Publications

Displaying 1 - 64 of 64
  • Alcock, K., Meints, K., & Rowland, C. F. (2020). The UK communicative development inventories: Words and gestures. Guilford, UK: J&R Press Ltd.
  • Alhama, R. G., Rowland, C. F., & Kidd, E. (2020). Evaluating word embeddings for language acquisition. In E. Chersoni, C. Jacobs, Y. Oseki, L. Prévot, & E. Santus (Eds.), Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (pp. 38-42). Stroudsburg, PA, USA: Association for Computational Linguistics (ACL).

    Abstract

    Continuous vector word representations (or word embeddings) have shown success in cap-turing semantic relations between words, as evidenced by evaluation against behavioral data of adult performance on semantic tasks (Pereira et al., 2016). Adult semantic knowl-edge is the endpoint of a language acquisition process; thus, a relevant question is whether these models can also capture emerging word representations of young language learners. However, the data for children’s semantic knowledge across development is scarce. In this paper, we propose to bridge this gap by using Age of Acquisition norms to evaluate word embeddings learnt from child-directed input. We present two methods that evaluate word embeddings in terms of (a) the semantic neighbourhood density of learnt words, and (b) con- vergence to adult word associations. We apply our methods to bag-of-words models, and find that (1) children acquire words with fewer semantic neighbours earlier, and (2) young learners only attend to very local context. These findings provide converging evidence for validity of our methods in understanding the prerequisite features for a distributional model of word learning.
  • Asano, Y., Yuan, C., Grohe, A.-K., Weber, A., Antoniou, M., & Cutler, A. (2020). Uptalk interpretation as a function of listening experience. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 735-739). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-150.

    Abstract

    The term “uptalk” describes utterance-final pitch rises that carry no sentence-structural information. Uptalk is usually dialectal or sociolectal, and Australian English (AusEng) is particularly known for this attribute. We ask here whether experience with an uptalk variety affects listeners’ ability to categorise rising pitch contours on the basis of the timing and height of their onset and offset. Listeners were two groups of English-speakers (AusEng, and American English), and three groups of listeners with L2 English: one group with Mandarin as L1 and experience of listening to AusEng, one with German as L1 and experience of listening to AusEng, and one with German as L1 but no AusEng experience. They heard nouns (e.g. flower, piano) in the framework “Got a NOUN”, each ending with a pitch rise artificially manipulated on three contrasts: low vs. high rise onset, low vs. high rise offset and early vs. late rise onset. Their task was to categorise the tokens as “question” or “statement”, and we analysed the effect of the pitch contrasts on their judgements. Only the native AusEng listeners were able to use the pitch contrasts systematically in making these categorisations.
  • Bauer, B. L. M. (2000). Archaic syntax in Indo-European: The spread of transitivity in Latin and French. Berlin: Mouton de Gruyter.

    Abstract

    Several grammatical features in early Indo-European traditionally have not been understood. Although Latin, for example, was a nominative language, a number of its inherited characteristics do not fit that typology and are difficult to account for, such as stative mihi est constructions to express possession, impersonal verbs, or absolute constructions. With time these archaic features have been replaced by transitive structures (e.g. possessive ‘have’). This book presents an extensive comparative and historical analysis of archaic features in early Indo-European languages and their gradual replacement in the history of Latin and early Romance, showing that the new structures feature transitive syntax and fit the patterns of a nominative language.
  • Bavin, E. L., & Kidd, E. (2000). Learning new verbs: Beyond the input. In C. Davis, T. J. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society.
  • De Boer, B., Thompson, B., Ravignani, A., & Boeckx, C. (2020). Analysis of mutation and fixation for language. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 56-58). Nijmegen: The Evolution of Language Conferences.
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A., & Koster, M. (2000). Stress and lexical activation in Dutch. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 1 (pp. 593-596). Beijing: China Military Friendship Publish.

    Abstract

    Dutch listeners were slower to make judgements about the semantic relatedness between a spoken target word (e.g. atLEET, 'athlete') and a previously presented visual prime word (e.g. SPORT 'sport') when the spoken word was mis-stressed. The adverse effect of mis-stressing confirms the role of stress information in lexical recognition in Dutch. However, although the erroneous stress pattern was always initially compatible with a competing word (e.g. ATlas, 'atlas'), mis-stressed words did not produced high false alarm rates in unrelated pairs (e.g. SPORT - atLAS). This suggests that stress information did not completely rule out segmentally matching but suprasegmentally mismatching words, a finding consistent with spoken-word recognition models involving multiple activation and inter-word competition.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • Doumas, L. A. A., Martin, A. E., & Hummel, J. E. (2020). Relation learning in a neurocomputational architecture supports cross-domain transfer. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 932-937). Montreal, QB: Cognitive Science Society.

    Abstract

    Humans readily generalize, applying prior knowledge to novel situations and stimuli. Advances in machine learning have begun to approximate and even surpass human performance, but these systems struggle to generalize what they have learned to untrained situations. We present a model based on wellestablished neurocomputational principles that demonstrates human-level generalisation. This model is trained to play one video game (Breakout) and performs one-shot generalisation to a new game (Pong) with different characteristics. The model generalizes because it learns structured representations that are functionally symbolic (viz., a role-filler binding calculus) from unstructured training data. It does so without feedback, and without requiring that structured representations are specified a priori. Specifically, the model uses neural co-activation to discover which characteristics of the input are invariant and to learn relational predicates, and oscillatory regularities in network firing to bind predicates to arguments. To our knowledge, this is the first demonstration of human-like generalisation in a machine system that does not assume structured representa- tions to begin with.
  • Enfield, N. J., & Evans, G. (2000). Transcription as standardisation: The problem of Tai languages. In S. Burusphat (Ed.), Proceedings: the International Conference on Tai Studies, July 29-31, 1998, (pp. 201-212). Bangkok, Thailand: Institute of Language and Culture for Rural Development, Mahidol University.
  • Ergin, R., Raviv, L., Senghas, A., Padden, C., & Sandler, W. (2020). Community structure affects convergence on uniform word orders: Evidence from emerging sign languages. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 84-86). Nijmegen: The Evolution of Language Conferences.
  • Gussenhoven, C., & Chen, A. (2000). Universal and language-specific effects in the perception of question intonation. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP) (pp. 91-94).
  • Gussenhoven, C., & Chen, A. (2000). Universal and language-specific effects in the perception of question intonation. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP) (pp. 91-94). Beijing: China Military Friendship Publish.

    Abstract

    Three groups of monolingual listeners, with Standard Chinese, Dutch and Hungarian as their native language, judged pairs of trisyllabic stimuli which differed only in their itch pattern. The segmental structure of the stimuli was made up by the experimenters and presented to subjects as being taken from a little-known language spoken on a South Pacific island. Pitch patterns consisted of a single rise-fall located on or near the second syllable. By and large, listeners selected the stimulus with the higher peak, the later eak, and the higher end rise as the one that signalled a question, regardless of language group. The result is argued to reflect innate, non-linguistic knowledge of the meaning of pitch variation, notably Ohala’s Frequency Code. A significant difference between groups is explained as due to the influence of the mother tongue.
  • Hagoort, P. (2000). De toekomstige eeuw der cognitieve neurowetenschap [inaugural lecture]. Katholieke Universiteit Nijmegen.

    Abstract

    Rede uitgesproken op 12 mei 2000 bij de aanvaarding van het ambt van hoogleraar in de neuropsychologie aan de Faculteit Sociale Wetenschappen KUN.
  • Harbusch, K., & Kempen, G. (2000). Complexity of linear order computation in Performance Grammar, TAG and HPSG. In Proceedings of Fifth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+5) (pp. 101-106).

    Abstract

    This paper investigates the time and space complexity of word order computation in the psycholinguistically motivated grammar formalism of Performance Grammar (PG). In PG, the first stage of syntax assembly yields an unordered tree ('mobile') consisting of a hierarchy of lexical frames (lexically anchored elementary trees). Associated with each lexica l frame is a linearizer—a Finite-State Automaton that locally computes the left-to-right order of the branches of the frame. Linearization takes place after the promotion component may have raised certain constituents (e.g. Wh- or focused phrases) into the domain of lexical frames higher up in the syntactic mobile. We show that the worst-case time and space complexity of analyzing input strings of length n is O(n5) and O(n4), respectively. This result compares favorably with the time complexity of word-order computations in Tree Adjoining Grammar (TAG). A comparison with Head-Driven Phrase Structure Grammar (HPSG) reveals that PG yields a more declarative linearization method, provided that the FSA is rewritten as an equivalent regular expression.
  • Hashemzadeh, M., Kaufeld, G., White, M., Martin, A. E., & Fyshe, A. (2020). From language to language-ish: How brain-like is an LSTM representation of nonsensical language stimuli? In Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 645-655).

    Abstract

    The representations generated by many mod- els of language (word embeddings, recurrent neural networks and transformers) correlate to brain activity recorded while people read. However, these decoding results are usually based on the brain’s reaction to syntactically and semantically sound language stimuli. In this study, we asked: how does an LSTM (long short term memory) language model, trained (by and large) on semantically and syntac- tically intact language, represent a language sample with degraded semantic or syntactic information? Does the LSTM representation still resemble the brain’s reaction? We found that, even for some kinds of nonsensical lan- guage, there is a statistically significant rela- tionship between the brain’s activity and the representations of an LSTM. This indicates that, at least in some instances, LSTMs and the human brain handle nonsensical data similarly.
  • De Heer Kloots, M., Carlson, D., Garcia, M., Kotz, S., Lowry, A., Poli-Nardi, L., de Reus, K., Rubio-García, A., Sroka, M., Varola, M., & Ravignani, A. (2020). Rhythmic perception, production and interactivity in harbour and grey seals. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 59-62). Nijmegen: The Evolution of Language Conferences.
  • Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences.
  • Hoeksema, N., Villanueva, S., Mengede, J., Salazar Casals, A., Rubio-García, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2020). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 162-164). Nijmegen: The Evolution of Language Conferences.
  • Janse, E., Sennema, A., & Slis, A. (2000). Fast speech timing in Dutch: The durational correlates of lexical stress and pitch accent. In Proceedings of the VIth International Conference on Spoken Language Processing, Vol. III (pp. 251-254).

    Abstract

    n this study we investigated the durational correlates of lexical stress and pitch accent at normal and fast speech rate in Dutch. Previous literature on English shows that durations of lexically unstressed vowels are reduced more than stressed vowels when speakers increase their speech rate. We found that the same holds for Dutch, irrespective of whether the unstressed vowel is schwa or a "full" vowel. In the same line, we expected that vowels in words without a pitch accent would be shortened relatively more than vowels in words with a pitch accent. This was not the case: if anything, the accented vowels were shortened relatively more than the unaccented vowels. We conclude that duration is an important cue for lexical stress, but not for pitch accent.
  • Janse, E. (2000). Intelligibility of time-compressed speech: Three ways of time-compression. In Proceedings of the VIth International Conference on Spoken Language Processing, vol. III (pp. 786-789).

    Abstract

    Studies on fast speech have shown that word-level timing of fast speech differs from that of normal rate speech in that unstressed syllables are shortened more than stressed syllables as speech rate increases. An earlier experiment showed that the intelligibility of time-compressed speech could not be improved by making its temporal organisation closer to natural fast speech. To test the hypothesis that segmental intelligibility is more important than prosodic timing in listening to timecompressed speech, the intelligibility of bisyllabic words was tested in three time-compression conditions: either stressed and unstressed syllable were compressed to the same degree, or the stressed syllable was compressed more than the unstressed syllable, or the reverse. As was found before, imitating wordlevel timing of fast speech did not improve intelligibility over linear compression. However, the results did not confirm the hypothesis either: there was no difference in intelligibility between the three compression conditions. We conclude that segmental intelligibility plays an important role, but further research is necessary to decide between the contributions of prosody and segmental intelligibility to the word-level intelligibility of time-compressed speech.
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2000). The development of word recognition: The use of the possible-word constraint by 12-month-olds. In L. Gleitman, & A. Joshi (Eds.), Proceedings of CogSci 2000 (pp. 1034). London: Erlbaum.
  • Klein, W. (2000). Changing concepts of the nature-nurture debate. In R. Hide, J. Mittelstrass, & W. Singer (Eds.), Changing concepts of nature at the turn of the millenium: Proceedings plenary session of the Pontifical academy of sciences, 26-29 October 1998 (pp. 289-299). Vatican City: Pontificia Academia Scientiarum.
  • Lansner, A., Sandberg, A., Petersson, K. M., & Ingvar, M. (2000). On forgetful attractor network memories. In H. Malmgren, M. Borga, & L. Niklasson (Eds.), Artificial neural networks in medicine and biology: Proceedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000 (pp. 54-62). Heidelberg: Springer Verlag.

    Abstract

    A recurrently connected attractor neural network with a Hebbian learning rule is currently our best ANN analogy for a piece cortex. Functionally biological memory operates on a spectrum of time scales with regard to induction and retention, and it is modulated in complex ways by sub-cortical neuromodulatory systems. Moreover, biological memory networks are commonly believed to be highly distributed and engage many co-operating cortical areas. Here we focus on the temporal aspects of induction and retention of memory in a connectionist type attractor memory model of a piece of cortex. A continuous time, forgetful Bayesian-Hebbian learning rule is described and compared to the characteristics of LTP and LTD seen experimentally. More generally, an attractor network implementing this learning rule can operate as a long-term, intermediate-term, or short-term memory. Modulation of the print-now signal of the learning rule replicates some experimental memory phenomena, like e.g. the von Restorff effect.
  • Lattenkamp, E. Z., Linnenschmidt, M., Mardus, E., Vernes, S. C., Wiegrebe, L., & Schutte, M. (2020). Impact of auditory feedback on bat vocal development. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 249-251). Nijmegen: The Evolution of Language Conferences.
  • Lei, L., Raviv, L., & Alday, P. M. (2020). Using spatial visualizations and real-world social networks to understand language evolution and change. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 252-254). Nijmegen: The Evolution of Language Conferences.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (2000). Met twee woorden spreken [Simon Dik Lezing 2000]. Amsterdam: Vossiuspers AUP.
  • Levinson, S. C. (2000). H.P. Grice on location on Rossel Island. In S. S. Chang, L. Liaw, & J. Ruppenhofer (Eds.), Proceedings of the 25th Annual Meeting of the Berkeley Linguistic Society (pp. 210-224). Berkeley: Berkeley Linguistic Society.
  • Levinson, S. C. (2000). Presumptive meanings: The theory of generalized conversational implicature. Cambridge: MIT press.
  • Levinson, S. C. (2000). Language as nature and language as art. In J. Mittelstrass, & W. Singer (Eds.), Proceedings of the Symposium on ‘Changing concepts of nature and the turn of the Millennium (pp. 257-287). Vatican City: Pontificae Academiae Scientiarium Scripta Varia.
  • Levinson, S. C. (2020). On technologies of the intellect: Goody Lecture 2020. Halle: Max Planck Institute for Social Anthropology.
  • Levshina, N. (2020). How tight is your language? A semantic typology based on Mutual Information. In K. Evang, L. Kallmeyer, R. Ehren, S. Petitjean, E. Seyffarth, & D. Seddah (Eds.), Proceedings of the 19th International Workshop on Treebanks and Linguistic Theories (pp. 70-78). Düsseldorf, Germany: Association for Computational Linguistics. doi:10.18653/v1/2020.tlt-1.7.

    Abstract

    Languages differ in the degree of semantic flexibility of their syntactic roles. For example, Eng- lish and Indonesian are considered more flexible with regard to the semantics of subjects, whereas German and Japanese are less flexible. In Hawkins’ classification, more flexible lan- guages are said to have a loose fit, and less flexible ones are those that have a tight fit. This classification has been based on manual inspection of example sentences. The present paper proposes a new, quantitative approach to deriving the measures of looseness and tightness from corpora. We use corpora of online news from the Leipzig Corpora Collection in thirty typolog- ically and genealogically diverse languages and parse them syntactically with the help of the Universal Dependencies annotation software. Next, we compute Mutual Information scores for each language using the matrices of lexical lemmas and four syntactic dependencies (intransi- tive subjects, transitive subject, objects and obliques). The new approach allows us not only to reproduce the results of previous investigations, but also to extend the typology to new lan- guages. We also demonstrate that verb-final languages tend to have a tighter relationship be- tween lexemes and syntactic roles, which helps language users to recognize thematic roles early during comprehension.

    Additional information

    full text via ACL website
  • MacDonald, K., Räsänen, O., Casillas, M., & Warlaumont, A. S. (2020). Measuring prosodic predictability in children’s home language environments. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 695-701). Montreal, QB: Cognitive Science Society.

    Abstract

    Children learn language from the speech in their home environment. Recent work shows that more infant-directed speech (IDS) leads to stronger lexical development. But what makes IDS a particularly useful learning signal? Here, we expand on an attention-based account first proposed by Räsänen et al. (2018): that prosodic modifications make IDS less predictable, and thus more interesting. First, we reproduce the critical finding from Räsänen et al.: that lab-recorded IDS pitch is less predictable compared to adult-directed speech (ADS). Next, we show that this result generalizes to the home language environment, finding that IDS in daylong recordings is also less predictable than ADS but that this pattern is much less robust than for IDS recorded in the lab. These results link experimental work on attention and prosodic modifications of IDS to real-world language-learning environments, highlighting some challenges of scaling up analyses of IDS to larger datasets that better capture children’s actual input.
  • Yu, J., Mailhammer, R., & Cutler, A. (2020). Vocabulary structure affects word recognition: Evidence from German listeners. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 474-478). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-97.

    Abstract

    Lexical stress is realised similarly in English, German, and Dutch. On a suprasegmental level, stressed syllables tend to be longer and more acoustically salient than unstressed syllables; segmentally, vowels in unstressed syllables are often reduced. The frequency of unreduced unstressed syllables (where only the suprasegmental cues indicate lack of stress) however, differs across the languages. The present studies test whether listener behaviour is affected by these vocabulary differences, by investigating German listeners’ use of suprasegmental cues to lexical stress in German and English word recognition. In a forced-choice identification task, German listeners correctly assigned single-syllable fragments (e.g., Kon-) to one of two words differing in stress (KONto, konZEPT). Thus, German listeners can exploit suprasegmental information for identifying words. German listeners also performed above chance in a similar task in English (with, e.g., DIver, diVERT), i.e., their sensitivity to these cues also transferred to a nonnative language. An English listener group, in contrast, failed in the English fragment task. These findings mirror vocabulary patterns: German has more words with unreduced unstressed syllables than English does.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Mengede, J., Devanna, P., Hörpel, S. G., Firzla, U., & Vernes, S. C. (2020). Studying the genetic bases of vocal learning in bats. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 280-282). Nijmegen: The Evolution of Language Conferences.
  • Mudd, K., Lutzenberger, H., De Vos, C., Fikkert, P., Crasborn, O., & De Boer, B. (2020). How does social structure shape language variation? A case study of the Kata Kolok lexicon. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 302-304). Nijmegen: The Evolution of Language Conferences.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Otake, T., & Cutler, A. (2000). A set of Japanese word cohorts rated for relative familiarity. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 766-769). Beijing: China Military Friendship Publish.

    Abstract

    A database is presented of relative familiarity ratings for 24 sets of Japanese words, each set comprising words overlapping in the initial portions. These ratings are useful for the generation of material sets for research in the recognition of spoken words.
  • Ozyurek, A. (2020). From hands to brains: How does human body talk, think and interact in face-to-face language use? In K. Truong, D. Heylen, & M. Czerwinski (Eds.), ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 1-2). New York, NY, USA: Association for Computing Machinery. doi:10.1145/3382507.3419442.
  • Ozyurek, A., & Ozcaliskan, S. (2000). How do children learn to conflate manner and path in their speech and gestures? Differences in English and Turkish. In E. V. Clark (Ed.), The proceedings of the Thirtieth Child Language Research Forum (pp. 77-85). Stanford: CSLI Publications.
  • Poulsen, M.-E. (Ed.). (2020). The Jerome Bruner Library: From New York to Nijmegen. Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    Published in September 2020 by the Max Planck Institute for Psycholinguistics to commemorate the arrival and the new beginning of the Jerome Bruner Library in Nijmegen
  • Rasenberg, M., Dingemanse, M., & Ozyurek, A. (2020). Lexical and gestural alignment in interaction and the emergence of novel shared symbols. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 356-358). Nijmegen: The Evolution of Language Conferences.
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2020). Network structure and the cultural evolution of linguistic structure: A group communication experiment. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 359-361). Nijmegen: The Evolution of Language Conferences.
  • de Reus, K., Carlson, D., Jadoul, Y., Lowry, A., Gross, S., Garcia, M., Salazar Casals, A., Rubio-García, A., Haas, C. E., De Boer, B., & Ravignani, A. (2020). Relationships between vocal ontogeny and vocal tract anatomy in harbour seals (Phoca vitulina). In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 63-66). Nijmegen: The Evolution of Language Conferences.
  • Rowland, C. F., Theakston, A. L., Ambridge, B., & Twomey, K. E. (Eds.). (2020). Current Perspectives on Child Language Acquisition: How children use their environment to learn. Amsterdam: John Benjamins. doi:10.1075/tilar.27.

    Abstract

    In recent years the field has seen an increasing realisation that the full complexity of language acquisition demands theories that (a) explain how children integrate information from multiple sources in the environment, (b) build linguistic representations at a number of different levels, and (c) learn how to combine these representations in order to communicate effectively. These new findings have stimulated new theoretical perspectives that are more centered on explaining learning as a complex dynamic interaction between the child and her environment. This book is the first attempt to bring some of these new perspectives together in one place. It is a collection of essays written by a group of researchers who all take an approach centered on child-environment interaction, and all of whom have been influenced by the work of Elena Lieven, to whom this collection is dedicated.
  • Scharenborg, O., Bouwman, G., & Boves, L. (2000). Connected digit recognition with class specific word models. In Proceedings of the COST249 Workshop on Voice Operated Telecom Services workshop (pp. 71-74).

    Abstract

    This work focuses on efficient use of the training material by selecting the optimal set of model topologies. We do this by training multiple word models of each word class, based on a subclassification according to a priori knowledge of the training material. We will examine classification criteria with respect to duration of the word, gender of the speaker, position of the word in the utterance, pauses in the vicinity of the word, and combinations of these. Comparative experiments were carried out on a corpus consisting of Dutch spoken connected digit strings and isolated digits, which are recorded in a wide variety of acoustic conditions. The results show, that classification based on gender of the speaker, position of the digit in the string, pauses in the vicinity of the training tokens, and models based on a combination of these criteria perform significantly better than the set with single models per digit.
  • Senft, G. (2000). COME and GO in Kilivila. In B. Palmer, & P. Geraghty (Eds.), SICOL. Proceedings of the second international conference on Oceanic linguistics: Volume 2, Historical and descriptive studies (pp. 105-136). Canberra: Pacific Linguistics.
  • Senft, G., & Smits, R. (Eds.). (2000). Max-Planck-Institute for Psycholinguistics: Annual report 2000. Nijmegen: MPI for Psycholinguistics.
  • Senft, G. (Ed.). (2000). Systems of nominal classification. Cambridge: Cambridge University Press.
  • Ter Bekke, M., Drijvers, L., & Holler, J. (2020). The predictive potential of hand gestures during conversation: An investigation of the timing of gestures in relation to speech. In Proceedings of the 7th GESPIN - Gesture and Speech in Interaction Conference. Stockholm: KTH Royal Institute of Technology.

    Abstract

    In face-to-face conversation, recipients might use the bodily movements of the speaker (e.g. gestures) to facilitate language processing. It has been suggested that one way through which this facilitation may happen is prediction. However, for this to be possible, gestures would need to precede speech, and it is unclear whether this is true during natural conversation. In a corpus of Dutch conversations, we annotated hand gestures that represent semantic information and occurred during questions, and the word(s) which corresponded most closely to the gesturally depicted meaning. Thus, we tested whether representational gestures temporally precede their lexical affiliates. Further, to see whether preceding gestures may indeed facilitate language processing, we asked whether the gesture-speech asynchrony predicts the response time to the question the gesture is part of. Gestures and their strokes (most meaningful movement component) indeed preceded the corresponding lexical information, thus demonstrating their predictive potential. However, while questions with gestures got faster responses than questions without, there was no evidence that questions with larger gesture-speech asynchronies get faster responses. These results suggest that gestures indeed have the potential to facilitate predictive language processing, but further analyses on larger datasets are needed to test for links between asynchrony and processing advantages.
  • Thompson, B., Raviv, L., & Kirby, S. (2020). Complexity can be maintained in small populations: A model of lexical variability in emerging sign languages. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 440-442). Nijmegen: The Evolution of Language Conferences.
  • Van Valin Jr., R. D. (2000). Focus structure or abstract syntax? A role and reference grammar account of some ‘abstract’ syntactic phenomena. In Z. Estrada Fernández, & I. Barreras Aguilar (Eds.), Memorias del V Encuentro Internacional de Lingüística en el Noroeste: (2 v.) Estudios morfosintácticos (pp. 39-62). Hermosillo: Editorial Unison.
  • Van den Heuvel, H., Oostdijk, N., Rowland, C. F., & Trilsbeek, P. (2020). The CLARIN Knowledge Centre for Atypical Communication Expertise. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the 12th Language Resources and Evaluation Conference (LREC 2020) (pp. 3312-3316). Marseille, France: European Language Resources Association.

    Abstract

    This paper introduces a new CLARIN Knowledge Center which is the K-Centre for Atypical Communication Expertise (ACE for short) which has been established at the Centre for Language and Speech Technology (CLST) at Radboud University. Atypical communication is an umbrella term used here to denote language use by second language learners, people with language disorders or those suffering from language disabilities, but also more broadly by bilinguals and users of sign languages. It involves multiple modalities (text, speech, sign, gesture) and encompasses different developmental stages. ACE closely collaborates with The Language Archive (TLA) at the Max Planck Institute for Psycholinguistics in order to safeguard GDPR-compliant data storage and access. We explain the mission of ACE and show its potential on a number of showcases and a use case.
  • Van Arkel, J., Woensdregt, M., Dingemanse, M., & Blokpoel, M. (2020). A simple repair mechanism can alleviate computational demands of pragmatic reasoning: simulations and complexity analysis. In R. Fernández, & T. Linzen (Eds.), Proceedings of the 24th Conference on Computational Natural Language Learning (CoNLL 2020) (pp. 177-194). Stroudsburg, PA, USA: The Association for Computational Linguistics. doi:10.18653/v1/2020.conll-1.14.

    Abstract

    How can people communicate successfully while keeping resource costs low in the face of ambiguity? We present a principled theoretical analysis comparing two strategies for disambiguation in communication: (i) pragmatic reasoning, where communicators reason about each other, and (ii) other-initiated repair, where communicators signal and resolve trouble interactively. Using agent-based simulations and computational complexity analyses, we compare the efficiency of these strategies in terms of communicative success, computation cost and interaction cost. We show that agents with a simple repair mechanism can increase efficiency, compared to pragmatic agents, by reducing their computational burden at the cost of longer interactions. We also find that efficiency is highly contingent on the mechanism, highlighting the importance of explicit formalisation and computational rigour.
  • Vernes, S. C. (2020). Understanding bat vocal learning to gain insight into speech and language. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 6). Nijmegen: The Evolution of Language Conferences.
  • Weber, A. (2000). Phonotactic and acoustic cues for word segmentation in English. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP 2000) (pp. 782-785).

    Abstract

    This study investigates the influence of both phonotactic and acoustic cues on the segmentation of spoken English. Listeners detected embedded English words in nonsense sequences (word spotting). Words aligned with phonotactic boundaries were easier to detect than words without such alignment. Acoustic cues to boundaries could also have signaled word boundaries, especially when word onsets lacked phonotactic alignment. However, only one of several durational boundary cues showed a marginally significant correlation with response times (RTs). The results suggest that word segmentation in English is influenced primarily by phonotactic constraints and only secondarily by acoustic aspects of the speech signal.
  • Weber, A. (2000). The role of phonotactics in the segmentation of native and non-native continuous speech. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP, Workshop on Spoken Word Access Processes. Nijmegen: MPI for Psycholinguistics.

    Abstract

    Previous research has shown that listeners make use of their knowledge of phonotactic constraints to segment speech into individual words. The present study investigates the influence of phonotactics when segmenting a non-native language. German and English listeners detected embedded English words in nonsense sequences. German listeners also had knowledge of English, but English listeners had no knowledge of German. Word onsets were either aligned with a syllable boundary or not, according to the phonotactics of the two languages. Words aligned with either German or English phonotactic boundaries were easier for German listeners to detect than words without such alignment. Responses of English listeners were influenced primarily by English phonotactic alignment. The results suggest that both native and non-native phonotactic constraints influence lexical segmentation of a non-native, but familiar, language.
  • Woensdregt, M., & Dingemanse, M. (2020). Other-initiated repair can facilitate the emergence of compositional language. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 474-476). Nijmegen: The Evolution of Language Conferences.
  • Yang, J., Van den Bosch, A., & Frank, S. L. (2020). Less is Better: A cognitively inspired unsupervised model for language segmentation. In M. Zock, E. Chersoni, A. Lenci, & E. Santus (Eds.), Proceedings of the Workshop on the Cognitive Aspects of the Lexicon ( 28th International Conference on Computational Linguistics) (pp. 33-45). Stroudsburg: Association for Computational Linguistics.

    Abstract

    Language users process utterances by segmenting them into many cognitive units, which vary in their sizes and linguistic levels. Although we can do such unitization/segmentation easily, its cognitive mechanism is still not clear. This paper proposes an unsupervised model, Less-is-Better (LiB), to simulate the human cognitive process with respect to language unitization/segmentation. LiB follows the principle of least effort and aims to build a lexicon which minimizes the number of unit tokens (alleviating the effort of analysis) and number of unit types (alleviating the effort of storage) at the same time on any given corpus. LiB’s workflow is inspired by empirical cognitive phenomena. The design makes the mechanism of LiB cognitively plausible and the computational requirement light-weight. The lexicon generated by LiB performs the best among different types of lexicons (e.g. ground-truth words) both from an information-theoretical view and a cognitive view, which suggests that the LiB lexicon may be a plausible proxy of the mental lexicon.

    Additional information

    full text via ACL website

Share this page