Publications

Displaying 1 - 11 of 11
  • Dietrich, W., & Drude, S. (Eds.). (2015). Variation in Tupi languages: Genealogy, language change, and typology [Special Issue]. Boletim do Museu Paraense Emilio Goeldi:Ciencias Humanas, 10(2).
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Klein, W. (Ed.). (1998). Kaleidoskop [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (112).
  • Klein, W. (Ed.). (1997). Technologischer Wandel in den Philologien [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (106).
  • Klein, W. (Ed.). (1987). Sprache und Ritual [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (65).
  • Little, H. (Ed.). (2017). Special Issue on the Emergence of Sound Systems [Special Issue]. The Journal of Language Evolution, 2(1).
  • Majid, A., Jordan, F., & Dunn, M. (Eds.). (2015). Semantic systems in closely related languages [Special Issue]. Language Sciences, 49.
  • Perniss, P. M., Ozyurek, A., & Morgan, G. (Eds.). (2015). The influence of the visual modality on language structure and conventionalization: Insights from sign language and gesture [Special Issue]. Topics in Cognitive Science, 7(1). doi:10.1111/tops.12113.
  • San Roque, L., & Bergvist, H. (Eds.). (2015). Epistemic marking in typological perspective [Special Issue]. STUF -Language typology and universals, 68(2).
  • Verdonschot, R. G., & Tamaoka, K. (Eds.). (2015). The production of speech sounds across languages [Special Issue]. Japanese Psychological Research, 57(1).
  • De Zubicaray, G., & Fisher, S. E. (Eds.). (2017). Genes, brain and language [Special Issue]. Brain and Language, 172.

Share this page