'une langue étrangère (pp. 306-330). Aix-en-Provence: Service des Publications de l'Universite de Provence.
  • Klein, W. (2005). Der alte und der neue Grimm. In Grimm-Sozietät (Ed.), Die Brüder Grimm in Berlin (pp. 167-176). Stuttgart: Hirzel.
  • Klein, W. (Ed.). (2005). Nicht nur Literatur [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 137.
  • Klein, W. (1987). L'espressione della temporalita in una varieta elementare di L2. In A. Ramat (Ed.), L'apprendimento spontaneo di una seconda lingua (pp. 131-146). Bologna: Molino.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W. (1986). Intonation und Satzmodalität in einfachen Fällen: Einige Beobachtungen. In E. Slembek (Ed.), Miteinander sprechen und handeln: Festschrift für Hellmut Geissner (pp. 161-177). Königstein Ts.: Scriptor.
  • Klein, W. (1991). Seven trivia of language acquisition. In L. Eubank (Ed.), Point counterpoint: Universal grammar in the second language (pp. 49-70). Amsterdam: Benjamins.
  • Klein, W. (1991). SLA theory: Prolegomena to a theory of language acquisition and implications for Theoretical Linguistics. In T. Huebner, & C. Ferguson (Eds.), Crosscurrents in second language acquisition and linguistic theories (pp. 169-194). Amsterdam: Benjamins.
  • Klein, W. (Ed.). (1987). Sprache und Ritual [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (65).
  • Klein, W. (Ed.). (1986). Sprachverfall [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (62).
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W. (Ed.). (1982). Zweitspracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (45).
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1986). Herdenking van Joseph Maria Franciscus Jaspars (16 maart 1934 - 31 juli 1985). In Jaarboek 1986 Koninklijke Nederlandse Akademie van Wetenschappen (pp. 187-189). Amsterdam: North Holland.
  • Levelt, W. J. M. (1987). Hochleistung in Millisekunden - Sprechen und Sprache verstehen. In Jahrbuch der Max-Planck-Gesellschaft (pp. 61-77). Göttingen: Vandenhoeck & Ruprecht.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M., & d'Arcais, F. (1987). Snelheid en uniciteit bij lexicale toegang. In H. Crombag, L. Van der Kamp, & C. Vlek (Eds.), De psychologie voorbij: Ontwikkelingen rond model, metriek en methode in de gedragswetenschappen (pp. 55-68). Lisse: Swets & Zeitlinger.
  • Levelt, W. J. M. (1986). Zur sprachlichen Abbildung des Raumes: Deiktische und intrinsische Perspektive. In H. Bosshardt (Ed.), Perspektiven auf Sprache. Interdisziplinäre Beiträge zum Gedenken an Hans Hörmann (pp. 187-211). Berlin: De Gruyter.
  • Levinson, S. C. (1982). Caste rank and verbal interaction in Western Tamilnadu. In D. B. McGilvray (Ed.), Caste ideology and interaction (pp. 98-203). Cambridge University Press.
  • Levinson, S. C. (1991). Deixis. In W. Bright (Ed.), Oxford international encyclopedia of linguistics (pp. 343-344). Oxford University Press.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1982). Speech act theory: The state of the art. In V. Kinsella (Ed.), Surveys 2. Eight state-of-the-art articles on key areas in language teaching. Cambridge University Press.
  • Magyari, L. (2005). A nyelv miért nem olyan, mint a szem? (Why is language not like vertebrate eye?). In J. Gervain, K. Kovács, Á. Lukács, & M. Racsmány (Eds.), Az ezer arcú elme (The mind with thousand faces) (first edition, pp. 452-460). Budapest: Akadémiai Kiadó.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Massaro, D. W., & Jesse, A. (2005). The magic of reading: Too many influences for quick and easy explanations. In T. Trabasso, J. Sabatini, D. W. Massaro, & R. C. Calfee (Eds.), From orthography to pedagogy: Essays in honor of Richard L. Venezky. (pp. 37-61). Mahwah, NJ: Lawrence Erlbaum Associates.

    Abstract

    Words are fundamental to reading and yet over a century of research has not masked the controversies around how words are recognized. We review some old and new research that disproves simple ideas such as words are read as wholes or are simply mapped directly to spoken language. We also review theory and research relevant to the question of sublexical influences in word recognition. We describe orthography and phonology, how they are related to each other and describe a series of new experiments on how these sources of information are processed. Tasks include lexical decision, perceptual identification, and naming. Dependent measures are reaction time, accuracy of performance, and a new measure, initial phoneme duration, that refers to the duration of the first phoneme when the target word is pronounced. Important factors in resolving the controversies include the realization that reading has multiple determinants, as well as evaluating the type of task, proper controls such as familiarity of the test items and accuracy of measurement of the response. We also address potential limitations with measures related to the mapping between orthography and phonology, and show that the existence of a sound-to-spelling consistency effect does not require interactive activation, but can be explained and predicted by a feedforward model, the Fuzzy logical model of perception.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Poletiek, F. H., & Rassin E. (Eds.). (2005). Het (on)bewuste [Special Issue]. De Psycholoog.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Roelofs, A. (2005). Spoken word planning, comprehending, and self-monitoring: Evaluation of WEAVER++. In R. Hartsuiker, R. Bastiaanse, A. Postma, & F. Wijnen (Eds.), Phonological encoding and monitoring in normal and pathological speech (pp. 42-63). Hove: Psychology press.
  • Roelofs, A. (2005). From Popper to Lakatos: A case for cumulative computational modeling. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 313-330). Mahwah,NJ: Erlbaum.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.

Share this page