Publications

Displaying 101 - 171 of 171
  • Levelt, W. J. M. (1989). Working models of perception: Five general issues. In B. A. Elsendoorn, & H. Bouma (Eds.), Working models of perception (pp. 489-503). London: Academic Press.
  • Levinson, S. C. (2013). Action formation and ascription. In T. Stivers, & J. Sidnell (Eds.), The handbook of conversation analysis (pp. 103-130). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch6.

    Abstract

    Since the core matrix for language use is interaction, the main job of language
    is not to express propositions or abstract meanings, but to deliver actions.
    For in order to respond in interaction we have to ascribe to the prior turn
    a primary ‘action’ – variously thought of as an ‘illocution’, ‘speech act’, ‘move’,
    etc. – to which we then respond. The analysis of interaction also relies heavily
    on attributing actions to turns, so that, e.g., sequences can be characterized in
    terms of actions and responses. Yet the process of action ascription remains way
    understudied. We don’t know much about how it is done, when it is done, nor even
    what kind of inventory of possible actions might exist, or the degree to which they
    are culturally variable.
    The study of action ascription remains perhaps the primary unfulfilled task in
    the study of language use, and it needs to be tackled from conversationanalytic,
    psycholinguistic, cross-linguistic and anthropological perspectives.
    In this talk I try to take stock of what we know, and derive a set of goals for and
    constraints on an adequate theory. Such a theory is likely to employ, I will suggest,
    a top-down plus bottom-up account of action perception, and a multi-level notion
    of action which may resolve some of the puzzles that have repeatedly arisen.
  • Levinson, S. C. (1989). Conversation. In E. Barnouw (Ed.), International encyclopedia of communications (pp. 407-410). New York: Oxford University Press.
  • Levinson, S. C. (2013). Cross-cultural universals and communication structures. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 67-80). Cambridge, MA: MIT Press.

    Abstract

    Given the diversity of languages, it is unlikely that the human capacity for language resides in rich universal syntactic machinery. More likely, it resides centrally in the capacity for vocal learning combined with a distinctive ethology for communicative interaction, which together (no doubt with other capacities) make diverse languages learnable. This chapter focuses on face-to-face communication, which is characterized by the mapping of sounds and multimodal signals onto speech acts and which can be deeply recursively embedded in interaction structure, suggesting an interactive origin for complex syntax. These actions are recognized through Gricean intention recognition, which is a kind of “ mirroring” or simulation distinct from the classic mirror neuron system. The multimodality of conversational interaction makes evident the involvement of body, hand, and mouth, where the burden on these can be shifted, as in the use of speech and gesture, or hands and face in sign languages. Such shifts having taken place during the course of human evolution. All this suggests a slightly different approach to the mystery of music, whose origins should also be sought in joint action, albeit with a shift from turn-taking to simultaneous expression, and with an affective quality that may tap ancient sources residual in primate vocalization. The deep connection of language to music can best be seen in the only universal form of music, namely song.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 219-232). Cambridge, Mass: MIT Press.
  • Majid, A. (2015). Comparing lexicons cross-linguistically. In J. R. Taylor (Ed.), The Oxford Handbook of the Word (pp. 364-379). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199641604.013.020.

    Abstract

    The lexicon is central to the concerns of disparate disciplines and has correspondingly elicited conflicting proposals about some of its foundational properties. Some suppose that word meanings and their associated concepts are largely universal, while others note that local cultural interests infiltrate every category in the lexicon. This chapter reviews research in two semantic domains—perception and the body—in order to illustrate crosslinguistic similarities and differences in semantic fields. Data is considered from a wide array of languages, especially those from small-scale indigenous communities which are often overlooked. In every lexical field we find considerable variation across cultures, raising the question of where this variation comes from. Is it the result of different ecological or environmental niches, cultural practices, or accidents of historical pasts? Current evidence suggests that diverse pressures differentially shape lexical fields.
  • Majid, A. (2013). Psycholinguistics. In J. L. Jackson (Ed.), Oxford Bibliographies Online: Anthropology. Oxford: Oxford University Press.
  • Malt, B. C., Gennari, S., Imai, M., Ameel, E., Saji, N., & Majid, A. (2015). Where are the concepts? What words can and can’t reveal. In E. Margolis, & S. Laurence (Eds.), The conceptual Mind: New directions in the study of concepts (pp. 291-326). Cambridge, MA: MIT Press.

    Abstract

    Concepts are so fundamental to human cognition that Fodor declared the heart of a cognitive science to be its theory of concepts. To study concepts, though, cognitive scientists need to be able to identify some. The prevailing assumption has been that they are revealed by words such as triangle, table, and robin. But languages vary dramatically in how they carve up the world with names. Either ordinary concepts must be heavily language dependent, or names cannot be a direct route to concepts. We asked speakers of English, Dutch, Spanish, and Japanese to name a set of 36 video clips of human locomotion and to judge the similarities among them. We investigated what name inventories, name extensions, scaling solutions on name similarity, and scaling solutions on nonlinguistic similarity from the groups, individually and together, suggest about the underlying concepts. Aggregated naming data and similarity solutions converged on results distinct from individual languages.
  • Martin, R. C., & Tan, Y. (2015). Sentence comprehension deficits: Independence and interaction of syntax, semantics, and working memory. In A. E. Hillis (Ed.), Handbook of adult language disorders (2nd ed., pp. 303-327). Boca Raton: CRC Press.
  • Matić, D. (2015). Information structure in linguistics. In J. D. Wright (Ed.), The International Encyclopedia of Social and Behavioral Sciences (2nd ed.) Vol. 12 (pp. 95-99). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.53013-X.

    Abstract

    Information structure is a subfield of linguistic research dealing with the ways speakers encode instructions to the hearer on how to process the message relative to their temporary mental states. To this end, sentences are segmented into parts conveying known and yet-unknown information, usually labeled ‘topic’ and ‘focus.’ Many languages have developed specialized grammatical and lexical means of indicating this segmentation.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • Mehler, J., & Cutler, A. (1990). Psycholinguistic implications of phonological diversity among languages. In M. Piattelli-Palmerini (Ed.), Cognitive science in Europe: Issues and trends (pp. 119-134). Rome: Golem.
  • Mishra, R. K., Olivers, C. N. L., & Huettig, F. (2013). Spoken language and the decision to move the eyes: To what extent are language-mediated eye movements automatic? In V. S. C. Pammi, & N. Srinivasan (Eds.), Progress in Brain Research: Decision making: Neural and behavioural approaches (pp. 135-149). New York: Elsevier.

    Abstract

    Recent eye-tracking research has revealed that spoken language can guide eye gaze very rapidly (and closely time-locked to the unfolding speech) toward referents in the visual world. We discuss whether, and to what extent, such language-mediated eye movements are automatic rather than subject to conscious and controlled decision-making. We consider whether language-mediated eye movements adhere to four main criteria of automatic behavior, namely, whether they are fast and efficient, unintentional, unconscious, and overlearned (i.e., arrived at through extensive practice). Current evidence indicates that language-driven oculomotor behavior is fast but not necessarily always efficient. It seems largely unintentional though there is also some evidence that participants can actively use the information in working memory to avoid distraction in search. Language-mediated eye movements appear to be for the most part unconscious and have all the hallmarks of an overlearned behavior. These data are suggestive of automatic mechanisms linking language to potentially referred-to visual objects, but more comprehensive and rigorous testing of this hypothesis is needed.
  • Muysken, P., Hammarström, H., Birchall, J., van Gijn, R., Krasnoukhova, O., & Müller, N. (2015). Linguistic Areas, bottom up or top down? The case of the Guaporé-Mamoré region. In B. Comrie, & L. Golluscio (Eds.), Language Contact and Documentation / Contacto lingüístico y documentación (pp. 205-238). Berlin: De Gruyter.
  • Noordman, L. G. M., Vonk, W., Cozijn, R., & Frank, S. (2015). Causal inferences and world knowledge. In E. J. O'Brien, A. E. Cook, & R. F. Lorch (Eds.), Inferences during reading (pp. 260-289). Cambridge, UK: Cambridge University Press.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Noordman, L. G. M., & Vonk, W. (2015). Inferences in Discourse, Psychology of. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (2nd ed.) Vol. 12 (pp. 37-44). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.57012-3.

    Abstract

    An inference is defined as the information that is not expressed explicitly by the text but is derived on the basis of the understander's knowledge and is encoded in the mental representation of the text. Inferencing is considered as a central component in discourse understanding. Experimental methods to detect inferences, established findings, and some developments are reviewed. Attention is paid to the relation between inference processes and the brain.
  • Norcliffe, E., & Konopka, A. E. (2015). Vision and language in cross-linguistic research on sentence production. In R. K. Mishra, N. Srinivasan, & F. Huettig (Eds.), Attention and vision in language processing (pp. 77-96). New York: Springer. doi:10.1007/978-81-322-2443-3_5.

    Abstract

    To what extent are the planning processes involved in producing sentences fine-tuned to grammatical properties of specific languages? In this chapter we survey the small body of cross-linguistic research that bears on this question, focusing in particular on recent evidence from eye-tracking studies. Because eye-tracking methods provide a very fine-grained temporal measure of how conceptual and linguistic planning unfold in real time, they serve as an important complement to standard psycholinguistic methods. Moreover, the advent of portable eye-trackers in recent years has, for the first time, allowed eye-tracking techniques to be used with language populations that are located far away from university laboratories. This has created the exciting opportunity to extend the typological base of vision-based psycholinguistic research and address key questions in language production with new language comparisons.
  • Osswald, R., & Van Valin Jr., R. D. (2013). FrameNet, frame structure and the syntax-semantics interface. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Frames and concept types: Applications in language and philosophy. Heidelberg: Springer.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Pijls, F., Kempen, G., & Janner, E. (1990). Intelligent modules for Dutch grammar instruction. In J. Pieters, P. Simons, & L. De Leeuw (Eds.), Research on computer-based instruction. Amsterdam: Swets & Zeitlinger.
  • Roberts, L. (2013). Discourse processing. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 190-194). New York: Routledge.
  • Roberts, L. (2013). Sentence processing in bilinguals. In R. Van Gompel (Ed.), Sentence processing. London: Psychology Press.
  • Rossano, F. (2013). Gaze in conversation. In J. Sidnell, & T. Stivers (Eds.), The handbook of conversation analysis (pp. 308-329). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch15.

    Abstract

    This chapter contains sections titled: Introduction Background: The Gaze “Machinery” Gaze “Machinery” in Social Interaction Future Directions
  • Rumsey, A., San Roque, L., & Schieffelin, B. (2013). The acquisition of ergative marking in Kaluli, Ku Waru and Duna (Trans New Guinea). In E. L. Bavin, & S. Stoll (Eds.), The acquisition of ergativity (pp. 133-182). Amsterdam: Benjamins.

    Abstract

    In this chapter we present material on the acquisition of ergative marking on noun phrases in three languages of Papua New Guinea: Kaluli, Ku Waru, and Duna. The expression of ergativity in all the languages is broadly similar, but sensitive to language-specific features, and this pattern of similarity and difference is reflected in the available acquisition data. Children acquire adult-like ergative marking at about the same pace, reaching similar levels of mastery by 3;00 despite considerable differences in morphological complexity of ergative marking among the languages. What may be more important – as a factor in accounting for the relative uniformity of acquisition in this respect – are the similarities in patterns of interactional scaffolding that emerge from a comparison of the three cases.
  • Schepens, J., Van der Slik, F., & Van Hout, R. (2013). The effect of linguistic distance across Indo-European mother tongues on learning Dutch as a second language. In L. Borin, & A. Saxena (Eds.), Approaches to measuring linguistic differences (pp. 199-230). Berlin: Mouton de Gruyter.
  • Schiller, N. O., & Verdonschot, R. G. (2015). Accessing words from the mental lexicon. In J. Taylor (Ed.), The Oxford handbook of the word (pp. 481-492). Oxford: Oxford University Press.

    Abstract

    This chapter describes how speakers access words from the mental lexicon. Lexical access is a crucial
    component in the process of transforming thoughts into speech. Some theories consider lexical access to be
    strictly serial and discrete, while others view this process as being cascading or even interactive, i.e. the different
    sub-levels influence each other. We discuss some of the evidence in favour and against these viewpoints, and
    also present arguments regarding the ongoing debate on how words are selected for production. Another important
    issue concerns the access to morphologically complex words such as derived and inflected words, as well as
    compounds. Are these accessed as whole entities from the mental lexicon or are the parts assembled online? This
    chapter tries to provide an answer to that question as well.
  • Schriefers, H., & Vigliocco, G. (2015). Speech Production, Psychology of [Repr.]. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (2nd ed) Vol. 23 (pp. 255-258). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.52022-4.

    Abstract

    This article is reproduced from the previous edition, volume 22, pp. 14879–14882, © 2001, Elsevier Ltd.
  • Schubotz, L., Oostdijk, N., & Ernestus, M. (2015). Y’know vs. you know: What phonetic reduction can tell us about pragmatic function. In S. Lestrade, P. De Swart, & L. Hogeweg (Eds.), Addenda: Artikelen voor Ad Foolen (pp. 361-380). Njimegen: Radboud University.
  • Scott, S. K., McGettigan, C., & Eisner, F. (2013). The neural basis of links and dissociations between speech perception and production. In J. J. Bolhuis, & M. Everaert (Eds.), Birdsong, speech and language: Exploring the evolution of mind and brain (pp. 277-294). Cambridge, Mass: MIT Press.
  • Senft, G. (1990). Apropos "the whole and its parts": Classificatory particles in Kilivila language. In W. A. Koch (Ed.), Das Ganze und seine Teile: The whole and its parts (pp. 142-176). Bochum: Brockmeyer.
  • Senft, G. (1998). 'Noble Savages' and the 'Islands of Love': Trobriand Islanders in 'Popular Publications'. In J. Wassmann (Ed.), Pacific answers to Western hegemony: Cultural practices of identity construction (pp. 119-140). Oxford: Berg Publishers.
  • Senft, G., & Heeschen, V. (1989). Humanethologisches Tonarchiv. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1989 (pp. 246). Göttingen: Vandenhoeck and Ruprecht.
  • Senft, G. (2013). Ethnolinguistik. In B. Beer, & H. Fischer (Eds.), Ethnologie - Einführung und Überblick. (8. Auflage, pp. 271-286). Berlin: Reimer.
  • Senft, G. (2015). The Trobriand Islanders' concept of karewaga. In S. Lestrade, P. de Swart, & L. Hogeweg (Eds.), Addenda. Artikelen voor Ad Foolen (pp. 381-390). Nijmegen: Radboud University.
  • Senft, G. (1998). Zeichenkonzeptionen in Ozeanien. In R. Posner, T. Robering, & T.. Sebeok (Eds.), Semiotics: A handbook on the sign-theoretic foundations of nature and culture (Vol. 2) (pp. 1971-1976). Berlin: de Gruyter.
  • Senghas, A., Ozyurek, A., & Goldin-Meadow, S. (2013). Homesign as a way-station between co-speech gesture and sign language: The evolution of segmenting and sequencing. In R. Botha, & M. Everaert (Eds.), The evolutionary emergence of language: Evidence and inference (pp. 62-77). Oxford: Oxford University Press.
  • Seuren, P. A. M. (1983). Auxiliary system in Sranan. In F. Heny, & B. Richards (Eds.), Linguistic categories: Auxiliaries and related puzzles / Vol. two, The scope, order, and distribution of English auxiliary verbs (pp. 219-251). Dordrecht: Reidel.
  • Seuren, P. A. M. (1989). A problem in English subject complementation. In D. Jaspers, W. Klooster, Y. Putseys, & P. A. M. Seuren (Eds.), Sentential complementation and the lexicon: Studies in honour of Wim de Geest (pp. 355-375). Dordrecht: Foris.
  • Seuren, P. A. M. (1989). Notes on reflexivity. In F. J. Heyvaert, & F. Steurs (Eds.), Worlds behind words: Essays in honour of Prof. Dr. F.G. Droste on the occasion of his sixtieth birthday (pp. 85-95). Leuven: Leuven University Press.
  • Seuren, P. A. M. (2015). Prestructuralist and structuralist approaches to syntax. In T. Kiss, & A. Alexiadou (Eds.), Syntax--theory and analysis: An international handbook (pp. 134-157). Berlin: Mouton de Gruyter.
  • Seuren, P. A. M. (1990). Serial verb constructions. In B. D. Joseph, & A. M. Zwicky (Eds.), When verbs collide: Papers from the 1990 Ohio State Mini-Conference on Serial Verbs (pp. 14-33). Columbus, OH: The Ohio State University, Department of Linguistics.
  • Seuren, P. A. M. (2015). Taal is complexer dan je denkt - recursief. In S. Lestrade, P. De Swart, & L. Hogeweg (Eds.), Addenda. Artikelen voor Ad Foolen (pp. 393-400). Nijmegen: Radboud University.
  • Seuren, P. A. M. (2013). The logico-philosophical tradition. In K. Allan (Ed.), The Oxford handbook of the history of linguistics (pp. 537-554). Oxford: Oxford University Press.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Skiba, R. (1989). Funktionale Beschreibung von Lernervarietäten: Das Berliner Projekt P-MoLL. In N. Reiter (Ed.), Sprechen und Hören: Akte des 23. Linguistischen Kolloquiums, Berlin (pp. 181-191). Tübingen: Niemeyer.
  • Skiba, R. (1990). Steinbruch-Datenbanken: Materialien für „Deutsch als Zweitsprache für Kinder und Jugendliche" und „Deutsch als Fachsprache". In Lehr- und Lernmittel-Datenbanken für den Fremdsprachenunterricht (pp. 15-20). Zürich: Eurocentres - Learning Service.
  • Sloetjes, H. (2013). The ELAN annotation tool. In H. Lausberg (Ed.), Understanding body movement: A guide to empirical research on nonverbal behaviour with an introduction to the NEUROGES coding system (pp. 193-198). Frankfurt a/M: Lang.
  • Sloetjes, H. (2013). Step by step introduction in NEUROGES coding with ELAN. In H. Lausberg (Ed.), Understanding body movement: A guide to empirical research on nonverbal behaviour with an introduction to the NEUROGES coding system (pp. 201-212). Frankfurt a/M: Lang.
  • De Sousa, H., Langella, F., & Enfield, N. J. (2015). Temperature terms in Lao, Southern Zhuang, Southern Pinghua and Cantonese. In M. Koptjevskaja-Tamm (Ed.), The linguistics of temperature (pp. 594-638). Amsterdam: Benjamins.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Sumer, B., Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2013). Acquisition of locative expressions in children learning Turkish Sign Language (TİD) and Turkish. In E. Arik (Ed.), Current directions in Turkish Sign Language research (pp. 243-272). Newcastle upon Tyne: Cambridge Scholars Publishing.

    Abstract

    In sign languages, where space is often used to talk about space, expressions of spatial relations (e.g., ON, IN, UNDER, BEHIND) may rely on analogue mappings of real space onto signing space. In contrast, spoken languages express space in mostly categorical ways (e.g. adpositions). This raises interesting questions about the role of language modality in the acquisition of expressions of spatial relations. However, whether and to what extent modality influences the acquisition of spatial language is controversial – mostly due to the lack of direct comparisons of Deaf children to Deaf adults and to age-matched hearing children in similar tasks. Furthermore, the previous studies have taken English as the only model for spoken language development of spatial relations.
    Therefore, we present a balanced study in which spatial expressions by deaf and hearing children in two different age-matched groups (preschool children and school-age children) are systematically compared, as well as compared to the spatial expressions of adults. All participants performed the same tasks, describing angular (LEFT, RIGHT, FRONT, BEHIND) and non-angular spatial configurations (IN, ON, UNDER) of different objects (e.g. apple in box; car behind box).
    The analysis of the descriptions with non-angular spatial relations does not show an effect of modality on the development of
    locative expressions in TİD and Turkish. However, preliminary results of the analysis of expressions of angular spatial relations suggest that signers provide angular information in their spatial descriptions
    more frequently than Turkish speakers in all three age groups, and thus showing a potentially different developmental pattern in this domain. Implications of the findings with regard to the development of relations in spatial language and cognition will be discussed.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Thompson-Schill, S., Hagoort, P., Dominey, P. F., Honing, H., Koelsch, S., Ladd, D. R., Lerdahl, F., Levinson, S. C., & Steedman, M. (2013). Multiple levels of structure in language and music. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 289-303). Cambridge, MA: MIT Press.

    Abstract

    A forum devoted to the relationship between music and language begins with an implicit assumption: There is at least one common principle that is central to all human musical systems and all languages, but that is not characteristic of (most) other domains. Why else should these two categories be paired together for analysis? We propose that one candidate for a common principle is their structure. In this chapter, we explore the nature of that structure—and its consequences for psychological and neurological processing mechanisms—within and across these two domains.
  • Udden, J., & Schoffelen, J.-M. (2015). Mother of all Unification Studies (MOUS). In A. E. Konopka (Ed.), Research Report 2013 | 2014 (pp. 21-22). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2236748.
  • Van Valin Jr., R. D. (2013). Head-marking languages and linguistic theory. In B. Bickel, L. A. Grenoble, D. A. Peterson, & A. Timberlake (Eds.), Language typology and historical contingency: In honor of Johanna Nichols (pp. 91-124). Amsterdam: Benjamins.

    Abstract

    In her path-breaking 1986 paper, Johanna Nichols proposed a typological contrast between head-marking and dependent-marking languages. Nichols argues that even though the syntactic relations between the head and its dependents are the same in both types of language, the syntactic “bond” between them is not the same; in dependent-marking languages it is one of government, whereas in head-marking languages it is one of apposition. This distinction raises an important question for linguistic theory: How can this contrast – government versus apposition – which can show up in all of the major phrasal types in a language, be captured? The purpose of this paper is to explore the various approaches that have been taken in an attempt to capture the difference between head-marked and dependent-marked syntax in different linguistic theories. The basic problem that head-marking languages pose for syntactic theory will be presented, and then generative approaches will be discussed. The analysis of head-marked structure in Role and Reference Grammar will be presented
  • Van Valin Jr., R. D. (2013). Lexical representation, co-composition, and linking syntax and semantics. In J. Pustejovsky, P. Bouillon, H. Isahara, K. Kanzaki, & C. Lee (Eds.), Advances in generative lexicon theory (pp. 67-107). Dordrecht: Springer.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Heugten, M., Bergmann, C., & Cristia, A. (2015). The Effects of Talker Voice and Accent on Young Children's Speech Perception. In S. Fuchs, D. Pape, C. Petrone, & P. Perrier (Eds.), Individual Differences in Speech Production and Perception (pp. 57-88). Bern: Peter Lang.

    Abstract

    Within the first few years of life, children acquire many of the building blocks of their native language. This not only involves knowledge about the linguistic structure of spoken language, but also knowledge about the way in which this linguistic structure surfaces in their speech input. In this chapter, we review how infants and toddlers cope with differences between speakers and accents. Within the context of milestones in early speech perception, we examine how voice and accent characteristics are integrated during language processing, looking closely at the advantages and disadvantages of speaker and accent familiarity, surface-level deviation between two utterances, variability in the input, and prior speaker exposure. We conclude that although deviation from the child’s standard can complicate speech perception early in life, young listeners can overcome these additional challenges. This suggests that early spoken language processing is flexible and adaptive to the listening situation at hand.
  • Vernes, S. C., & Fisher, S. E. (2013). Genetic pathways implicated in speech and language. In S. Helekar (Ed.), Animal models of speech and language disorders (pp. 13-40). New York: Springer. doi:10.1007/978-1-4614-8400-4_2.

    Abstract

    Disorders of speech and language are highly heritable, providing strong
    support for a genetic basis. However, the underlying genetic architecture is complex,
    involving multiple risk factors. This chapter begins by discussing genetic loci associated
    with common multifactorial language-related impairments and goes on to
    detail the only gene (known as FOXP2) to be directly implicated in a rare monogenic
    speech and language disorder. Although FOXP2 was initially uncovered in
    humans, model systems have been invaluable in progressing our understanding of
    the function of this gene and its associated pathways in language-related areas of the
    brain. Research in species from mouse to songbird has revealed effects of this gene
    on relevant behaviours including acquisition of motor skills and learned vocalisations
    and demonstrated a role for Foxp2 in neuronal connectivity and signalling,
    particularly in the striatum. Animal models have also facilitated the identification of
    wider neurogenetic networks thought to be involved in language development and
    disorder and allowed the investigation of new candidate genes for disorders involving
    language, such as CNTNAP2 and FOXP1. Ongoing work in animal models promises
    to yield new insights into the genetic and neural mechanisms underlying human
    speech and language
  • Von Stutterheim, C., & Klein, W. (1989). Referential movement in descriptive and narrative discourse. In R. Dietrich, & C. F. Graumann (Eds.), Language processing in social context (pp. 39-76). Amsterdam: Elsevier.
  • Willems, R. M. (2015). Cognitive neuroscience of natural language use: Introduction. In Cognitive neuroscience of natural language use (pp. 1-7). Cambridge: Cambridge University Press.
  • Windhouwer, M., Petro, J., Newskaya, I., Drude, S., Aristar-Dry, H., & Gippert, J. (2013). Creating a serialization of LMF: The experience of the RELISH project. In G. Francopoulo (Ed.), LMF - Lexical Markup Framework (pp. 215-226). London: Wiley.
  • Windhouwer, M., & Wright, S. E. (2013). LMF and the Data Category Registry: Principles and application. In G. Francopoulo (Ed.), LMF: Lexical Markup Framework (pp. 41-50). London: Wiley.
  • Wittenburg, P., & Ringersma, J. (2013). Metadata description for lexicons. In R. H. Gouws, U. Heid, W. Schweickard, & H. E. Wiegand (Eds.), Dictionaries: An international encyclopedia of lexicography: Supplementary volume: Recent developments with focus on electronic and computational lexicography (pp. 1329-1335). Berlin: Mouton de Gruyter.
  • Wright, S. E., Windhouwer, M., Schuurman, I., & Kemps-Snijders, M. (2013). Community efforts around the ISOcat Data Category Registry. In I. Gurevych, & J. Kim (Eds.), The People's Web meets NLP: Collaboratively constructed language resources (pp. 349-374). New York: Springer.

    Abstract

    The ISOcat Data Category Registry provides a community computing environment for creating, storing, retrieving, harmonizing and standardizing data category specifications (DCs), used to register linguistic terms used in various fields. This chapter recounts the history of DC documentation in TC 37, beginning from paper-based lists created for lexicographers and terminologists and progressing to the development of a web-based resource for a much broader range of users. While describing the considerable strides that have been made to collect a very large comprehensive collection of DCs, it also outlines difficulties that have arisen in developing a fully operative web-based computing environment for achieving consensus on data category names, definitions, and selections and describes efforts to overcome some of the present shortcomings and to establish positive working procedures designed to engage a wide range of people involved in the creation of language resources.
  • Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2013). Expression of multiple entities in Turkish Sign Language (TİD). In E. Arik (Ed.), Current Directions in Turkish Sign Language Research (pp. 272-302). Newcastle upon Tyne: Cambridge Scholars Publishing.

    Abstract

    This paper reports on an exploration of the ways in which multiple entities are expressed in Turkish Sign Language (TİD). The (descriptive and quantitative) analyses provided are based on a corpus of both spontaneous data and specifically elicited data, in order to provide as comprehensive an account as possible. We have found several devices in TİD for expression of multiple entities, in particular localization, spatial plural predicate inflection, and a specific form used to express multiple entities that are side by side in the same configuration (not reported for any other sign language to date), as well as numerals and quantifiers. In contrast to some other signed languages, TİD does not appear to have a productive system of plural reduplication. We argue that none of the devices encountered in the TİD data is a genuine plural marking device and that the plural interpretation of multiple entity localizations and plural predicate inflections is a by-product of the use of space to indicate the existence or the involvement in an event of multiple entities.

Share this page