Publications

Displaying 1 - 100 of 137
  • Akita, K., & Dingemanse, M. (2019). Ideophones (Mimetics, Expressives). In Oxford Research Encyclopedia for Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.477.

    Abstract

    Ideophones, also termed “mimetics” or “expressives,” are marked words that depict sensory imagery. They are found in many of the world’s languages, and sizable lexical classes of ideophones are particularly well-documented in languages of Asia, Africa, and the Americas. Ideophones are not limited to onomatopoeia like meow and smack, but cover a wide range of sensory domains, such as manner of motion (e.g., plisti plasta ‘splish-splash’ in Basque), texture (e.g., tsaklii ‘rough’ in Ewe), and psychological states (e.g., wakuwaku ‘excited’ in Japanese). Across languages, ideophones stand out as marked words due to special phonotactics, expressive morphology including certain types of reduplication, and relative syntactic independence, in addition to production features like prosodic foregrounding and common co-occurrence with iconic gestures.

    Three intertwined issues have been repeatedly debated in the century-long literature on ideophones. (a) Definition: Isolated descriptive traditions and cross-linguistic variation have sometimes obscured a typologically unified view of ideophones, but recent advances show the promise of a prototype definition of ideophones as conventionalised depictions in speech, with room for language-specific nuances. (b) Integration: The variable integration of ideophones across linguistic levels reveals an interaction between expressiveness and grammatical integration, and has important implications for how to conceive of dependencies between linguistic systems. (c) Iconicity: Ideophones form a natural laboratory for the study of iconic form-meaning associations in natural languages, and converging evidence from corpus and experimental studies suggests important developmental, evolutionary, and communicative advantages of ideophones.
  • Ameka, F. K. (1999). Interjections. In K. Brown, & J. Miller (Eds.), Concise encyclopedia of grammatical categories (pp. 213-216). Oxford: Elsevier.
  • Ameka, F. K., De Witte, C., & Wilkins, D. (1999). Picture series for positional verbs: Eliciting the verbal component in locative descriptions. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 48-54). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573831.

    Abstract

    How do different languages encode location and position meanings? In conjunction with the BowPed picture series and Caused Positions task, this elicitation tool is designed to help researchers (i) identify a language’s resources for encoding topological relations; (ii) delimit the pragmatics of use of such resources; and (iii) determine the semantics of select spatial terms. The task focuses on the exploration of the predicative component of topological expressions (e.g., ‘the cassavas are lying in the basket’), especially the contrastive elicitation of positional verbs. The materials consist of a set of photographs of objects (e.g., bottles, cloths, sticks) in specific configurations with various ground items (e.g., basket, table, tree).

    Additional information

    1999_Positional_verbs_stimuli.zip
  • Bauer, B. L. M. (2021). Formation of numerals in the romance languages. In Oxford Research Encyclopedia of Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.685.

    Abstract

    The Romance languages have a rich numeral system that includes cardinals—providing the bases on which the other types of numeral series are built—ordinals, fractions, collectives, approximatives, distributives, and multiplicatives. Latin plays a decisive and continued role in their formation, both as the language to which many numerals go back directly and as an ongoing source for lexemes and formatives. While the Latin numeral system was synthetic, with a distinct ending for each type of numeral, the Romance numerals often feature more than one (unevenly distributed) marker or structure per series, which feature varying degrees of inherited, borrowed, or innovative elements. Formal consistency is strongest in cardinals, followed by ordinals and then the other types of numeral, which also tend to be more analytic or periphrastic. From a morphological perspective, Romance numerals overall have moved away from the inherited syntheticity, but several series continue to be synthetic formations—at least in part—with morphological markers drawn from Latin that may have undergone functional change (e.g. distributive > ordinal > collective). The underlying syntax of Romance numerals is in line with the overall grammatical patterns of Romance languages, as reflected in the prevalence of word order (with arithmetical correlates), connectors, (partial) loss of agreement, and analyticity. Innovation is prominent in the formation of higher numerals with bases beyond ‘thousand’, of teens and decads in Romanian, and of vigesimals in numerous Romance varieties.
  • Bauer, B. L. M. (2022). Counting systems. In A. Ledgeway, & M. Maiden (Eds.), The Cambridge Handbook of Romance Linguistics (pp. 459-488). Cambridge: Cambridge University Press.

    Abstract

    The Romance counting system is numerical – with residues of earlier systems whereby each commodity had its own unit of quantification – and decimal. Numeral formations beyond ‘10’ are compounds, combining two or more numerals that are in an arithmetical relation, typically that of addition and multiplication. Formal variation across the (standard) Romance languages and dialects and across historical stages involves the relative sequence of the composing elements, absence or presence of connectors, their synthetic vs. analytic nature, and the degree of grammatical marking. A number of ‘deviant’ numeral formations raise the question of borrowing vs independent development, such as vigesimals (featuring a base ‘20’ instead ‘10’) in certain Romance varieties and the teen and decad formations in Romanian. The other types of numeral in Romance, which derive from the unmarked and consistent cardinals, feature a significantly higher degree of formal complexity and variation involving Latin formants and tend toward analyticity. While Latin features prominently in the Romance counting system as a source of numeral formations and suffixes, it is only in Romance that the inherited decimal system reached its full potential, illustrating its increasing prominence, reflected not only in numerals, but also in language acquisition, sign language, and post-Revolution measuring systems.
  • Bauer, B. L. M. (1999). Impersonal HABET constructions: At the cross-roads of Indo-European innovation. In E. Polomé, & C. Justus (Eds.), Language change and typological variation. Vol II. Grammatical universals and typology (pp. 590-612). Washington: Institute for the study of man.
  • Bohnemeyer, J. (1999). A questionnaire on event integration. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 87-95). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002691.

    Abstract

    How do we decide where events begin and end? Like the ECOM clips, this questionnaire is designed to investigate how a language divides and/or integrates complex scenarios into sub-events and macro-events. The questionnaire focuses on events of motion, caused state change (e.g., breaking), and transfer (e.g., giving). It provides a checklist of scenarios that give insight into where a language “draws the line” in event integration, based on known cross-linguistic differences.
  • Bohnemeyer, J. (1999). Event representation and event complexity: General introduction. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 69-73). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002741.

    Abstract

    How do we decide where events begin and end? In some languages it makes sense to say something like Dan broke the plate, but in other languages it is necessary to treat this action as a complex scenario composed of separate stages (Dan dropped the plate and then the plate broke). This document introduces issues concerning the linguistic and cognitive representations of event complexity and integration, and provides an overview of tasks that are relevant to this topic, including the ECOM clips, the Questionnaire on Event integration, and the Questionnaire on motion lexicalisation and motion description.
  • Bohnemeyer, J., & Caelen, M. (1999). The ECOM clips: A stimulus for the linguistic coding of event complexity. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 74-86). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874627.

    Abstract

    How do we decide where events begin and end? In some languages it makes sense to say something like Dan broke the plate, but in other languages it is necessary to treat this action as a complex scenario composed of separate stages (Dan dropped the plate and then the plate broke). The “Event Complexity” (ECOM) clips are designed to explore how languages differ in dividing and/or integrating complex scenarios into sub-events and macro-events. The stimuli consist of animated clips of geometric shapes that participate in different scenarios (e.g., a circle “hits” a triangle and “breaks” it). Consultants are asked to describe the scenes, and then to comment on possible alternative descriptions.

    Additional information

    1999_The_ECOM_clips.zip
  • Bosker, H. R. (2021). The contribution of amplitude modulations in speech to perceived charisma. In B. Weiss, J. Trouvain, M. Barkat-Defradas, & J. J. Ohala (Eds.), Voice attractiveness: Prosody, phonology and phonetics (pp. 165-181). Singapore: Springer. doi:10.1007/978-981-15-6627-1_10.

    Abstract

    Speech contains pronounced amplitude modulations in the 1–9 Hz range, correlating with the syllabic rate of speech. Recent models of speech perception propose that this rhythmic nature of speech is central to speech recognition and has beneficial effects on language processing. Here, we investigated the contribution of amplitude modulations to the subjective impression listeners have of public speakers. The speech from US presidential candidates Hillary Clinton and Donald Trump in the three TV debates of 2016 was acoustically analyzed by means of modulation spectra. These indicated that Clinton’s speech had more pronounced amplitude modulations than Trump’s speech, particularly in the 1–9 Hz range. A subsequent perception experiment, with listeners rating the perceived charisma of (low-pass filtered versions of) Clinton’s and Trump’s speech, showed that more pronounced amplitude modulations (i.e., more ‘rhythmic’ speech) increased perceived charisma ratings. These outcomes highlight the important contribution of speech rhythm to charisma perception.
  • Bowerman, M. (1988). Inducing the latent structure of language. In F. Kessel (Ed.), The development of language and language researchers: Essays presented to Roger Brown (pp. 23-49). Hillsdale, N.J.: Lawrence Erlbaum.
  • Bowerman, M. (1989). Learning a semantic system: What role do cognitive predispositions play? In M. L. Rice, & R. L. Schiefelbusch (Eds.), The teachability of language (pp. 133-169). Baltimore: Paul H. Brookes.
  • Bowerman, M. (1988). The 'no negative evidence' problem: How do children avoid constructing an overly general grammar? In J. Hawkins (Ed.), Explaining language universals (pp. 73-101). Oxford: Basil Blackwell.
  • Bowerman, M. (1988). The child's expression of meaning: Expanding relationships among lexicon, syntax, and morphology [Reprint]. In M. B. Franklin, & S. S. Barten (Eds.), Child language: A reader (pp. 106-117). Oxford: Oxford University Press.

    Abstract

    Reprinted from: Bowerman, M. (1981). The child's expression of meaning: Expanding relationships among lexicon, syntax, and morphology. In H. Winitz (Ed.), Native language and foreign language acquisition (pp. 172 189). New York: New York Academy of Sciences.
  • Brown, C. M., & Hagoort, P. (1989). De LAT-relatie tussen lichaam en geest: Over de implicaties van neurowetenschap voor onze kennis van cognitie. In C. Brown, P. Hagoort, & T. Meijering (Eds.), Vensters op de geest: Cognitie op het snijvlak van filosofie en psychologie (pp. 50-81). Utrecht: Grafiet.
  • Brown, C. M., & Hagoort, P. (1999). The cognitive neuroscience of language: Challenges and future directions. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 3-14). Oxford: Oxford University Press.
  • Brown, P., & Levinson, S. C. (1999). Politeness: Some universals in language usage [Reprint]. In A. Jaworski, & N. Coupland (Eds.), The discourse reader (pp. 321-335). London: Routledge.

    Abstract

    This article is a reprint of chapter 1, the introduction to Brown and Levinson, 1987, Politeness: Some universals in language usage (Cambridge University Press).
  • Burenkova, O. V., & Fisher, S. E. (2019). Genetic insights into the neurobiology of speech and language. In E. Grigorenko, Y. Shtyrov, & P. McCardle (Eds.), All About Language: Science, Theory, and Practice. Baltimore, MD: Paul Brookes Publishing, Inc.
  • Cho, T. (2022). The Phonetics-Prosody Interface and Prosodic Strengthening in Korean. In S. Cho, & J. Whitman (Eds.), Cambridge handbook of Korean linguistics (pp. 248-293). Cambridge: Cambridge University Press.
  • Cutler, A., & Jesse, A. (2021). Word stress in speech perception. In J. S. Pardo, L. C. Nygaard, & D. B. Pisoni (Eds.), The handbook of speech perception (2nd ed., pp. 239-265). Chichester: Wiley.
  • Cutler, A., Aslin, R. N., Gervain, J., & Nespor, M. (Eds.). (2021). Special issue in honor of Jacques Mehler, Cognition's founding editor [Special Issue]. Cognition, 213.
  • Cutler, A., Ernestus, M., Warner, N., & Weber, A. (2022). Managing speech perception data sets. In B. McDonnell, E. Koller, & L. B. Collister (Eds.), The Open Handbook of Linguistic Data Management (pp. 565-573). Cambrdige, MA, USA: MIT Press. doi:10.7551/mitpress/12200.003.0055.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., & Clifton, Jr., C. (1999). Comprehending spoken language: A blueprint of the listener. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 123-166). Oxford University Press.
  • Cutler, A. (1999). Foreword. In Slips of the Ear: Errors in the perception of Casual Conversation (pp. xiii-xv). New York City, NY, USA: Academic Press.
  • Cutler, A. (1999). Prosodische Struktur und Worterkennung bei gesprochener Sprache. In A. D. Friedrici (Ed.), Enzyklopädie der Psychologie: Sprachrezeption (pp. 49-83). Göttingen: Hogrefe.
  • Cutler, A. (1999). Prosody and intonation, processing issues. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 682-683). Cambridge, MA: MIT Press.
  • Cutler, A. (1999). Spoken-word recognition. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 796-798). Cambridge, MA: MIT Press.
  • Cutler, A. (1988). The perfect speech error. In L. Hyman, & C. Li (Eds.), Language, speech and mind: Studies in honor of Victoria A. Fromkin (pp. 209-223). London: Croom Helm.
  • Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.

    Abstract

    This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language.
  • Dingemanse, M. (2019). 'Ideophone' as a comparative concept. In K. Akita, & P. Pardeshi (Eds.), Ideophones, Mimetics, and Expressives (pp. 13-33). Amsterdam: John Benjamins. doi:10.1075/ill.16.02din.

    Abstract

    This chapter makes the case for ‘ideophone’ as a comparative concept: a notion that captures a recurrent typological pattern and provides a template for understanding language-specific phenomena that prove similar. It revises an earlier definition to account for the observation that ideophones typically form an open lexical class, and uses insights from canonical typology to explore the larger typological space. According to the resulting definition, a canonical ideophone is a member of an open lexical class of marked words that depict sensory imagery. The five elements of this definition can be seen as dimensions that together generate a possibility space to characterise cross-linguistic diversity in depictive means of expression. This approach allows for the systematic comparative treatment of ideophones and ideophone-like phenomena. Some phenomena in the larger typological space are discussed to demonstrate the utility of the approach: phonaesthemes in European languages, specialised semantic classes in West-Chadic, diachronic diversions in Aslian, and depicting constructions in signed languages.
  • Eisenbeiss, S., McGregor, B., & Schmidt, C. M. (1999). Story book stimulus for the elicitation of external possessor constructions and dative constructions ('the circle of dirt'). In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 140-144). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002750.

    Abstract

    How involved in an event is a person that possesses one of the event participants? Some languages can treat such “external possessors” as very closely involved, even marking them on the verb along with core roles such as subject and object. Other languages only allow possessors to be expressed as non-core participants. This task explores possibilities for the encoding of possessors and other related roles such as beneficiaries. The materials consist of a sequence of thirty drawings designed to elicit target construction types.

    Additional information

    1999_Story_book_booklet.pdf
  • Embick, D., Creemers, A., & Goodwin Davies, A. J. (2022). Morphology and the mental lexicon: Three questions about decomposition. In A. Papafragou, J. C. Trueswell, & L. R. Gleitman (Eds.), The Oxford Handbook of the Mental Lexicon (pp. 77-97). Oxford: Oxford University Press.

    Abstract

    The most basic question for the study of morphology and the mental lexicon is whether or not words are _decomposed_: informally, this is the question of whether words are represented (and processed) in terms of some kind of smaller units; that is, broken down into constituent parts. Formally, what it means to represent or process a word as decomposed or not turns out to be quite complex. One of the basic lines of division in the field classifies approaches according to whether they decompose all “complex” words (“Full Decomposition”), or none (“Full Listing”), or some but not all, according to some criterion (typical of “Dual-Route” models). However, if we are correct, there are at least three senses in which an approach might be said to be decompositional or not, with the result that ongoing discussions of what appears to be a single large issue might not always be addressing the same distinction. Put slightly differently, there is no single question of decomposition. Instead, there are independent but related questions that define current research. Our goal here is to identify this finer-grained set of questions, as they are the ones that should assume a central place in the study of morphological and lexical representation.
  • Enfield, N. J. (1999). Lao as a national language. In G. Evans (Ed.), Laos: Culture and society (pp. 258-290). Chiang Mai: Silkworm Books.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Evans, N., Levinson, S. C., & Sterelny, K. (Eds.). (2021). Thematic issue on evolution of kinship systems [Special Issue]. Biological theory, 16.
  • Eviatar, Z., & Huettig, F. (Eds.). (2021). Literacy and writing systems [Special Issue]. Journal of Cultural Cognitive Science.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Fisher, V. J. (2022). Unpeeling meaning: An analogy and metaphor identification and analysis tool for modern and post-modern dance, and beyond. In C. Fernandes, V. Evola, & C. Ribeiro (Eds.), Dance data, cognition, and multimodal communication (pp. 297-319). Oxford: Routledge. doi:10.4324/9781003106401-24.
  • Forkel, S. J. (2022). Lesion-Symptom Mapping: From Single Cases to the Human Disconnectome. In S. Della Salla (Ed.), Encyclopedia of Behavioral Neuroscience (2nd edition, pp. 142-154). Elsevier. doi:10.1016/B978-0-12-819641-0.00056-6.

    Abstract

    Lesion symptom mapping has revolutionized our understanding of the functioning of the human brain. Associating damaged voxels in the brain with loss of function has created a map of the brain that identifies critical areas. While these methods have significantly advanced our understanding, recent improvements have identified the need for multivariate and multimodal methods to map hidden lesions and damage to white matter networks beyond the lesion voxels. This article reviews the evolution of lesion-symptom mapping from single case studies to the human disconnectome.
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Friederici, A., & Levelt, W. J. M. (1988). Sprache. In K. Immelmann, K. Scherer, C. Vogel, & P. Schmook (Eds.), Psychobiologie: Grundlagen des Verhaltens (pp. 648-671). Stuttgart: Fischer.
  • Frost, R. L. A., & Casillas, M. (2021). Investigating statistical learning of nonadjacent dependencies: Running statistical learning tasks in non-WEIRD populations. In SAGE Research Methods Cases. doi:10.4135/9781529759181.

    Abstract

    Language acquisition is complex. However, one thing that has been suggested to help learning is the way that information is distributed throughout language; co-occurrences among particular items (e.g., syllables and words) have been shown to help learners discover the words that a language contains and figure out how those words are used. Humans’ ability to draw on this information—“statistical learning”—has been demonstrated across a broad range of studies. However, evidence from non-WEIRD (Western, Educated, Industrialized, Rich, and Democratic) societies is critically lacking, which limits theorizing on the universality of this skill. We extended work on statistical language learning to a new, non-WEIRD linguistic population: speakers of Yélî Dnye, who live on a remote island off mainland Papua New Guinea (Rossel Island). We performed a replication of an existing statistical learning study, training adults on an artificial language with statistically defined words, then examining what they had learnt using a two-alternative forced-choice test. Crucially, we implemented several key amendments to the original study to ensure the replication was suitable for remote field-site testing with speakers of Yélî Dnye. We made critical changes to the stimuli and materials (to test speakers of Yélî Dnye, rather than English), the instructions (we re-worked these significantly, and added practice tasks to optimize participants’ understanding), and the study format (shifting from a lab-based to a portable tablet-based setup). We discuss the requirement for acute sensitivity to linguistic, cultural, and environmental factors when adapting studies to test new populations.

  • Greenfield, M. D., Honing, H., Kotz, S. A., & Ravignani, A. (Eds.). (2021). Synchrony and rhythm interaction: From the brain to behavioural ecology [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Hagoort, P. (2022). Reasoning and the brain. In M. Stokhof, & K. Stenning (Eds.), Rules, regularities, randomness. Festschrift for Michiel van Lambalgen (pp. 83-85). Amsterdam: Institute for Logic, Language and Computation.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Hellwig, B., Defina, R., Kidd, E., Allen, S. E. M., Davidson, L., & Kelly, B. F. (2021). Child language documentation: The sketch acquisition project. In G. Haig, S. Schnell, & F. Seifart (Eds.), Doing corpus-based typology with spoken language data: State of the art (pp. 29-58). Honolulu, HI: University of Hawai'i Press.

    Abstract

    This paper reports on an on-going project designed to collect comparable corpus data on child language and child-directed language in under-researched languages. Despite a long history of cross-linguistic research, there is a severe empirical bias within language acquisition research: Data is available for less than 2% of the world's languages, heavily skewed towards the larger and better-described languages. As a result, theories of language development tend to be grounded in a non-representative sample, and we know little about the acquisition of typologically-diverse languages from different families, regions, or sociocultural contexts. It is very likely that the reasons are to be found in the forbidding methodological challenges of constructing child language corpora under fieldwork conditions with their strict requirements on participant selection, sampling intervals, and amounts of data. There is thus an urgent need for proposals that facilitate and encourage language acquisition research across a wide variety of languages. Adopting a language documentation perspective, we illustrate an approach that combines the construction of manageable corpora of natural interaction with and between children with a sketch description of the corpus data – resulting in a set of comparable corpora and comparable sketches that form the basis for cross-linguistic comparisons.
  • Karaca, F., Brouwer, S., Unsworth, S., & Huettig, F. (2021). Prediction in bilingual children: The missing piece of the puzzle. In E. Kaan, & T. Grüter (Eds.), Prediction in Second Language Processing and Learning (pp. 116-137). Amsterdam: Benjamins.

    Abstract

    A wealth of studies has shown that more proficient monolingual speakers are better at predicting upcoming information during language comprehension. Similarly, prediction skills of adult second language (L2) speakers in their L2 have also been argued to be modulated by their L2 proficiency. How exactly language proficiency and prediction are linked, however, is yet to be systematically investigated. One group of language users which has the potential to provide invaluable insights into this link is bilingual children. In this paper, we compare bilingual children’s prediction skills with those of monolingual children and adult L2 speakers, and show how investigating bilingual children’s prediction skills may contribute to our understanding of how predictive processing works.
  • Kempen, G. (1989). Informatiegedragskunde: Pijler van de moderne informatieverzorging. In A. F. Marks (Ed.), Sociaal-wetenschappelijke informatie en kennisvorming in onderzoek, onderzoeksbeleid en beroep (pp. 31-35). Amsterdam: SWIDOC.
  • Kempen, G. (1989). Language generation systems. In I. S. Bátori, W. Lenders, & W. Putschke (Eds.), Computational linguistics: An international handbook on computer oriented language research and applications (pp. 471-480). Berlin/New York: Walter de Gruyter.
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Klein, W. (2021). Das „Heidelberger Forschungsprojekt Pidgin-Deutsch “und die Folgen. In B. Ahrenholz, & M. Rost-Roth (Eds.), Ein Blick zurück nach vorn: Frühe deutsche Forschung zu Zweitspracherwerb, Migration, Mehrsprachigkeit und zweitsprachbezogener Sprachdidaktik sowie ihre Bedeutung heute (pp. 50-95). Berlin: De Gruyter.
  • Klein, W., & Musan, R. (Eds.). (1999). Das deutsche Perfekt [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (113).
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W. (Ed.). (1989). Kindersprache [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (73).
  • Klein, W. (1989). La variation linguistique. In P. Cadiot, & N. Dittmar (Eds.), La sociolinguistique en pays de langue allemande (pp. 101-124). Lille: Presses Universitaires de Lille.
  • Klein, W. (Ed.). (1988). Sprache Kranker [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (69).
  • Klein, W., & Perdue, C. (1989). The learner's problem of arranging words. In B. MacWhinney, & E. Bates (Eds.), The crosslinguistic study of sentence processing (pp. 292-327). Cambridge: Cambridge University Press.
  • Klein, W. (1988). The unity of a vernacular: Some remarks on "Berliner Stadtsprache". In N. Dittmar, & P. Schlobinski (Eds.), The sociolinguistics of urban vernaculars: Case studies and their evaluation (pp. 147-153). Berlin: de Gruyter.
  • Klein, W. (1988). Varietätengrammatik. In U. Ammon, N. Dittmar, & K. J. Mattheier (Eds.), Sociolinguistics: An international handbook of the science of language and society: Vol. 2 (pp. 997-1060). Berlin: de Gruyter.
  • Kupisch, T., Pereira Soares, S. M., Puig-Mayenco, E., & Rothman, J. (2021). Multilingualism and Chomsky's Generative Grammar. In N. Allott (Ed.), A companion to Chomsky (pp. 232-242). doi:10.1002/9781119598732.ch15.

    Abstract

    Like Einstein's general theory of relativity is concerned with explaining the basics of an observable experience – i.e., gravity – most people take for granted that Chomsky's theory of generative grammar (GG) is concerned with the basic nature of language. This chapter highlights a mere subset of central constructs in GG, showing how they have featured prominently and thus shaped formal linguistic studies in multilingualism. Because multilingualism includes a wide range of nonmonolingual populations, the constructs are divided across child bilingualism and adult third language for greater coverage. In the case of the former, the chapter examines how poverty of the stimulus has been investigated. Using the nascent field of L3/Ln acquisition as the backdrop, it discusses how the GG constructs of I-language versus E-language sit at the core of debates regarding the very notion of what linguistic transfer and mental representations should be taken to be.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1988). Psycholinguistics: An overview. In W. Bright (Ed.), International encyclopedia of linguistics: Vol. 3 (pp. 290-294). Oxford: Oxford University press.
  • Levelt, W. J. M. (1999). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (2nd enlarged and revised edition) (pp. 1005-1008). Amsterdam: Elsevier Science.
  • Levelt, W. J. M. (1989). De connectionistische mode: Symbolische en subsymbolische modellen van het menselijk gedrag. In C. M. Brown, P. Hagoort, & T. Meijering (Eds.), Vensters op de geest: Cognitie op het snijvlak van filosofie en psychologie (pp. 202-219). Utrecht: Stichting Grafiet.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1999). Producing spoken language: A blueprint of the speaker. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 83-122). Oxford University Press.
  • Levelt, W. J. M. (1989). Working models of perception: Five general issues. In B. A. Elsendoorn, & H. Bouma (Eds.), Working models of perception (pp. 489-503). London: Academic Press.
  • Levinson, S. C. (2022). Cognitive anthropology. In J. Verschueren, & J.-O. Östman (Eds.), Handbook of Pragmatics. Manual. 2nd edition (pp. 164-170). Amsterdam: Benjamins. doi:10.1075/hop.m2.cog1.
  • Levinson, S. C. (1988). Conceptual problems in the study of regional and cultural style. In N. Dittmar, & P. Schlobinski (Eds.), The sociolinguistics of urban vernaculars: Case studies and their evaluation (pp. 161-190). Berlin: De Gruyter.
  • Levinson, S. C. (1989). Conversation. In E. Barnouw (Ed.), International encyclopedia of communications (pp. 407-410). New York: Oxford University Press.
  • Levinson, S. C. (1999). Deixis. In K. Brown, & J. Miller (Eds.), Concise encyclopedia of grammatical categories (pp. 132-136). Oxford: Elsevier.
  • Levinson, S. C. (1999). Deixis and Demonstratives. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573810.

    Abstract

    Demonstratives are key items in understanding how a language constructs and interprets spatial relationships. They are also multi-functional, with applications to non-spatial deictic fields such as time, perception, person and discourse, and uses in anaphora and affect marking. This item consists of an overview of theoretical distinctions in demonstrative systems, followed by a set of practical queries and elicitation suggestions for demonstratives in “table top” space, wider spatial fields, and naturalistic data.
  • Levinson, S. C. (1999). General Questions About Topological Relations in Adpositions and Cases. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 57-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2615829.

    Abstract

    The world’s languages encode a diverse range of topological relations. However, cross-linguistic investigation suggests that the relations IN, AT and ON are especially fundamental to the grammaticised expression of space. The purpose of this questionnaire is to collect information about adpositions, case markers, and spatial nominals that are involved in the expression of core IN/AT/ON meanings. The task explores the more general parts of a language’s topological system, with a view to testing certain hypotheses about the packaging of spatial concepts. The questionnaire consists of target translation sentences that focus on a number of dimensions including animacy, caused location and motion.
  • Levinson, S. C. (1999). Hypotheses concerning basic locative constructions and the verbal elements within them. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 55-56). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002711.

    Abstract

    Languages differ widely in terms of how they encode the fundamental concepts of location and position. For some languages, verbs have an important role to play in describing situations (e.g., whether a bottle is standing or lying on the table); for others, verbs are not used in describing location at all. This item outlines certain hypotheses concerning four “types” of languages: those that have verbless basic locatives; those that use a single verb; those that have several verbs available to express location; and those that use positional verbs. The document was originally published as an appendix to the 'Picture series for positional verbs' (https://doi.org/10.17617/2.2573831).
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1999). Language and culture. In R. Wilson, & F. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 438-440). Cambridge: MIT press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1988). Putting linguistics on a proper footing: Explorations in Goffman's participation framework. In P. Drew, & A. Wootton (Eds.), Goffman: Exploring the interaction order (pp. 161-227). Oxford: Polity Press.
  • Levshina, N. (2021). Conditional inference trees and random forests. In M. Paquot, & T. Gries (Eds.), Practical Handbook of Corpus Linguistics (pp. 611-643). New York: Springer.
  • Levshina, N. (2022). Comparing Bayesian and frequentist models of language variation: The case of help + (to) Infinitive. In O. Schützler, & J. Schlüter (Eds.), Data and methods in corpus linguistics – Comparative Approaches (pp. 224-258). Cambridge: Cambridge University Press.
  • Levshina, N., & Moran, S. (Eds.). (2021). Efficiency in human languages: Corpus evidence for universal principles [Special Issue]. Linguistics Vanguard, 7(s3).
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Mak, M., & Willems, R. M. (2021). Mental simulation during literary reading. In D. Kuiken, & A. M. Jacobs (Eds.), Handbook of empirical literary studies (pp. 63-84). Berlin: De Gruyter.

    Abstract

    Readers experience a number of sensations during reading. They do
    not – or do not only – process words and sentences in a detached, abstract
    manner. Instead they “perceive” what they read about. They see descriptions of
    scenery, feel what characters feel, and hear the sounds in a story. These sensa-
    tions tend to be grouped under the umbrella terms “mental simulation” and
    “mental imagery.” This chapter provides an overview of empirical research on
    the role of mental simulation during literary reading. Our chapter also discusses
    what mental simulation is and how it relates to mental imagery. Moreover, it
    explores how mental simulation plays a role in leading models of literary read-
    ing and investigates under what circumstances mental simulation occurs dur-
    ing literature reading. Finally, the effect of mental simulation on the literary
    reader’s experience is discussed, and suggestions and unresolved issues in this
    field are formulated.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Nijhof, S., & Zwitserlood, I. (1999). Pluralization in Sign Language of the Netherlands (NGT). In J. Don, & T. Sanders (Eds.), OTS Yearbook 1998-1999 (pp. 58-78). Utrecht: UiL OTS.
  • Norman, D. A., & Levelt, W. J. M. (1988). Life at the center. In W. Hirst (Ed.), The making of cognitive science: essays in honor of George A. Miller (pp. 100-109). Cambridge University Press.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.

Share this page