Publications

Displaying 1 - 80 of 80
  • Bauer, B. L. M. (1999). Aspects of impersonal constructions in Late Latin. In H. Petersmann, & R. Kettelmann (Eds.), Latin vulgaire – latin tardif V (pp. 209-211). Heidelberg: Winter.
  • Bentz, C., Dediu, D., Verkerk, A., & Jäger, G. (2018). Language family trees reflect geography and demography beyond neutral drift. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 38-40). Toruń, Poland: NCU Press. doi:10.12775/3991-1.006.
  • Brand, J., Monaghan, P., & Walker, P. (2018). Changing Signs: Testing How Sound-Symbolism Supports Early Word Learning. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1398-1403). Austin, TX: Cognitive Science Society.

    Abstract

    Learning a language involves learning how to map specific forms onto their associated meanings. Such mappings can utilise arbitrariness and non-arbitrariness, yet, our understanding of how these two systems operate at different stages of vocabulary development is still not fully understood. The Sound-Symbolism Bootstrapping Hypothesis (SSBH) proposes that sound-symbolism is essential for word learning to commence, but empirical evidence of exactly how sound-symbolism influences language learning is still sparse. It may be the case that sound-symbolism supports acquisition of categories of meaning, or that it enables acquisition of individualized word meanings. In two Experiments where participants learned form-meaning mappings from either sound-symbolic or arbitrary languages, we demonstrate the changing roles of sound-symbolism and arbitrariness for different vocabulary sizes, showing that sound-symbolism provides an advantage for learning of broad categories, which may then transfer to support learning individual words, whereas an arbitrary language impedes acquisition of categories of sound to meaning.
  • Braun, B., Weber, A., & Crocker, M. (2005). Does narrow focus activate alternative referents? In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 1709-1712).

    Abstract

    Narrow focus refers to accent placement that forces one interpretation of a sentence, which is then often perceived contrastively. Narrow focus is formalised in terms of alternative sets, i.e. contextually or situationally salient alternatives. In this paper, we investigate whether this model is valid also in human utterance processing. We present an eye-tracking experiment to study listeners’ expectations (i.e. eye-movements) with respect to upcoming referents. Some of the objects contrast in colour with objects that were previously referred to, others do not; the objects are referred to with either a narrow focus on the colour adjective or with broad focus on the noun. Results show that narrow focus on the adjective increases early fixations to contrastive referents. Narrow focus hence activates alternative referents in human utterance processing
  • Brown, A., & Gullberg, M. (2005). Convergence in emerging and established language system: Evidence from speech and gesture in L1 Japanese. In Y. Terao, & k. Sawasaki (Eds.), Handbook of the 7th International Conference of the Japanese Society for Language Sciences (pp. 172-173). Tokyo: JSLS.
  • Byun, K.-S., De Vos, C., Roberts, S. G., & Levinson, S. C. (2018). Interactive sequences modulate the selection of expressive forms in cross-signing. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 67-69). Toruń, Poland: NCU Press. doi:10.12775/3991-1.012.
  • Chen, A., & Den Os, E. (2005). Effects of pitch accent type on interpreting information status in synthetic speech. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 1913-1916).
  • Chen, J. (2005). Interpreting state-change: Learning the meaning of verbs and verb compounds in Mandarin. In Proceedings of the 29th Annual Boston University Conference on Language Development.

    Abstract

    This study investigates how Mandarin-speaking children interpret state-change verbs. In Mandarin, state-change is typically encoded with resultative verb compounds (RVCs), in which the first verb (V1) specifies an action and the second (V2) a result, for example, zhai-xia 'pick-descend' (= pick, pick off/down). Unlike English state-change verb such as pick, smash, mix and fill, the action verb (V1) may imply a state-change but it does not entail it; the state-change is specified by the additional result verb (V2). Previous studies have shown that children learning English and German tend to neglect the state-change meaning in monomorphemic state-change verbs like mix and fill (Gentner, 1978; Gropen et al, 1991) and verb-particle constructions like abplücken 'pick off' (Wittek, 1999, 2000) - they do not realize that this meaning is entailed. This study examines how Mandarin-speaking children interpret resultative verb compounds and the first verb of an RVC. Four groups of Mandarin-speaking children (mean ages 2;6, 3;6, 4;6, 6;1) and an adult group participated in a judgment task. The results show that Mandarin-speaking children know from a very young age that RVCs entail a state-change; ironically, however, they make a mistake that is just the opposite to that made by the learners of English and German: they often incorrectly interpret the action verb (V1) of an RVC as if it, in itself, also entails a state-change, even though it does not. This result suggests that children do not have a uniform strategy for interpreting verb meaning, but are influenced by the language-specific lexicalization patterns they encounter in their language.
  • Chen, A., & De Ruiter, J. P. (2005). The role of pitch accent type in interpreting information status. Proceedings from the Annual Meeting of the Chicago Linguistic Society, 41(1), 33-48.

    Abstract

    The present study set out to pin down the role of four pitch accents, fall (H*L), rise-fall (L*HL), rise (L*H), fall-rise (H*LH), as well as deaccentuation, in interpreting new vs. given information in British English by the eyetracking paradigm. The pitch accents in question were claimed to convey information status in theories of English intonational meaning. There is, however, no consensus on the postulated roles of these pitch accents. Results clearly show that pitch accent type can and does matter when interpreting information status. The effects can be reflected in the mean proportions of fixations to the competitor in a selected time window. These patterns are also present in proportions of fixations to the target but to a lesser extent. Interestingly, the effects of pitch accent types are also reflected in how fast the participants could adjust their decision as to which picture to move before the name of the picture was fully revealed. For example, when the competitor was a given entity, the proportion of fixations to the competitor increased initially in most accent conditions in the first as a result of subjects' bias towards a given entity, but started to decrease substantially earlier in the H*L condition than in the L*H and deaccentuation conditions.
  • Cristia, A., Ganesh, S., Casillas, M., & Ganapathy, S. (2018). Talker diarization in the wild: The case of child-centered daylong audio-recordings. In Proceedings of Interspeech 2018 (pp. 2583-2587). doi:10.21437/Interspeech.2018-2078.

    Abstract

    Speaker diarization (answering 'who spoke when') is a widely researched subject within speech technology. Numerous experiments have been run on datasets built from broadcast news, meeting data, and call centers—the task sometimes appears close to being solved. Much less work has begun to tackle the hardest diarization task of all: spontaneous conversations in real-world settings. Such diarization would be particularly useful for studies of language acquisition, where researchers investigate the speech children produce and hear in their daily lives. In this paper, we study audio gathered with a recorder worn by small children as they went about their normal days. As a result, each child was exposed to different acoustic environments with a multitude of background noises and a varying number of adults and peers. The inconsistency of speech and noise within and across samples poses a challenging task for speaker diarization systems, which we tackled via retraining and data augmentation techniques. We further studied sources of structured variation across raw audio files, including the impact of speaker type distribution, proportion of speech from children, and child age on diarization performance. We discuss the extent to which these findings might generalize to other samples of speech in the wild.
  • Cutler, A., Burchfield, L. A., & Antoniou, M. (2018). Factors affecting talker adaptation in a second language. In J. Epps, J. Wolfe, J. Smith, & C. Jones (Eds.), Proceedings of the 17th Australasian International Conference on Speech Science and Technology (pp. 33-36).

    Abstract

    Listeners adapt rapidly to previously unheard talkers by
    adjusting phoneme categories using lexical knowledge, in a
    process termed lexically-guided perceptual learning. Although
    this is firmly established for listening in the native language
    (L1), perceptual flexibility in second languages (L2) is as yet
    less well understood. We report two experiments examining L1
    and L2 perceptual learning, the first in Mandarin-English late
    bilinguals, the second in Australian learners of Mandarin. Both
    studies showed stronger learning in L1; in L2, however,
    learning appeared for the English-L1 group but not for the
    Mandarin-L1 group. Phonological mapping differences from
    the L1 to the L2 are suggested as the reason for this result.
  • Ip, M. H. K., & Cutler, A. (2018). Cue equivalence in prosodic entrainment for focus detection. In J. Epps, J. Wolfe, J. Smith, & C. Jones (Eds.), Proceedings of the 17th Australasian International Conference on Speech Science and Technology (pp. 153-156).

    Abstract

    Using a phoneme detection task, the present series of
    experiments examines whether listeners can entrain to
    different combinations of prosodic cues to predict where focus
    will fall in an utterance. The stimuli were recorded by four
    female native speakers of Australian English who happened to
    have used different prosodic cues to produce sentences with
    prosodic focus: a combination of duration cues, mean and
    maximum F0, F0 range, and longer pre-target interval before
    the focused word onset, only mean F0 cues, only pre-target
    interval, and only duration cues. Results revealed that listeners
    can entrain in almost every condition except for where
    duration was the only reliable cue. Our findings suggest that
    listeners are flexible in the cues they use for focus processing.
  • Ip, M. H. K., & Cutler, A. (2018). Asymmetric efficiency of juncture perception in L1 and L2. In K. Klessa, J. Bachan, A. Wagner, M. Karpiński, & D. Śledziński (Eds.), Proceedings of Speech Prosody 2018 (pp. 289-296). Baixas, France: ISCA. doi:10.21437/SpeechProsody.2018-59.

    Abstract

    In two experiments, Mandarin listeners resolved potential syntactic ambiguities in spoken utterances in (a) their native language (L1) and (b) English which they had learned as a second language (L2). A new disambiguation task was used, requiring speeded responses to select the correct meaning for structurally ambiguous sentences. Importantly, the ambiguities used in the study are identical in Mandarin and in English, and production data show that prosodic disambiguation of this type of ambiguity is also realised very similarly in the two languages. The perceptual results here showed however that listeners’ response patterns differed for L1 and L2, although there was a significant increase in similarity between the two response patterns with increasing exposure to the L2. Thus identical ambiguity and comparable disambiguation patterns in L1 and L2 do not lead to immediate application of the appropriate L1 listening strategy to L2; instead, it appears that such a strategy may have to be learned anew for the L2.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A. (2005). The lexical statistics of word recognition problems caused by L2 phonetic confusion. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 413-416).
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Cutler, A., Van Ooijen, B., & Norris, D. (1999). Vowels, consonants, and lexical activation. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 3 (pp. 2053-2056). Berkeley: University of California.

    Abstract

    Two lexical decision studies examined the effects of single-phoneme mismatches on lexical activation in spoken-word recognition. One study was carried out in English, and involved spoken primes and visually presented lexical decision targets. The other study was carried out in Dutch, and primes and targets were both presented auditorily. Facilitation was found only for spoken targets preceded immediately by spoken primes; no facilitation occurred when targets were presented visually, or when intervening input occurred between prime and target. The effects of vowel mismatches and consonant mismatches were equivalent.
  • Delgado, T., Ravignani, A., Verhoef, T., Thompson, B., Grossi, T., & Kirby, S. (2018). Cultural transmission of melodic and rhythmic universals: Four experiments and a model. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 89-91). Toruń, Poland: NCU Press. doi:10.12775/3991-1.019.
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Ergin, R., Senghas, A., Jackendoff, R., & Gleitman, L. (2018). Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 104-106). Toruń, Poland: NCU Press. doi:10.12775/3991-1.025.
  • Floyd, S. (2005). The poetics of evidentiality in South American storytelling. In L. Harper, & C. Jany (Eds.), Proceedings from the Eighth Workshop on American Indigenous languages (pp. 28-41). Santa Barbara, Cal: University of California, Santa Barbara. (Santa Barbara Papers in Linguistics; 46).
  • Forkstam, C., & Petersson, K. M. (2005). Syntactic classification of acquired structural regularities. In G. B. Bruna, & L. Barsalou (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 696-701).

    Abstract

    In this paper we investigate the neural correlates of syntactic classification of an acquired grammatical sequence structure in an event-related FMRI study. During acquisition, participants were engaged in an implicit short-term memory task without performance feedback. We manipulated the statistical frequency-based and rule-based characteristics of the classification stimuli independently in order to investigate their role in artificial grammar acquisition. The participants performed reliably above chance on the classification task. We observed a partly overlapping corticostriatal processing network activated by both manipulations including inferior prefrontal, cingulate, inferior parietal regions, and the caudate nucleus. More specifically, the left inferior frontal BA 45 and the caudate nucleus were sensitive to syntactic violations and endorsement, respectively. In contrast, these structures were insensitive to the frequency-based manipulation.
  • Galke, L., Gerstenkorn, G., & Scherp, A. (2018). A case study of closed-domain response suggestion with limited training data. In M. Elloumi, M. Granitzer, A. Hameurlain, C. Seifert, B. Stein, A. Min Tjoa, & R. Wagner (Eds.), Database and Expert Systems Applications: DEXA 2018 International Workshops, BDMICS, BIOKDD, and TIR, Regensburg, Germany, September 3–6, 2018, Proceedings (pp. 218-229). Cham, Switzerland: Springer.

    Abstract

    We analyze the problem of response suggestion in a closed domain along a real-world scenario of a digital library. We present a text-processing pipeline to generate question-answer pairs from chat transcripts. On this limited amount of training data, we compare retrieval-based, conditioned-generation, and dedicated representation learning approaches for response suggestion. Our results show that retrieval-based methods that strive to find similar, known contexts are preferable over parametric approaches from the conditioned-generation family, when the training data is limited. We, however, identify a specific representation learning approach that is competitive to the retrieval-based approaches despite the training data limitation.
  • Galke, L., Mai, F., & Vagliano, I. (2018). Multi-modal adversarial autoencoders for recommendations of citations and subject labels. In T. Mitrovic, J. Zhang, L. Chen, & D. Chin (Eds.), UMAP '18: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization (pp. 197-205). New York: ACM. doi:10.1145/3209219.3209236.

    Abstract

    We present multi-modal adversarial autoencoders for recommendation and evaluate them on two different tasks: citation recommendation and subject label recommendation. We analyze the effects of adversarial regularization, sparsity, and different input modalities. By conducting 408 experiments, we show that adversarial regularization consistently improves the performance of autoencoders for recommendation. We demonstrate, however, that the two tasks differ in the semantics of item co-occurrence in the sense that item co-occurrence resembles relatedness in case of citations, yet implies diversity in case of subject labels. Our results reveal that supplying the partial item set as input is only helpful, when item co-occurrence resembles relatedness. When facing a new recommendation task it is therefore crucial to consider the semantics of item co-occurrence for the choice of an appropriate model.
  • Hopman, E., Thompson, B., Austerweil, J., & Lupyan, G. (2018). Predictors of L2 word learning accuracy: A big data investigation. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 513-518). Austin, TX: Cognitive Science Society.

    Abstract

    What makes some words harder to learn than others in a second language? Although some robust factors have been identified based on small scale experimental studies, many relevant factors are difficult to study in such experiments due to the amount of data necessary to test them. Here, we investigate what factors affect the ease of learning of a word in a second language using a large data set of users learning English as a second language through the Duolingo mobile app. In a regression analysis, we test and confirm the well-studied effect of cognate status on word learning accuracy. Furthermore, we find significant effects for both cross-linguistic semantic alignment and English semantic density, two novel predictors derived from large scale distributional models of lexical semantics. Finally, we provide data on several other psycholinguistically plausible word level predictors. We conclude with a discussion of the limits, benefits and future research potential of using big data for investigating second language learning.
  • Huettig, F., Kolinsky, R., & Lachmann, T. (Eds.). (2018). The effects of literacy on cognition and brain functioning [Special Issue]. Language, Cognition and Neuroscience, 33(3).
  • Isbilen, E., Frost, R. L. A., Monaghan, P., & Christiansen, M. (2018). Bridging artificial and natural language learning: Comparing processing- and reflection-based measures of learning. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1856-1861). Austin, TX: Cognitive Science Society.

    Abstract

    A common assumption in the cognitive sciences is that artificial and natural language learning rely on shared mechanisms. However, attempts to bridge the two have yielded ambiguous results. We suggest that an empirical disconnect between the computations employed during learning and the methods employed at test may explain these mixed results. Further, we propose statistically-based chunking as a potential computational link between artificial and natural language learning. We compare the acquisition of non-adjacent dependencies to that of natural language structure using two types of tasks: reflection-based 2AFC measures, and processing-based recall measures, the latter being more computationally analogous to the processes used during language acquisition. Our results demonstrate that task-type significantly influences the correlations observed between artificial and natural language acquisition, with reflection-based and processing-based measures correlating within – but not across – task-type. These findings have fundamental implications for artificial-to-natural language comparisons, both methodologically and theoretically.
  • Janse, E. (2005). Lexical inhibition effects in time-compressed speech. In Proceedings of the 9th European Conference on Speech Communication and Technology [Interspeech 2005] (pp. 1757-1760).
  • Janse, E., & Quené, H. (1999). On the suitability of the cross-modal semantic priming task. In Proceedings of the XIVth International Congress of Phonetic Sciences (pp. 1937-1940).
  • Janssen, R., Moisik, S. R., & Dediu, D. (2018). Agent model reveals the influence of vocal tract anatomy on speech during ontogeny and glossogeny. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 171-174). Toruń, Poland: NCU Press. doi:10.12775/3991-1.042.
  • Jesse, A., & Massaro, D. W. (2005). Towards a lexical fuzzy logical model of perception: The time-course of audiovisual speech processing in word identification. In E. Vatikiotis-Bateson, D. Burnham, & S. Fels (Eds.), Proceedings of the Auditory-Visual Speech Processing International Conference 2005 (pp. 35-36). Adelaide, Australia: Causal Productions.

    Abstract

    This study investigates the time-course of information processing in both visual as well as in the auditory speech as used for word identification in face-to-face communication. It extends the limited previous research on this topic and provides a valuable database for future research in audiovisual speech perception. An evaluation of models of speech perception by ear and eye in their ability to account for the audiovisual gating data shows a superior role of the fuzzy logical model of perception (FLMP) [1] over additive models of perception. A new dynamic version of the FLMP seems to be a promising model to account for the complex interplay of perceptual and cognitive information in audiovisual spoken word recognition.
  • Johns, T. G., Vitali, A. A., Perera, R. M., Vernes, S. C., & Scott, A. M. (2005). Ligand-independent activation of the EGFRvIII: A naturally occurring mutation of the EGFR commonly expressed in glioma [Abstract]. Neuro-Oncology, 7, 299.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2–7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We have now mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies unique to the different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed both in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every tyrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation could be mimicked in vitro by the addition of specifi c components of the ECM such as collagen via an integrin-dependent mechanism. Since this increase in in vivo phosphorylation enhances de2-7 EGFR signaling, this observation explains why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment. In a second set of experiments we analyzed the interaction between EGFRvIII and ErbB2. Co-expression of these proteins in NR6 cells, a mouse fi broblast line devoid of ErbB family members, dramatically enhanced in vivo tumorigenicity of these cells compared to cells expressing either protein alone. Detailed analysis of these xenografts demonstrated that EGFRvIII could heterodimerize and transphosphorylate the ErbB2. Since both EGFRvIII and ErbB2 are commonly expressed at gliomas, this data suggests that the co-expression of these two proteins may enhance glioma tumorigenicity.
  • Johnson, E. K. (2005). Grammatical gender and early word recognition in Dutch. In A. Brugos, M. R. Clark-Cotton, & S. Ha (Eds.), Proceedings of the 29th Boston University Conference on Language Developement (pp. 320-330). Sommervile, MA: Cascadilla Press.
  • Johnson, E. K., Westrek, E., & Nazzi, T. (2005). Language familiarity affects voice discrimination by seven-month-olds. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 227-230).
  • Kanero, J., Franko, I., Oranç, C., Uluşahin, O., Koskulu, S., Adigüzel, Z., Küntay, A. C., & Göksun, T. (2018). Who can benefit from robots? Effects of individual differences in robot-assisted language learning. In Proceedings of the 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 212-217). Piscataway, NJ, USA: IEEE.

    Abstract

    It has been suggested that some individuals may benefit more from social robots than do others. Using second
    language (L2) as an example, the present study examined how individual differences in attitudes toward robots and personality
    traits may be related to learning outcomes. Preliminary results with 24 Turkish-speaking adults suggest that negative attitudes
    toward robots, more specifically thoughts and anxiety about the negative social impact that robots may have on the society,
    predicted how well adults learned L2 words from a social robot. The possible implications of the findings as well as future directions are also discussed
  • Kempen, G., & Olsthoorn, N. (2005). Non-parallelism of grammatical encoding and decoding due to shared working memory [Abstract]. In AMLaP-2005 11th Annual Conference on Architectures and Mechanisms for Language Processing September 5-7, 2005 Ghent, Belgium (pp. 24).
  • Klein, W., & Musan, R. (Eds.). (1999). Das deutsche Perfekt [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (113).
  • Klein, W. (Ed.). (1989). Kindersprache [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (73).
  • Klein, W. (Ed.). (2005). Nicht nur Literatur [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 137.
  • Klein, W., & Dimroth, C. (Eds.). (2005). Spracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 140.
  • Lai, V. T. (2005). Language experience influences the conceptualization of TIME metaphor. In Proceedings of the II Conference on Metaphor in Language and Thought, Rio de Janeiro, Brazil, August 17-20, 2005.

    Abstract

    This paper examines the language-specific aspect of the TIME PASSING IS MOTION metaphor and suggests that the temporal construal of time can be influenced by a person's second language. Ahrens and Huang (2002) have analyzed the source domain of MOTION for the TIME metaphor into two special cases. In the special case one, TIME PASSING is an object that moves towards an ego. For example, qimuokao kuai dao le "the final exam is approaching." In the special case two, TIME PASSING is a point (that a plural ego is attached to) that moves across a landscape. For example, women kuai dao qimuokao le "we are approaching the final exam." In addition, in English, the ego in the special case one faces the future while in Chinese, the ego faces the past. The current experiment hypothesizes that English influences the choice of the orientation of the ego in native Chinese speakers who speak English as the second language. 54 subjects are asked to switch the clock time one hour forward. Results show that native Chinese speakers living in the Chinese speaking country tend to move the clock one hour forward to the past (92%) while native Chinese speakers living in an English speaking country are less likely to do so (60%). This implies that the experience of English influences the conceptualization of time in Mandarin Chinese.
  • Lattenkamp, E. Z., Vernes, S. C., & Wiegrebe, L. (2018). Mammalian models for the study of vocal learning: A new paradigm in bats. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 235-237). Toruń, Poland: NCU Press. doi:10.12775/3991-1.056.
  • Lauscher, A., Eckert, K., Galke, L., Scherp, A., Rizvi, S. T. R., Ahmed, S., Dengel, A., Zumstein, P., & Klein, A. (2018). Linked open citation database: Enabling libraries to contribute to an open and interconnected citation graph. In J. Chen, M. A. Gonçalves, J. M. Allen, E. A. Fox, M.-Y. Kan, & V. Petras (Eds.), JCDL '18: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 109-118). New York: ACM. doi:10.1145/3197026.3197050.

    Abstract

    Citations play a crucial role in the scientific discourse, in information retrieval, and in bibliometrics. Many initiatives are currently promoting the idea of having free and open citation data. Creation of citation data, however, is not part of the cataloging workflow in libraries nowadays.
    In this paper, we present our project Linked Open Citation Database, in which we design distributed processes and a system infrastructure based on linked data technology. The goal is to show that efficiently cataloging citations in libraries using a semi-automatic approach is possible. We specifically describe the current state of the workflow and its implementation. We show that we could significantly improve the automatic reference extraction that is crucial for the subsequent data curation. We further give insights on the curation and linking process and provide evaluation results that not only direct the further development of the project, but also allow us to discuss its overall feasibility.
  • Lefever, E., Hendrickx, I., Croijmans, I., Van den Bosch, A., & Majid, A. (2018). Discovering the language of wine reviews: A text mining account. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. 3297-3302). Paris: LREC.

    Abstract

    It is widely held that smells and flavors are impossible to put into words. In this paper we test this claim by seeking predictive patterns in wine reviews, which ostensibly aim to provide guides to perceptual content. Wine reviews have previously been critiqued as random and meaningless. We collected an English corpus of wine reviews with their structured metadata, and applied machine learning techniques to automatically predict the wine's color, grape variety, and country of origin. To train the three supervised classifiers, three different information sources were incorporated: lexical bag-of-words features, domain-specific terminology features, and semantic word embedding features. In addition, using regression analysis we investigated basic review properties, i.e., review length, average word length, and their relationship to the scalar values of price and review score. Our results show that wine experts do share a common vocabulary to describe wines and they use this in a consistent way, which makes it possible to automatically predict wine characteristics based on the review text alone. This means that odors and flavors may be more expressible in language than typically acknowledged.
  • Levelt, W. J. M. (2005). Habitual perspective. In Proceedings of the 27th Annual Meeting of the Cognitive Science Society (CogSci 2005).
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Lupyan, G., Wendorf, A., Berscia, L. M., & Paul, J. (2018). Core knowledge or language-augmented cognition? The case of geometric reasoning. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 252-254). Toruń, Poland: NCU Press. doi:10.12775/3991-1.062.
  • Mai, F., Galke, L., & Scherp, A. (2018). Using deep learning for title-based semantic subject indexing to reach competitive performance to full-text. In J. Chen, M. A. Gonçalves, J. M. Allen, E. A. Fox, M.-Y. Kan, & V. Petras (Eds.), JCDL '18: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 169-178). New York: ACM.

    Abstract

    For (semi-)automated subject indexing systems in digital libraries, it is often more practical to use metadata such as the title of a publication instead of the full-text or the abstract. Therefore, it is desirable to have good text mining and text classification algorithms that operate well already on the title of a publication. So far, the classification performance on titles is not competitive with the performance on the full-texts if the same number of training samples is used for training. However, it is much easier to obtain title data in large quantities and to use it for training than full-text data. In this paper, we investigate the question how models obtained from training on increasing amounts of title training data compare to models from training on a constant number of full-texts. We evaluate this question on a large-scale dataset from the medical domain (PubMed) and from economics (EconBiz). In these datasets, the titles and annotations of millions of publications are available, and they outnumber the available full-texts by a factor of 20 and 15, respectively. To exploit these large amounts of data to their full potential, we develop three strong deep learning classifiers and evaluate their performance on the two datasets. The results are promising. On the EconBiz dataset, all three classifiers outperform their full-text counterparts by a large margin. The best title-based classifier outperforms the best full-text method by 9.4%. On the PubMed dataset, the best title-based method almost reaches the performance of the best full-text classifier, with a difference of only 2.9%.
  • McQueen, J. M., & Mitterer, H. (2005). Lexically-driven perceptual adjustments of vowel categories. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 233-236).
  • Merkx, D., & Scharenborg, O. (2018). Articulatory feature classification using convolutional neural networks. In Proceedings of Interspeech 2018 (pp. 2142-2146). doi:10.21437/Interspeech.2018-2275.

    Abstract

    The ultimate goal of our research is to improve an existing speech-based computational model of human speech recognition on the task of simulating the role of fine-grained phonetic information in human speech processing. As part of this work we are investigating articulatory feature classifiers that are able to create reliable and accurate transcriptions of the articulatory behaviour encoded in the acoustic speech signal. Articulatory feature (AF) modelling of speech has received a considerable amount of attention in automatic speech recognition research. Different approaches have been used to build AF classifiers, most notably multi-layer perceptrons. Recently, deep neural networks have been applied to the task of AF classification. This paper aims to improve AF classification by investigating two different approaches: 1) investigating the usefulness of a deep Convolutional neural network (CNN) for AF classification; 2) integrating the Mel filtering operation into the CNN architecture. The results showed a remarkable improvement in classification accuracy of the CNNs over state-of-the-art AF classification results for Dutch, most notably in the minority classes. Integrating the Mel filtering operation into the CNN architecture did not further improve classification performance.
  • Micklos, A., Macuch Silva, V., & Fay, N. (2018). The prevalence of repair in studies of language evolution. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 316-318). Toruń, Poland: NCU Press. doi:10.12775/3991-1.075.
  • Mitterer, H. (2005). Short- and medium-term plasticity for speaker adaptation seem to be independent. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 83-86).
  • Mulder, K., Ten Bosch, L., & Boves, L. (2018). Analyzing EEG Signals in Auditory Speech Comprehension Using Temporal Response Functions and Generalized Additive Models. In Proceedings of Interspeech 2018 (pp. 1452-1456). doi:10.21437/Interspeech.2018-1676.

    Abstract

    Analyzing EEG signals recorded while participants are listening to continuous speech with the purpose of testing linguistic hypotheses is complicated by the fact that the signals simultaneously reflect exogenous acoustic excitation and endogenous linguistic processing. This makes it difficult to trace subtle differences that occur in mid-sentence position. We apply an analysis based on multivariate temporal response functions to uncover subtle mid-sentence effects. This approach is based on a per-stimulus estimate of the response of the neural system to speech input. Analyzing EEG signals predicted on the basis of the response functions might then bring to light conditionspecific differences in the filtered signals. We validate this approach by means of an analysis of EEG signals recorded with isolated word stimuli. Then, we apply the validated method to the analysis of the responses to the same words in the middle of meaningful sentences.
  • Ozyurek, A., & Kita, S. (1999). Expressing manner and path in English and Turkish: Differences in speech, gesture, and conceptualization. In M. Hahn, & S. C. Stoness (Eds.), Proceedings of the Twenty-first Annual Conference of the Cognitive Science Society (pp. 507-512). London: Erlbaum.
  • Petersson, K. M., Grenholm, P., & Forkstam, C. (2005). Artificial grammar learning and neural networks. In G. B. Bruna, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1726-1731).

    Abstract

    Recent FMRI studies indicate that language related brain regions are engaged in artificial grammar (AG) processing. In the present study we investigate the Reber grammar by means of formal analysis and network simulations. We outline a new method for describing the network dynamics and propose an approach to grammar extraction based on the state-space dynamics of the network. We conclude that statistical frequency-based and rule-based acquisition procedures can be viewed as complementary perspectives on grammar learning, and more generally, that classical cognitive models can be viewed as a special case of a dynamical systems perspective on information processing
  • Poletiek, F. H., & Rassin E. (Eds.). (2005). Het (on)bewuste [Special Issue]. De Psycholoog.
  • Räsänen, O., Seshadri, S., & Casillas, M. (2018). Comparison of syllabification algorithms and training strategies for robust word count estimation across different languages and recording conditions. In Proceedings of Interspeech 2018 (pp. 1200-1204). doi:10.21437/Interspeech.2018-1047.

    Abstract

    Word count estimation (WCE) from audio recordings has a number of applications, including quantifying the amount of speech that language-learning infants hear in their natural environments, as captured by daylong recordings made with devices worn by infants. To be applicable in a wide range of scenarios and also low-resource domains, WCE tools should be extremely robust against varying signal conditions and require minimal access to labeled training data in the target domain. For this purpose, earlier work has used automatic syllabification of speech, followed by a least-squares-mapping of syllables to word counts. This paper compares a number of previously proposed syllabifiers in the WCE task, including a supervised bi-directional long short-term memory (BLSTM) network that is trained on a language for which high quality syllable annotations are available (a “high resource language”), and reports how the alternative methods compare on different languages and signal conditions. We also explore additive noise and varying-channel data augmentation strategies for BLSTM training, and show how they improve performance in both matching and mismatching languages. Intriguingly, we also find that even though the BLSTM works on languages beyond its training data, the unsupervised algorithms can still outperform it in challenging signal conditions on novel languages.
  • Ravignani, A., Garcia, M., Gross, S., de Reus, K., Hoeksema, N., Rubio-Garcia, A., & de Boer, B. (2018). Pinnipeds have something to say about speech and rhythm. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 399-401). Toruń, Poland: NCU Press. doi:10.12775/3991-1.095.
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2018). The role of community size in the emergence of linguistic structure. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 402-404). Toruń, Poland: NCU Press. doi:10.12775/3991-1.096.
  • Saleh, A., Beck, T., Galke, L., & Scherp, A. (2018). Performance comparison of ad-hoc retrieval models over full-text vs. titles of documents. In M. Dobreva, A. Hinze, & M. Žumer (Eds.), Maturity and Innovation in Digital Libraries: 20th International Conference on Asia-Pacific Digital Libraries, ICADL 2018, Hamilton, New Zealand, November 19-22, 2018, Proceedings (pp. 290-303). Cham, Switzerland: Springer.

    Abstract

    While there are many studies on information retrieval models using full-text, there are presently no comparison studies of full-text retrieval vs. retrieval only over the titles of documents. On the one hand, the full-text of documents like scientific papers is not always available due to, e.g., copyright policies of academic publishers. On the other hand, conducting a search based on titles alone has strong limitations. Titles are short and therefore may not contain enough information to yield satisfactory search results. In this paper, we compare different retrieval models regarding their search performance on the full-text vs. only titles of documents. We use different datasets, including the three digital library datasets: EconBiz, IREON, and PubMed. The results show that it is possible to build effective title-based retrieval models that provide competitive results comparable to full-text retrieval. The difference between the average evaluation results of the best title-based retrieval models is only 3% less than those of the best full-text-based retrieval models.
  • Sauter, D., Wiland, J., Warren, J., Eisner, F., Calder, A., & Scott, S. K. (2005). Sounds of joy: An investigation of vocal expressions of positive emotions [Abstract]. Journal of Cognitive Neuroscience, 61(Supplement), B99.

    Abstract

    A series of experiment tested Ekman’s (1992) hypothesis that there are a set of positive basic emotions that are expressed using vocal para-linguistic sounds, e.g. laughter and cheers. The proposed categories investigated were amusement, contentment, pleasure, relief and triumph. Behavioural testing using a forced-choice task indicated that participants were able to reliably recognize vocal expressions of the proposed emotions. A cross-cultural study in the preliterate Himba culture in Namibia confirmed that these categories are also recognized across cultures. A recognition test of acoustically manipulated emotional vocalizations established that the recognition of different emotions utilizes different vocal cues, and that these in turn differ from the cues used when comprehending speech. In a study using fMRI we found that relative to a signal correlated noise baseline, the paralinguistic expressions of emotion activated bilateral superior temporal gyri and sulci, lateral and anterior to primary auditory cortex, which is consistent with the processing of non linguistic vocal cues in the auditory ‘what’ pathway. Notably amusement was associated with greater activation extending into both temporal poles and amygdale and insular cortex. Overall, these results support the claim that ‘happiness’ can be fractionated into amusement, pleasure, relief and triumph.
  • Scharenborg, O., & Seneff, S. (2005). A two-pass strategy for handling OOVs in a large vocabulary recognition task. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology, (pp. 1669-1672). ISCA Archive.

    Abstract

    This paper addresses the issue of large-vocabulary recognition in a specific word class. We propose a two-pass strategy in which only major cities are explicitly represented in the first stage lexicon. An unknown word model encoded as a phone loop is used to detect OOV city names (referred to as rare city names). After which SpeM, a tool that can extract words and word-initial cohorts from phone graphs on the basis of a large fallback lexicon, provides an N-best list of promising city names on the basis of the phone sequences generated in the first stage. This N-best list is then inserted into the second stage lexicon for a subsequent recognition pass. Experiments were conducted on a set of spontaneous telephone-quality utterances each containing one rare city name. We tested the size of the N-best list and three types of language models (LMs). The experiments showed that SpeM was able to include nearly 85% of the correct city names into an N-best list of 3000 city names when a unigram LM, which also boosted the unigram scores of a city name in a given state, was used.
  • Scharenborg, O. (2005). Parallels between HSR and ASR: How ASR can contribute to HSR. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology (pp. 1237-1240). ISCA Archive.

    Abstract

    In this paper, we illustrate the close parallels between the research fields of human speech recognition (HSR) and automatic speech recognition (ASR) using a computational model of human word recognition, SpeM, which was built using techniques from ASR. We show that ASR has proven to be useful for improving models of HSR by relieving them of some of their shortcomings. However, in order to build an integrated computational model of all aspects of HSR, a lot of issues remain to be resolved. In this process, ASR algorithms and techniques definitely can play an important role.
  • Scharenborg, O., & Merkx, D. (2018). The role of articulatory feature representation quality in a computational model of human spoken-word recognition. In Proceedings of the Machine Learning in Speech and Language Processing Workshop (MLSLP 2018).

    Abstract

    Fine-Tracker is a speech-based model of human speech
    recognition. While previous work has shown that Fine-Tracker
    is successful at modelling aspects of human spoken-word
    recognition, its speech recognition performance is not
    comparable to that of human performance, possibly due to
    suboptimal intermediate articulatory feature (AF)
    representations. This study investigates the effect of improved
    AF representations, obtained using a state-of-the-art deep
    convolutional network, on Fine-Tracker’s simulation and
    recognition performance: Although the improved AF quality
    resulted in improved speech recognition; it, surprisingly, did
    not lead to an improvement in Fine-Tracker’s simulation power.
  • Shattuck-Hufnagel, S., & Cutler, A. (1999). The prosody of speech error corrections revisited. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 2 (pp. 1483-1486). Berkely: University of California.

    Abstract

    A corpus of digitized speech errors is used to compare the prosody of correction patterns for word-level vs. sound-level errors. Results for both peak F0 and perceived prosodic markedness confirm that speakers are more likely to mark corrections of word-level errors than corrections of sound-level errors, and that errors ambiguous between word-level and soundlevel (such as boat for moat) show correction patterns like those for sound level errors. This finding increases the plausibility of the claim that word-sound-ambiguous errors arise at the same level of processing as sound errors that do not form words.
  • Sidnell, J., & Stivers, T. (Eds.). (2005). Multimodal Interaction [Special Issue]. Semiotica, 156.
  • Speed, L., & Majid, A. (2018). Music and odor in harmony: A case of music-odor synaesthesia. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 2527-2532). Austin, TX: Cognitive Science Society.

    Abstract

    We report an individual with music-odor synaesthesia who experiences automatic and vivid odor sensations when she hears music. S’s odor associations were recorded on two days, and compared with those of two control participants. Overall, S produced longer descriptions, and her associations were of multiple odors at once, in comparison to controls who typically reported a single odor. Although odor associations were qualitatively different between S and controls, ratings of the consistency of their descriptions did not differ. This demonstrates that crossmodal associations between music and odor exist in non-synaesthetes too. We also found that S is better at discriminating between odors than control participants, and is more likely to experience emotion, memories and evaluations triggered by odors, demonstrating the broader impact of her synaesthesia.

    Additional information

    link to conference website
  • Sprenger, S. A., & Van Rijn, H. (2005). Clock time naming: Complexities of a simple task. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Meeting of the Cognitive Science Society (pp. 2062-2067).
  • ten Bosch, L., & Scharenborg, O. (2005). ASR decoding in a computational model of human word recognition. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology (pp. 1241-1244). ISCA Archive.

    Abstract

    This paper investigates the interaction between acoustic scores and symbolic mismatch penalties in multi-pass speech decoding techniques that are based on the creation of a segment graph followed by a lexical search. The interaction between acoustic and symbolic mismatches determines to a large extent the structure of the search space of these multipass approaches. The background of this study is a recently developed computational model of human word recognition, called SpeM. SpeM is able to simulate human word recognition data and is built as a multi-pass speech decoder. Here, we focus on unravelling the structure of the search space that is used in SpeM and similar decoding strategies. Finally, we elaborate on the close relation between distances in this search space, and distance measures in search spaces that are based on a combination of acoustic and phonetic features.
  • Ten Bosch, L., Ernestus, M., & Boves, L. (2018). Analyzing reaction time sequences from human participants in auditory experiments. In Proceedings of Interspeech 2018 (pp. 971-975). doi:10.21437/Interspeech.2018-1728.

    Abstract

    Sequences of reaction times (RT) produced by participants in an experiment are not only influenced by the stimuli, but by many other factors as well, including fatigue, attention, experience, IQ, handedness, etc. These confounding factors result in longterm effects (such as a participant’s overall reaction capability) and in short- and medium-time fluctuations in RTs (often referred to as ‘local speed effects’). Because stimuli are usually presented in a random sequence different for each participant, local speed effects affect the underlying ‘true’ RTs of specific trials in different ways across participants. To be able to focus statistical analysis on the effects of the cognitive process under study, it is necessary to reduce the effect of confounding factors as much as possible. In this paper we propose and compare techniques and criteria for doing so, with focus on reducing (‘filtering’) the local speed effects. We show that filtering matters substantially for the significance analyses of predictors in linear mixed effect regression models. The performance of filtering is assessed by the average between-participant correlation between filtered RT sequences and by Akaike’s Information Criterion, an important measure of the goodness-of-fit of linear mixed effect regression models.
  • Ten Bosch, L., & Boves, L. (2018). Information encoding by deep neural networks: what can we learn? In Proceedings of Interspeech 2018 (pp. 1457-1461). doi:10.21437/Interspeech.2018-1896.

    Abstract

    The recent advent of deep learning techniques in speech tech-nology and in particular in automatic speech recognition hasyielded substantial performance improvements. This suggeststhat deep neural networks (DNNs) are able to capture structurein speech data that older methods for acoustic modeling, suchas Gaussian Mixture Models and shallow neural networks failto uncover. In image recognition it is possible to link repre-sentations on the first couple of layers in DNNs to structuralproperties of images, and to representations on early layers inthe visual cortex. This raises the question whether it is possi-ble to accomplish a similar feat with representations on DNNlayers when processing speech input. In this paper we presentthree different experiments in which we attempt to untanglehow DNNs encode speech signals, and to relate these repre-sentations to phonetic knowledge, with the aim to advance con-ventional phonetic concepts and to choose the topology of aDNNs more efficiently. Two experiments investigate represen-tations formed by auto-encoders. A third experiment investi-gates representations on convolutional layers that treat speechspectrograms as if they were images. The results lay the basisfor future experiments with recursive networks.
  • Thompson, B., & Lupyan, G. (2018). Automatic estimation of lexical concreteness in 77 languages. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1122-1127). Austin, TX: Cognitive Science Society.

    Abstract

    We estimate lexical Concreteness for millions of words across 77 languages. Using a simple regression framework, we combine vector-based models of lexical semantics with experimental norms of Concreteness in English and Dutch. By applying techniques to align vector-based semantics across distinct languages, we compute and release Concreteness estimates at scale in numerous languages for which experimental norms are not currently available. This paper lays out the technique and its efficacy. Although this is a difficult dataset to evaluate immediately, Concreteness estimates computed from English correlate with Dutch experimental norms at $\rho$ = .75 in the vocabulary at large, increasing to $\rho$ = .8 among Nouns. Our predictions also recapitulate attested relationships with word frequency. The approach we describe can be readily applied to numerous lexical measures beyond Concreteness
  • Thompson, B., Roberts, S., & Lupyan, G. (2018). Quantifying semantic similarity across languages. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 2551-2556). Austin, TX: Cognitive Science Society.

    Abstract

    Do all languages convey semantic knowledge in the same way? If language simply mirrors the structure of the world, the answer should be a qualified “yes”. If, however, languages impose structure as much as reflecting it, then even ostensibly the “same” word in different languages may mean quite different things. We provide a first pass at a large-scale quantification of cross-linguistic semantic alignment of approximately 1000 meanings in 55 languages. We find that the translation equivalents in some domains (e.g., Time, Quantity, and Kinship) exhibit high alignment across languages while the structure of other domains (e.g., Politics, Food, Emotions, and Animals) exhibits substantial cross-linguistic variability. Our measure of semantic alignment correlates with known phylogenetic distances between languages: more phylogenetically distant languages have less semantic alignment. We also find semantic alignment to correlate with cultural distances between societies speaking the languages, suggesting a rich co-adaptation of language and culture even in domains of experience that appear most constrained by the natural world
  • Tourtouri, E. N., Delogu, F., & Crocker, M. W. (2018). Specificity and entropy reduction in situated referential processing. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 3356-3361). Austin: Cognitive Science Society.

    Abstract

    In situated communication, reference to an entity in the shared visual context can be established using eitheranexpression that conveys precise (minimally specified) or redundant (over-specified) information. There is, however, along-lasting debate in psycholinguistics concerningwhether the latter hinders referential processing. We present evidence from an eyetrackingexperiment recordingfixations as well asthe Index of Cognitive Activity –a novel measure of cognitive workload –supporting the view that over-specifications facilitate processing. We further present originalevidence that, above and beyond the effect of specificity,referring expressions thatuniformly reduce referential entropyalso benefitprocessing
  • Vagliano, I., Galke, L., Mai, F., & Scherp, A. (2018). Using adversarial autoencoders for multi-modal automatic playlist continuation. In C.-W. Chen, P. Lamere, M. Schedl, & H. Zamani (Eds.), RecSys Challenge '18: Proceedings of the ACM Recommender Systems Challenge 2018 (pp. 5.1-5.6). New York: ACM. doi:10.1145/3267471.3267476.

    Abstract

    The task of automatic playlist continuation is generating a list of recommended tracks that can be added to an existing playlist. By suggesting appropriate tracks, i. e., songs to add to a playlist, a recommender system can increase the user engagement by making playlist creation easier, as well as extending listening beyond the end of current playlist. The ACM Recommender Systems Challenge 2018 focuses on such task. Spotify released a dataset of playlists, which includes a large number of playlists and associated track listings. Given a set of playlists from which a number of tracks have been withheld, the goal is predicting the missing tracks in those playlists. We participated in the challenge as the team Unconscious Bias and, in this paper, we present our approach. We extend adversarial autoencoders to the problem of automatic playlist continuation. We show how multiple input modalities, such as the playlist titles as well as track titles, artists and albums, can be incorporated in the playlist continuation task.
  • Van Geenhoven, V. (1999). A before-&-after picture of when-, before-, and after-clauses. In T. Matthews, & D. Strolovitch (Eds.), Proceedings of the 9th Semantics and Linguistic Theory Conference (pp. 283-315). Ithaca, NY, USA: Cornell University.
  • Vernes, S. C. (2018). Vocal learning in bats: From genes to behaviour. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 516-518). Toruń, Poland: NCU Press. doi:10.12775/3991-1.128.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Walsh Dickey, L. (1999). Syllable count and Tzeltal segmental allomorphy. In J. Rennison, & K. Kühnhammer (Eds.), Phonologica 1996. Proceedings of the 8th International Phonology Meeting (pp. 323-334). Holland Academic Graphics.

    Abstract

    Tzeltal, a Mayan language spoken in southern Mexico, exhibits allo-morphy of an unusual type. The vowel quality of the perfective suffix is determined by the number of syllables in the stem to which it is attaching. This paper presents previously unpublished data of this allomorphy and demonstrates that a syllable-count analysis of the phenomenon is the proper one. This finding is put in a more general context of segment-prosody interaction in allomorphy.

Share this page