Publications

Displaying 1 - 100 of 122
  • Akita, K., & Dingemanse, M. (2019). Ideophones (Mimetics, Expressives). In Oxford Research Encyclopedia for Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.477.

    Abstract

    Ideophones, also termed “mimetics” or “expressives,” are marked words that depict sensory imagery. They are found in many of the world’s languages, and sizable lexical classes of ideophones are particularly well-documented in languages of Asia, Africa, and the Americas. Ideophones are not limited to onomatopoeia like meow and smack, but cover a wide range of sensory domains, such as manner of motion (e.g., plisti plasta ‘splish-splash’ in Basque), texture (e.g., tsaklii ‘rough’ in Ewe), and psychological states (e.g., wakuwaku ‘excited’ in Japanese). Across languages, ideophones stand out as marked words due to special phonotactics, expressive morphology including certain types of reduplication, and relative syntactic independence, in addition to production features like prosodic foregrounding and common co-occurrence with iconic gestures.

    Three intertwined issues have been repeatedly debated in the century-long literature on ideophones. (a) Definition: Isolated descriptive traditions and cross-linguistic variation have sometimes obscured a typologically unified view of ideophones, but recent advances show the promise of a prototype definition of ideophones as conventionalised depictions in speech, with room for language-specific nuances. (b) Integration: The variable integration of ideophones across linguistic levels reveals an interaction between expressiveness and grammatical integration, and has important implications for how to conceive of dependencies between linguistic systems. (c) Iconicity: Ideophones form a natural laboratory for the study of iconic form-meaning associations in natural languages, and converging evidence from corpus and experimental studies suggests important developmental, evolutionary, and communicative advantages of ideophones.
  • Ameka, F. K. (1995). Body parts in Ewe grammar. In H. Chapell, & W. McGregor (Eds.), The grammar of inalienability: A typological perspective on body part terms and the part-whole relation (pp. 783-840). Berlin: De Gruyter.
  • Bauer, B. L. M. (2021). Formation of numerals in the romance languages. In Oxford Research Encyclopedia of Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.685.

    Abstract

    The Romance languages have a rich numeral system that includes cardinals—providing the bases on which the other types of numeral series are built—ordinals, fractions, collectives, approximatives, distributives, and multiplicatives. Latin plays a decisive and continued role in their formation, both as the language to which many numerals go back directly and as an ongoing source for lexemes and formatives. While the Latin numeral system was synthetic, with a distinct ending for each type of numeral, the Romance numerals often feature more than one (unevenly distributed) marker or structure per series, which feature varying degrees of inherited, borrowed, or innovative elements. Formal consistency is strongest in cardinals, followed by ordinals and then the other types of numeral, which also tend to be more analytic or periphrastic. From a morphological perspective, Romance numerals overall have moved away from the inherited syntheticity, but several series continue to be synthetic formations—at least in part—with morphological markers drawn from Latin that may have undergone functional change (e.g. distributive > ordinal > collective). The underlying syntax of Romance numerals is in line with the overall grammatical patterns of Romance languages, as reflected in the prevalence of word order (with arithmetical correlates), connectors, (partial) loss of agreement, and analyticity. Innovation is prominent in the formation of higher numerals with bases beyond ‘thousand’, of teens and decads in Romanian, and of vigesimals in numerous Romance varieties.
  • Bauer, B. L. M. (1997). Nominal syntax in Italic: A diachronic perspective. In Language change and functional explanations (pp. 273-301). Berlin: Mouton de Gruyter.
  • Bosker, H. R. (2021). The contribution of amplitude modulations in speech to perceived charisma. In B. Weiss, J. Trouvain, M. Barkat-Defradas, & J. J. Ohala (Eds.), Voice attractiveness: Prosody, phonology and phonetics (pp. 165-181). Singapore: Springer. doi:10.1007/978-981-15-6627-1_10.

    Abstract

    Speech contains pronounced amplitude modulations in the 1–9 Hz range, correlating with the syllabic rate of speech. Recent models of speech perception propose that this rhythmic nature of speech is central to speech recognition and has beneficial effects on language processing. Here, we investigated the contribution of amplitude modulations to the subjective impression listeners have of public speakers. The speech from US presidential candidates Hillary Clinton and Donald Trump in the three TV debates of 2016 was acoustically analyzed by means of modulation spectra. These indicated that Clinton’s speech had more pronounced amplitude modulations than Trump’s speech, particularly in the 1–9 Hz range. A subsequent perception experiment, with listeners rating the perceived charisma of (low-pass filtered versions of) Clinton’s and Trump’s speech, showed that more pronounced amplitude modulations (i.e., more ‘rhythmic’ speech) increased perceived charisma ratings. These outcomes highlight the important contribution of speech rhythm to charisma perception.
  • Böttner, M. (1997). Natural Language. In C. Brink, W. Kahl, & G. Schmidt (Eds.), Relational Methods in computer science (pp. 229-249). Vienna, Austria: Springer-Verlag.
  • Bowden, J. (1997). The meanings of Directionals in Taba. In G. Senft (Ed.), Referring to Space: Studies in Austronesian and Papuan Languages (pp. 251-268). New York, NJ: Oxford University Press.
  • Bowerman, M. (1986). First steps in acquiring conditionals. In E. C. Traugott, A. G. t. Meulen, J. S. Reilly, & C. A. Ferguson (Eds.), On conditionals (pp. 285-308). Cambridge University Press.

    Abstract

    This chapter is about the initial flowering of conditionals, if-(then) constructions, in children's spontaneous speech. It is motivated by two major theoretical interests. The first and most immediate is to understand the acquisition process itself. Conditionals are conceptually, and in many languages morphosyntactically, complex. What aspects of cognitive and grammatical development are implicated in their acquisition? Does learning take place in the context of particular interactions with other speakers? Where do conditionals fit in with the acquisition of other complex sentences? What are the semantic, syntactic and pragmatic properties of the first conditionals? Underlying this first interest is a second, more strictly linguistic one. Research of recent years has found increasing evidence that natural languages are constrained in certain ways. The source of these constraints is not yet clearly understood, but it is widely assumed that some of them derive ultimately from properties of children's capacity for language acquisition.

    Files private

    Request files
  • Brown, P. (1997). Isolating the CVC root in Tzeltal Mayan: A study of children's first verbs. In E. V. Clark (Ed.), Proceedings of the 28th Annual Child Language Research Forum (pp. 41-52). Stanford, CA: CSLI/University of Chicago Press.

    Abstract

    How do children isolate the semantic package contained in verb roots in the Mayan language Tzeltal? One might imagine that the canonical CVC shape of roots characteristic of Mayan languages would make the job simple, but the root is normally preceded and followed by affixes which mask its identity. Pye (1983) demonstrated that, in Kiche' Mayan, prosodic salience overrides semantic salience, and children's first words in Kiche' are often composed of only the final (stressed) syllable constituted by the final consonant of the CVC root and a 'meaningless' termination suffix. Intonation thus plays a crucial role in early Kiche' morphological development. Tzeltal presents a rather different picture: The first words of children around the age of 1;6 are bare roots, children strip off all prefixes and suffixes which are obligatory in adult speech. They gradually add them, starting with the suffixes (which receive the main stress), but person prefixes are omitted in some contexts past a child's third birthday, and one obligatory aspectual prefix (x-) is systematically omitted by the four children in my longitudinal study even after they are four years old. Tzeltal children's first verbs generally show faultless isolation of the root. An account in terms of intonation or stress cannot explain this ability (the prefixes are not all syllables; the roots are not always stressed). This paper suggests that probable clues include the fact that the CVC root stays constant across contexts (with some exceptions) whereas the affixes vary, that there are some linguistic contexts where the root occurs without any prefixes (relatively frequent in the input), and that the Tzeltal discourse convention of responding by repeating with appropriate deictic alternation (e.g., "I see it." "Oh, you see it.") highlights the root.
  • Brown, P. (1995). Politeness strategies and the attribution of intentions: The case of Tzeltal irony. In E. Goody (Ed.), Social intelligence and interaction (pp. 153-174). Cambridge: Cambridge University Press.

    Abstract

    In this paper I take up the idea that human thinking is systematically biased in the direction of interactive thinking (E. Goody's anticipatory interactive planning), that is, that humans are peculiarly good at, and inordinately prone to, attributing intentions and goals to one other (as well as to non-humans), and that they routinely orient to presumptions about each other's intentions in what they say and do. I explore the implications of that idea for an understanding of politeness in interaction, taking as a starting point the Brown and Levinson (1987) model of politeness, which assumes interactive thinking, a notion implicit in the formulation of politeness as strategic orientation to face. Drawing on an analysis of the phenomenon of conventionalized ‘irony’ in Tzeltal, I emphasize that politeness does not inhere in linguistic form per se but is a matter of conveying a polite intention, and argue that Tzeltal irony provides a prime example of one way in which humans' highly-developed intellectual machinery for inferring alter's intentions is put to the service of social relationships.
  • Burenkova, O. V., & Fisher, S. E. (2019). Genetic insights into the neurobiology of speech and language. In E. Grigorenko, Y. Shtyrov, & P. McCardle (Eds.), All About Language: Science, Theory, and Practice. Baltimore, MD: Paul Brookes Publishing, Inc.
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Clark, E. V., & Bowerman, M. (1986). On the acquisition of final voiced stops. In J. A. Fishman (Ed.), The Fergusonian impact: in honor of Charles A. Ferguson on the occasion of his 65th birthday. Volume 1: From phonology to society (pp. 51-68). Berlin: Mouton de Gruyter.
  • Crago, M. B., Allen, S. E. M., & Hough-Eyamie, W. P. (1997). Exploring innateness through cultural and linguistic variation. In M. Gopnik (Ed.), The inheritance and innateness of grammars (pp. 70-90). New York City, NY, USA: Oxford University Press, Inc.
  • Cutler, A., & Jesse, A. (2021). Word stress in speech perception. In J. S. Pardo, L. C. Nygaard, & D. B. Pisoni (Eds.), The handbook of speech perception (2nd ed., pp. 239-265). Chichester: Wiley.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Cutler, A. (1995). Spoken word recognition and production. In J. L. Miller, & P. D. Eimas (Eds.), Speech, language and communication (pp. 97-136). New York: Academic Press.

    Abstract

    This chapter highlights that most language behavior consists of speaking and listening. The chapter also reveals differences and similarities between speaking and listening. The laboratory study of word production raises formidable problems; ensuring that a particular word is produced may subvert the spontaneous production process. Word production is investigated via slips and tip-of-the-tongue (TOT), primarily via instances of processing failure and via the technique of via the picture-naming task. The methodology of word production is explained in the chapter. The chapter also explains the phenomenon of interaction between various stages of word production and the process of speech recognition. In this context, it explores the difference between sound and meaning and examines whether or not the comparisons are appropriate between the processes of recognition and production of spoken words. It also describes the similarities and differences in the structure of the recognition and production systems. Finally, the chapter highlights the common issues in recognition and production research, which include the nuances of frequency of occurrence, morphological structure, and phonological structure.
  • Cutler, A. (1995). Spoken-word recognition. In G. Bloothooft, V. Hazan, D. Hubert, & J. Llisterri (Eds.), European studies in phonetics and speech communication (pp. 66-71). Utrecht: OTS.
  • Cutler, A. (1995). The perception of rhythm in spoken and written language. In J. Mehler, & S. Franck (Eds.), Cognition on cognition (pp. 283-288). Cambridge, MA: MIT Press.
  • Cutler, A., & McQueen, J. M. (1995). The recognition of lexical units in speech. In B. De Gelder, & J. Morais (Eds.), Speech and reading: A comparative approach (pp. 33-47). Hove, UK: Erlbaum.
  • Danziger, E. (1995). Intransitive predicate form class survey. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 46-53). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004298.

    Abstract

    Different linguistic structures allow us to highlight distinct aspects of a situation. The aim of this survey is to investigate similarities and differences in the expression of situations or events as “stative” (maintaining a state), “inchoative” (adopting a state) and “agentive” (causing something to be in a state). The questionnaire focuses on the encoding of stative, inchoative and agentive possibilities for the translation equivalents of a set of English verbs.
  • Danziger, E. (1995). Posture verb survey. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 33-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004235.

    Abstract

    Expressions of human activities and states are a rich area for cross-linguistic comparison. Some languages of the world treat human posture verbs (e.g., sit, lie, kneel) as a special class of predicates, with distinct formal properties. This survey examines lexical, semantic and grammatical patterns for posture verbs, with special reference to contrasts between “stative” (maintaining a posture), “inchoative” (adopting a posture), and “agentive” (causing something to adopt a posture) constructions. The enquiry is thematically linked to the more general questionnaire 'Intransitive Predicate Form Class Survey'.
  • Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.

    Abstract

    This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language.
  • Dijkstra, T., & Kempen, G. (1997). Het taalgebruikersmodel. In H. Hulshof, & T. Hendrix (Eds.), De taalcentrale. Amsterdam: Bulkboek.
  • Dingemanse, M. (2019). 'Ideophone' as a comparative concept. In K. Akita, & P. Pardeshi (Eds.), Ideophones, Mimetics, and Expressives (pp. 13-33). Amsterdam: John Benjamins. doi:10.1075/ill.16.02din.

    Abstract

    This chapter makes the case for ‘ideophone’ as a comparative concept: a notion that captures a recurrent typological pattern and provides a template for understanding language-specific phenomena that prove similar. It revises an earlier definition to account for the observation that ideophones typically form an open lexical class, and uses insights from canonical typology to explore the larger typological space. According to the resulting definition, a canonical ideophone is a member of an open lexical class of marked words that depict sensory imagery. The five elements of this definition can be seen as dimensions that together generate a possibility space to characterise cross-linguistic diversity in depictive means of expression. This approach allows for the systematic comparative treatment of ideophones and ideophone-like phenomena. Some phenomena in the larger typological space are discussed to demonstrate the utility of the approach: phonaesthemes in European languages, specialised semantic classes in West-Chadic, diachronic diversions in Aslian, and depicting constructions in signed languages.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Frost, R. L. A., & Casillas, M. (2021). Investigating statistical learning of nonadjacent dependencies: Running statistical learning tasks in non-WEIRD populations. In SAGE Research Methods Cases. doi:10.4135/9781529759181.

    Abstract

    Language acquisition is complex. However, one thing that has been suggested to help learning is the way that information is distributed throughout language; co-occurrences among particular items (e.g., syllables and words) have been shown to help learners discover the words that a language contains and figure out how those words are used. Humans’ ability to draw on this information—“statistical learning”—has been demonstrated across a broad range of studies. However, evidence from non-WEIRD (Western, Educated, Industrialized, Rich, and Democratic) societies is critically lacking, which limits theorizing on the universality of this skill. We extended work on statistical language learning to a new, non-WEIRD linguistic population: speakers of Yélî Dnye, who live on a remote island off mainland Papua New Guinea (Rossel Island). We performed a replication of an existing statistical learning study, training adults on an artificial language with statistically defined words, then examining what they had learnt using a two-alternative forced-choice test. Crucially, we implemented several key amendments to the original study to ensure the replication was suitable for remote field-site testing with speakers of Yélî Dnye. We made critical changes to the stimuli and materials (to test speakers of Yélî Dnye, rather than English), the instructions (we re-worked these significantly, and added practice tasks to optimize participants’ understanding), and the study format (shifting from a lab-based to a portable tablet-based setup). We discuss the requirement for acute sensitivity to linguistic, cultural, and environmental factors when adapting studies to test new populations.

  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P., & Brown, C. M. (1995). Electrophysiological insights into language and speech processing. In K. Elenius, & P. Branderud (Eds.), Proceedings of the XIIIth International Congress of Phonetic Sciences: ICPhS 95: Stockholm, Sweden, 13-19 August, 1995 (pp. 172-178). Stockholm: Stockholm University.
  • Hagoort, P., & Kutas, M. (1995). Electrophysiological insights into language deficits. In F. Boller, & J. Grafman (Eds.), Handbook of neuropsychology: Vol. 10 (pp. 105-134). Amsterdam: Elsevier.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P. (1995). Wat zijn woorden en waar vinden we ze in ons brein? In E. Marani, & J. Lanser (Eds.), Dyslexie: Foutloos spellen alleen weggelegd voor gestoorden? (pp. 37-46). Leiden: Boerhaave Commissie voor Postacademisch Onderwijs in de Geneeskunde, Rijksuniversiteit Leiden.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Heeschen, V., Eibl-Eibesfeldt, I., Grammer, K., Schiefenhövel, W., & Senft, G. (1986). Sprachliches Verhalten. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1986 (pp. 394-396). Göttingen: Vandenhoeck and Ruprecht.
  • Hellwig, B., Defina, R., Kidd, E., Allen, S. E. M., Davidson, L., & Kelly, B. F. (2021). Child language documentation: The sketch acquisition project. In G. Haig, S. Schnell, & F. Seifart (Eds.), Doing corpus-based typology with spoken language data: State of the art (pp. 29-58). Honolulu, HI: University of Hawai'i Press.

    Abstract

    This paper reports on an on-going project designed to collect comparable corpus data on child language and child-directed language in under-researched languages. Despite a long history of cross-linguistic research, there is a severe empirical bias within language acquisition research: Data is available for less than 2% of the world's languages, heavily skewed towards the larger and better-described languages. As a result, theories of language development tend to be grounded in a non-representative sample, and we know little about the acquisition of typologically-diverse languages from different families, regions, or sociocultural contexts. It is very likely that the reasons are to be found in the forbidding methodological challenges of constructing child language corpora under fieldwork conditions with their strict requirements on participant selection, sampling intervals, and amounts of data. There is thus an urgent need for proposals that facilitate and encourage language acquisition research across a wide variety of languages. Adopting a language documentation perspective, we illustrate an approach that combines the construction of manageable corpora of natural interaction with and between children with a sketch description of the corpus data – resulting in a set of comparable corpora and comparable sketches that form the basis for cross-linguistic comparisons.
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.
  • Karaca, F., Brouwer, S., Unsworth, S., & Huettig, F. (2021). Prediction in bilingual children: The missing piece of the puzzle. In E. Kaan, & T. Grüter (Eds.), Prediction in Second Language Processing and Learning (pp. 116-137). Amsterdam: Benjamins.

    Abstract

    A wealth of studies has shown that more proficient monolingual speakers are better at predicting upcoming information during language comprehension. Similarly, prediction skills of adult second language (L2) speakers in their L2 have also been argued to be modulated by their L2 proficiency. How exactly language proficiency and prediction are linked, however, is yet to be systematically investigated. One group of language users which has the potential to provide invaluable insights into this link is bilingual children. In this paper, we compare bilingual children’s prediction skills with those of monolingual children and adult L2 speakers, and show how investigating bilingual children’s prediction skills may contribute to our understanding of how predictive processing works.
  • Keating, E. (1995). Pilot questionnaire to investigate social uses of space, especially as related to 1) linguistic practices and 2) social organization. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004227.

    Abstract

    Day-to-day interpretations of “space” are enmeshed in specific cultural and linguistic practices. For example, many cultures have an association between vertical height and social standing; more powerful people may be placed literally higher than others at social gatherings, and be spoken of as having higher status. This questionnaire is a guide for exploring relationships between space, language, and social structure. The goal is to better understand how space is organised in the focus community, and to investigate the extent to which space is used as a model for reproducing social forms.
  • Kempen, G. (1986). Beyond word processing. In E. Cluff, & G. Bunting (Eds.), Information management yearbook 1986 (pp. 178-181). London: IDPM Publications.
  • Kempen, G. (1986). Kunstmatige intelligentie en gezond verstand. In P. Hagoort, & R. Maessen (Eds.), Geest, computer, kunst (pp. 118-123). Utrecht: Stichting Grafiet.
  • Kempen, G. (1997). Taalpsychologie week. In Wetenschappelijke Scheurkalender 1998. Beek: Natuur & Techniek.

    Abstract

    [Seven one-page psycholinguistic sketches]
  • Kita, S. (1997). Miburi to Kotoba [gesture and speech]. In H. Kobayashi, & M. Sasaki (Eds.), Kodomotachi no gengokakutoku [Child language development] (pp. 68-84). Tokyo, Japan: Taishukan.
  • Kita, S. (1995). Enter/exit animation for linguistic elicitation. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003394.

    Abstract

    This task investigates the expression of “enter” and “exit” events, and is a supplement to the Motion Elicitation task (https://doi.org/10.17617/2.3003391). Consultants are asked to describe a series of animated clips where a man moves into or out of a house. The clips focus on contrasts to do with perspective (e.g., whether the man appears to move away or towards the viewer) and transitional movement (e.g., whether the man walks or “teleports” into his new location).

    Additional information

    1995_Enter_exit_animation_stimuli.zip
  • Kita, S. (1995). Recommendations for data collection for gesture studies. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 35-45). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004287.

    Abstract

    Do our hands 'speak the same language' across cultures? Gesture is the silent partner of spoken languages in face-to-face interaction, but we still have a lot to learn about gesture practices in different speech communities. The primary purpose of this task is to collect data in naturalistic settings that can be used to investigate the linguistic and cultural relativity of gesture performance, especially spatially indicative gestures. It involves video-recording pairs of speakers in both free conversation and more structured communication tasks (e.g., describing film plots).

    Please note: the stimuli mentioned in this entry are available elsewhere: 'The Pear Story', a short film made at the University of California at Berkeley; "Frog, where are you?" from the original Mayer (1969) book, as published in the Appendix of Berman & Slobin (1994).
  • Klein, W. (2021). Das „Heidelberger Forschungsprojekt Pidgin-Deutsch “und die Folgen. In B. Ahrenholz, & M. Rost-Roth (Eds.), Ein Blick zurück nach vorn: Frühe deutsche Forschung zu Zweitspracherwerb, Migration, Mehrsprachigkeit und zweitsprachbezogener Sprachdidaktik sowie ihre Bedeutung heute (pp. 50-95). Berlin: De Gruyter.
  • Klein, W., Dietrich, R., & Noyau, C. (1995). Conclusions. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 261-280). Amsterdam: Benjamins.
  • Klein, W., & Perdue, C. (1986). Comment résourdre une tache verbale complexe avec peu de moyens linguistiques? In A. Giacomi, & D. Véronique (Eds.), Acquisition d'une langue étrangère (pp. 306-330). Aix-en-Provence: Service des Publications de l'Universite de Provence.
  • Klein, W. (1995). Frame of analysis. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 17-29). Amsterdam: Benjamins.
  • Klein, W., & Nüse, R. (1997). La complexité du simple: L'éxpression de la spatialité dans le langage humain. In M. Denis (Ed.), Langage et cognition spatiale (pp. 1-23). Paris: Masson.
  • Klein, W. (1986). Intonation und Satzmodalität in einfachen Fällen: Einige Beobachtungen. In E. Slembek (Ed.), Miteinander sprechen und handeln: Festschrift für Hellmut Geissner (pp. 161-177). Königstein Ts.: Scriptor.
  • Klein, W. (1997). On the "Imperfective paradox" and related problems. In M. Schwarz, C. Dürscheid, & K.-H. Ramers (Eds.), Sprache im Fokus: Festschrift für Heinz Vater (pp. 387-397). Tübingen: Niemeyer.
  • Klein, W., Coenen, J., Van Helvert, K., & Hendriks, H. (1995). The acquisition of Dutch. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 117-143). Amsterdam: Benjamins.
  • Klein, W. (1995). The acquisition of English. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 31-70). Amsterdam: Benjamins.
  • Klein, W. (1995). Sprachverhalten. In M. Amelang, & Pawlik (Eds.), Enzyklopädie der Psychologie (pp. 469-505). Göttingen: Hogrefe.
  • Klein, W. (1997). Und nur dieses allein haben wir. In D. Rosenstein, & A. Kreutz (Eds.), Begegnungen, Facetten eines Jahrhunderts (pp. 445-449). Siegen: Carl Boeschen Verlag.
  • Kupisch, T., Pereira Soares, S. M., Puig-Mayenco, E., & Rothman, J. (2021). Multilingualism and Chomsky's Generative Grammar. In N. Allott (Ed.), A companion to Chomsky (pp. 232-242). doi:10.1002/9781119598732.ch15.

    Abstract

    Like Einstein's general theory of relativity is concerned with explaining the basics of an observable experience – i.e., gravity – most people take for granted that Chomsky's theory of generative grammar (GG) is concerned with the basic nature of language. This chapter highlights a mere subset of central constructs in GG, showing how they have featured prominently and thus shaped formal linguistic studies in multilingualism. Because multilingualism includes a wide range of nonmonolingual populations, the constructs are divided across child bilingualism and adult third language for greater coverage. In the case of the former, the chapter examines how poverty of the stimulus has been investigated. Using the nascent field of L3/Ln acquisition as the backdrop, it discusses how the GG constructs of I-language versus E-language sit at the core of debates regarding the very notion of what linguistic transfer and mental representations should be taken to be.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M., & Ruijssenaars, A. (1995). Levensbericht Johan Joseph Dumont. In Jaarboek Koninklijke Nederlandse Akademie van Wetenschappen (pp. 31-36).
  • Levelt, W. J. M. (1995). Chapters of psychology: An interview with Wilhelm Wundt. In R. L. Solso, & D. W. Massaro (Eds.), The science of mind: 2001 and beyond (pp. 184-202). Oxford University Press.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1997). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (CD-ROM edition). Amsterdam: Elsevier Science.
  • Levelt, W. J. M. (1986). Herdenking van Joseph Maria Franciscus Jaspars (16 maart 1934 - 31 juli 1985). In Jaarboek 1986 Koninklijke Nederlandse Akademie van Wetenschappen (pp. 187-189). Amsterdam: North Holland.
  • Levelt, W. J. M. (1995). Psycholinguistics. In C. C. French, & A. M. Colman (Eds.), Cognitive psychology (reprint, pp. 39- 57). London: Longman.
  • Levelt, W. J. M. (1986). Zur sprachlichen Abbildung des Raumes: Deiktische und intrinsische Perspektive. In H. Bosshardt (Ed.), Perspektiven auf Sprache. Interdisziplinäre Beiträge zum Gedenken an Hans Hörmann (pp. 187-211). Berlin: De Gruyter.
  • Levinson, S. C. (1995). 'Logical' Connectives in Natural Language: A First Questionnaire. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 61-69). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513476.

    Abstract

    It has been hypothesised that human reasoning has a non-linguistic foundation, but is nevertheless influenced by the formal means available in a language. For example, Western logic is transparently related to European sentential connectives (e.g., and, if … then, or, not), some of which cannot be unambiguously expressed in other languages. The questionnaire explores reasoning tools and practices through investigating translation equivalents of English sentential connectives and collecting examples of “reasoned arguments”.
  • Levinson, S. C. (1997). Contextualizing 'contextualization cues'. In S. Eerdmans, C. Prevignano, & P. Thibault (Eds.), Discussing communication analysis 1: John J. Gumperz (pp. 24-30). Lausanne: Beta Press.
  • Levinson, S. C. (1997). Deixis. In P. V. Lamarque (Ed.), Concise encyclopedia of philosophy of language (pp. 214-219). Oxford: Elsevier.
  • Levinson, S. C. (1997). From outer to inner space: Linguistic categories and non-linguistic thinking. In J. Nuyts, & E. Pederson (Eds.), Language and conceptualization (pp. 13-45). Cambridge University Press.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1995). Interactional biases in human thinking. In E. N. Goody (Ed.), Social intelligence and interaction (pp. 221-260). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C., Pederson, E., & Senft, G. (1997). Sprache und menschliche Orientierungsfähigkeiten. In Jahrbuch der Max-Planck-Gesellschaft (pp. 322-327). München: Generalverwaltung der Max-Planck-Gesellschaft.
  • Levinson, S. C. (1995). Three levels of meaning. In F. Palmer (Ed.), Grammar and meaning: Essays in honour of Sir John Lyons (pp. 90-115). Cambridge University Press.
  • Levshina, N. (2021). Conditional inference trees and random forests. In M. Paquot, & T. Gries (Eds.), Practical Handbook of Corpus Linguistics (pp. 611-643). New York: Springer.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Mak, M., & Willems, R. M. (2021). Mental simulation during literary reading. In D. Kuiken, & A. M. Jacobs (Eds.), Handbook of empirical literary studies (pp. 63-84). Berlin: De Gruyter.

    Abstract

    Readers experience a number of sensations during reading. They do
    not – or do not only – process words and sentences in a detached, abstract
    manner. Instead they “perceive” what they read about. They see descriptions of
    scenery, feel what characters feel, and hear the sounds in a story. These sensa-
    tions tend to be grouped under the umbrella terms “mental simulation” and
    “mental imagery.” This chapter provides an overview of empirical research on
    the role of mental simulation during literary reading. Our chapter also discusses
    what mental simulation is and how it relates to mental imagery. Moreover, it
    explores how mental simulation plays a role in leading models of literary read-
    ing and investigates under what circumstances mental simulation occurs dur-
    ing literature reading. Finally, the effect of mental simulation on the literary
    reader’s experience is discussed, and suggestions and unresolved issues in this
    field are formulated.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Noordman, L. G., & Vonk, W. (1997). The different functions of a conjunction in constructing a representation of the discourse. In J. Costermans, & M. Fayol (Eds.), Processing interclausal relationships: studies in the production and comprehension of text (pp. 75-94). Mahwah, NJ: Lawrence Erlbaum.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Pederson, E. (1995). Questionnaire on event realization. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 54-60). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004359.

    Abstract

    "Event realisation" refers to the normal final state of the affected entity of an activity described by a verb. For example, the sentence John killed the mosquito entails that the mosquito is afterwards dead – this is the full realisation of a killing event. By contrast, a sentence such as John hit the mosquito does not entail the mosquito’s death (even though we might assume this to be a likely result). In using a certain verb, which features of event realisation are entailed and which are just likely? This questionnaire supports cross-linguistic exploration of event realisation for a range of event types.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rossi, G. (2021). Conversation analysis (CA). In J. Stanlaw (Ed.), The International Encyclopedia of Linguistic Anthropology. Wiley-Blackwell. doi:10.1002/9781118786093.iela0080.

    Abstract

    Conversation analysis (CA) is an approach to the study of language and social interaction that puts at center stage its sequential development. The chain of initiating and responding actions that characterizes any interaction is a source of internal evidence for the meaning of social behavior as it exposes the understandings that participants themselves give of what one another is doing. Such an analysis requires the close and repeated inspection of audio and video recordings of naturally occurring interaction, supported by transcripts and other forms of annotation. Distributional regularities are complemented by a demonstration of participants' orientation to deviant behavior. CA has long maintained a constructive dialogue and reciprocal influence with linguistic anthropology. This includes a recent convergence on the cross-linguistic and cross-cultural study of social interaction.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • Senft, G. (2021). A very special letter. In T. Szczerbowski (Ed.), Language "as round as an orange".. In memory of Professor Krystyna Pisarkowa on the 90th anniversary of her birth (pp. 367). Krakow: Uniwersytetu Pedagogicznj.
  • Senft, G. (1995). Elicitation. In J. Blommaert, J.-O. Östman, & J. Verschueren (Eds.), Handbook of Pragmatics: Manual (pp. 577-581). Amsterdam: John Benjamins.
  • Senft, G. (1995). 'Noble savages' and 'the islands of love': Trobriand Islanders in 'popular publications'. In C. Baak, M. Bakker, & D. Van der Meij (Eds.), Tales from a concave world: Liber amicorum Bert Voorhoeve (pp. 480-510). Leiden: Projects division, department of languages and cultures of South East Asia and Oceania, Leiden University.
  • Senft, G. (1995). Fieldwork. In J. Blommaert, J.-O. Östman, & J. Verschueren (Eds.), Handbook of Pragmatics: Manual (pp. 595-601). Amsterdam: John Benjamins.

Share this page