Publications

Displaying 601 - 700 of 705
  • Speed, L. J., & Majid, A. (2018). An exception to mental simulation: No evidence for embodied odor language. Cognitive Science, 42(4), 1146-1178. doi:10.1111/cogs.12593.

    Abstract

    Do we mentally simulate olfactory information? We investigated mental simulation of odors and sounds in two experiments. Participants retained a word while they smelled an odor or heard a sound, then rated odor/sound intensity and recalled the word. Later odor/sound recognition was also tested, and pleasantness and familiarity judgments were collected. Word recall was slower when the sound and sound-word mismatched (e.g., bee sound with the word typhoon). Sound recognition was higher when sounds were paired with a match or near-match word (e.g., bee sound with bee or buzzer). This indicates sound-words are mentally simulated. However, using the same paradigm no memory effects were observed for odor. Instead it appears odor-words only affect lexical-semantic representations, demonstrated by higher ratings of odor intensity and pleasantness when an odor was paired with a match or near-match word (e.g., peach odor with peach or mango). These results suggest fundamental differences in how odor and sound-words are represented.

    Additional information

    cogs12593-sup-0001-SupInfo.docx
  • Speed, L., & Majid, A. (2018). Music and odor in harmony: A case of music-odor synaesthesia. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 2527-2532). Austin, TX: Cognitive Science Society.

    Abstract

    We report an individual with music-odor synaesthesia who experiences automatic and vivid odor sensations when she hears music. S’s odor associations were recorded on two days, and compared with those of two control participants. Overall, S produced longer descriptions, and her associations were of multiple odors at once, in comparison to controls who typically reported a single odor. Although odor associations were qualitatively different between S and controls, ratings of the consistency of their descriptions did not differ. This demonstrates that crossmodal associations between music and odor exist in non-synaesthetes too. We also found that S is better at discriminating between odors than control participants, and is more likely to experience emotion, memories and evaluations triggered by odors, demonstrating the broader impact of her synaesthesia.

    Additional information

    link to conference website
  • Speed, L. J., & Majid, A. (2018). Superior olfactory language and cognition in odor-color synaesthesia. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 468-481. doi:10.1037/xhp0000469.

    Abstract

    Olfaction is often considered a vestigial sense in humans, demoted throughout evolution to make way for the dominant sense of vision. This perspective on olfaction is reflected in how we think and talk about smells in the West, with odor imagery and odor language reported to be difficult. In the present study we demonstrate odor cognition is superior in odor-color synaesthesia, where there are additional sensory connections to odor concepts. Synaesthesia is a neurological phenomenon in which input in 1 modality leads to involuntary perceptual associations. Semantic accounts of synaesthesia posit synaesthetic associations are mediated by activation of inducing concepts. Therefore, synaesthetic associations may strengthen conceptual representations. To test this idea, we ran 6 odor-color synaesthetes and 17 matched controls on a battery of tasks exploring odor and color cognition. We found synaesthetes outperformed controls on tests of both odor and color discrimination, demonstrating for the first time enhanced perception in both the inducer (odor) and concurrent (color) modality. So, not only do synaesthetes have additional perceptual experiences in comparison to controls, their primary perceptual experience is also different. Finally, synaesthetes were more consistent and accurate at naming odors. We propose synaesthetic associations to odors strengthen odor concepts, making them more differentiated (facilitating odor discrimination) and easier to link with lexical representations (facilitating odor naming). In summary, we show for the first time that both odor language and perception is enhanced in people with synaesthetic associations to odors
  • Spinelli, E., McQueen, J. M., & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233-254. doi:10.1016/S0749-596X(02)00513-2.
  • Sprenger, S. A. (2003). Fixed expressions and the production of idioms. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.57562.
  • Stivers, T., Mangione-Smith, R., Elliott, M. N., McDonald, L., & Heritage, J. (2003). Why do physicians think parents expect antibiotics? What parents report vs what physicians believe. Journal of Family Practice, 52(2), 140-147.
  • Stoehr, A., Benders, T., Van Hell, J. G., & Fikkert, P. (2018). Heritage language exposure impacts voice onset time of Dutch–German simultaneous bilingual preschoolers. Bilingualism: Language and Cognition, 21(3), 598-617. doi:10.1017/S1366728917000116.

    Abstract

    This study assesses the effects of age and language exposure on VOT production in 29 simultaneous bilingual children aged 3;7 to 5;11 who speak German as a heritage language in the Netherlands. Dutch and German have a binary voicing contrast, but the contrast is implemented with different VOT values in the two languages. The results suggest that bilingual children produce ‘voiced’ plosives similarly in their two languages, and these productions are not monolingual-like in either language. Bidirectional cross-linguistic influence between Dutch and German can explain these results. Yet, the bilinguals seemingly have two autonomous categories for Dutch and German ‘voiceless’ plosives. In German, the bilinguals’ aspiration is not monolingual-like, but bilinguals with more heritage language exposure produce more target-like aspiration. Importantly, the amount of exposure to German has no effect on the majority language's ‘voiceless’ category. This implies that more heritage language exposure is associated with more language-specific voicing systems.
  • Stoehr, A. (2018). Speech production, perception, and input of simultaneous bilingual preschoolers: Evidence from voice onset time. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Stolk, A., Griffin, S., Van der Meij, R., Dewar, C., Saez, I., Lin, J. J., Piantoni, G., Schoffelen, J.-M., Knight, R. T., & Oostenveld, R. (2018). Integrated analysis of anatomical and electrophysiological human intracranial data. Nature Protocols, 13, 1699-1723. doi:10.1038/s41596-018-0009-6.

    Abstract

    Human intracranial electroencephalography (iEEG) recordings provide data with much greater spatiotemporal precision
    than is possible from data obtained using scalp EEG, magnetoencephalography (MEG), or functional MRI. Until recently,
    the fusion of anatomical data (MRI and computed tomography (CT) images) with electrophysiological data and their
    subsequent analysis have required the use of technologically and conceptually challenging combinations of software.
    Here, we describe a comprehensive protocol that enables complex raw human iEEG data to be converted into more readily
    comprehensible illustrative representations. The protocol uses an open-source toolbox for electrophysiological data
    analysis (FieldTrip). This allows iEEG researchers to build on a continuously growing body of scriptable and reproducible
    analysis methods that, over the past decade, have been developed and used by a large research community. In this
    protocol, we describe how to analyze complex iEEG datasets by providing an intuitive and rapid approach that can handle
    both neuroanatomical information and large electrophysiological datasets. We provide a worked example using
    an example dataset. We also explain how to automate the protocol and adjust the settings to enable analysis of
    iEEG datasets with other characteristics. The protocol can be implemented by a graduate student or postdoctoral
    fellow with minimal MATLAB experience and takes approximately an hour to execute, excluding the automated cortical
    surface extraction.
  • Sulik, J. (2018). Cognitive mechanisms for inferring the meaning of novel signals during symbolisation. PLoS One, 13(1): e0189540. doi:10.1371/journal.pone.0189540.

    Abstract

    As participants repeatedly interact using graphical signals (as in a game of Pictionary), the signals gradually shift from being iconic (or motivated) to being symbolic (or arbitrary). The aim here is to test experimentally whether this change in the form of the signal implies a concomitant shift in the inferential mechanisms needed to understand it. The results show that, during early, iconic stages, there is more reliance on creative inferential processes associated with insight problem solving, and that the recruitment of these cognitive mechanisms decreases over time. The variation in inferential mechanism is not predicted by the sign’s visual complexity or iconicity, but by its familiarity, and by the complexity of the relevant mental representations. The discussion explores implications for pragmatics, language evolution, and iconicity research.
  • Swaab, T., Brown, C. M., & Hagoort, P. (2003). Understanding words in sentence contexts: The time course of ambiguity resolution. Brain and Language, 86(2), 326-343. doi:10.1016/S0093-934X(02)00547-3.

    Abstract

    Spoken language comprehension requires rapid integration of information from multiple linguistic sources. In the present study we addressed the temporal aspects of this integration process by focusing on the time course of the selection of the appropriate meaning of lexical ambiguities (“bank”) in sentence contexts. Successful selection of the contextually appropriate meaning of the ambiguous word is dependent upon the rapid binding of the contextual information in the sentence to the appropriate meaning of the ambiguity. We used the N400 to identify the time course of this binding process. The N400 was measured to target words that followed three types of context sentences. In the concordant context, the sentence biased the meaning of the sentence-final ambiguous word so that it was related to the target. In the discordant context, the sentence context biased the meaning so that it was not related to the target. In the unrelated control condition, the sentences ended in an unambiguous noun that was unrelated to the target. Half of the concordant sentences biased the dominant meaning, and the other half biased the subordinate meaning of the sentence-final ambiguous words. The ISI between onset of the target word and offset of the sentence-final word of the context sentence was 100 ms in one version of the experiment, and 1250 ms in the second version. We found that (i) the lexically dominant meaning is always partly activated, independent of context, (ii) initially both dominant and subordinate meaning are (partly) activated, which suggests that contextual and lexical factors both contribute to sentence interpretation without context completely overriding lexical information, and (iii) strong lexical influences remain present for a relatively long period of time.
  • Swingley, D. (2003). Phonetic detail in the developing lexicon. Language and Speech, 46(3), 265-294.

    Abstract

    Although infants show remarkable sensitivity to linguistically relevant phonetic variation in speech, young children sometimes appear not to make use of this sensitivity. Here, children's knowledge of the sound-forms of familiar words was assessed using a visual fixation task. Dutch 19-month-olds were shown pairs of pictures and heard correct pronunciations and mispronunciations of familiar words naming one of the pictures. Mispronunciations were word-initial in Experiment 1 and word-medial in Experiment 2, and in both experiments involved substituting one segment with [d] (a common sound in Dutch) or [g] (a rare sound). In both experiments, word recognition performance was better for correct pronunciations than for mispronunciations involving either substituted consonant. These effects did not depend upon children's knowledge of lexical or nonlexical phonological neighbors of the tested words. The results indicate the encoding of phonetic detail in words at 19 months.
  • Tamariz, M., Roberts, S. G., Martínez, J. I., & Santiago, J. (2018). The Interactive Origin of Iconicity. Cognitive Science, 42, 334-349. doi:10.1111/cogs.12497.

    Abstract

    We investigate the emergence of iconicity, specifically a bouba-kiki effect in miniature artificial languages under different functional constraints: when the languages are reproduced and when they are used communicatively. We ran transmission chains of (a) participant dyads who played an interactive communicative game and (b) individual participants who played a matched learning game. An analysis of the languages over six generations in an iterated learning experiment revealed that in the Communication condition, but not in the Reproduction condition, words for spiky shapes tend to be rated by naive judges as more spiky than the words for round shapes. This suggests that iconicity may not only be the outcome of innovations introduced by individuals, but, crucially, the result of interlocutor negotiation of new communicative conventions. We interpret our results as an illustration of cultural evolution by random mutation and selection (as opposed to by guided variation).
  • Tan, Y., & Martin, R. C. (2018). Verbal short-term memory capacities and executive function in semantic and syntactic interference resolution during sentence comprehension: Evidence from aphasia. Neuropsychologia, 113, 111-125. doi:10.1016/j.neuropsychologia.2018.03.001.

    Abstract

    This study examined the role of verbal short-term memory (STM) and executive function (EF) underlying semantic and syntactic interference resolution during sentence comprehension for persons with aphasia (PWA) with varying degrees of STM and EF deficits. Semantic interference was manipulated by varying the semantic plausibility of the intervening NP as subject of the verb and syntactic interference was manipulated by varying whether the NP was another subject or an object. Nine PWA were assessed on sentence reading times and on comprehension question performance. PWA showed exaggerated semantic and syntactic interference effects relative to healthy age-matched control subjects. Importantly, correlational analyses showed that while answering comprehension questions, PWA’ semantic STM capacity related to their ability to resolve semantic but not syntactic interference. In contrast, PWA’ EF abilities related to their ability to resolve syntactic but not semantic interference. Phonological STM deficits were not related to the ability to resolve either type of interference. The results for semantic STM are consistent with prior findings indicating a role for semantic but not phonological STM in sentence comprehension, specifically with regard to maintaining semantic information prior to integration. The results for syntactic interference are consistent with the recent findings suggesting that EF is critical for syntactic processing.
  • Teeling, E., Vernes, S. C., Davalos, L. M., Ray, D. A., Gilbert, M. T. P., Myers, E., & Bat1K Consortium (2018). Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species. Annual Review of Animal Biosciences, 6, 23-46. doi:10.1146/annurev-animal-022516-022811.

    Abstract

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>132 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.
  • Ten Bosch, L., Ernestus, M., & Boves, L. (2018). Analyzing reaction time sequences from human participants in auditory experiments. In Proceedings of Interspeech 2018 (pp. 971-975). doi:10.21437/Interspeech.2018-1728.

    Abstract

    Sequences of reaction times (RT) produced by participants in an experiment are not only influenced by the stimuli, but by many other factors as well, including fatigue, attention, experience, IQ, handedness, etc. These confounding factors result in longterm effects (such as a participant’s overall reaction capability) and in short- and medium-time fluctuations in RTs (often referred to as ‘local speed effects’). Because stimuli are usually presented in a random sequence different for each participant, local speed effects affect the underlying ‘true’ RTs of specific trials in different ways across participants. To be able to focus statistical analysis on the effects of the cognitive process under study, it is necessary to reduce the effect of confounding factors as much as possible. In this paper we propose and compare techniques and criteria for doing so, with focus on reducing (‘filtering’) the local speed effects. We show that filtering matters substantially for the significance analyses of predictors in linear mixed effect regression models. The performance of filtering is assessed by the average between-participant correlation between filtered RT sequences and by Akaike’s Information Criterion, an important measure of the goodness-of-fit of linear mixed effect regression models.
  • Ten Bosch, L., & Boves, L. (2018). Information encoding by deep neural networks: what can we learn? In Proceedings of Interspeech 2018 (pp. 1457-1461). doi:10.21437/Interspeech.2018-1896.

    Abstract

    The recent advent of deep learning techniques in speech tech-nology and in particular in automatic speech recognition hasyielded substantial performance improvements. This suggeststhat deep neural networks (DNNs) are able to capture structurein speech data that older methods for acoustic modeling, suchas Gaussian Mixture Models and shallow neural networks failto uncover. In image recognition it is possible to link repre-sentations on the first couple of layers in DNNs to structuralproperties of images, and to representations on early layers inthe visual cortex. This raises the question whether it is possi-ble to accomplish a similar feat with representations on DNNlayers when processing speech input. In this paper we presentthree different experiments in which we attempt to untanglehow DNNs encode speech signals, and to relate these repre-sentations to phonetic knowledge, with the aim to advance con-ventional phonetic concepts and to choose the topology of aDNNs more efficiently. Two experiments investigate represen-tations formed by auto-encoders. A third experiment investi-gates representations on convolutional layers that treat speechspectrograms as if they were images. The results lay the basisfor future experiments with recursive networks.
  • Terrill, A., & Dunn, M. (2003). Orthographic design in the Solomon Islands: The social, historical, and linguistic situation of Touo (Baniata). Written Language and Literacy, 6(2), 177-192. doi:10.1075/wll.6.2.03ter.

    Abstract

    This paper discusses the development of an orthography for the Touo language (Solomon Islands). Various orthographies have been proposed for this language in the past, and the paper discusses why they are perceived by the community to have failed. Current opinion about orthography development within the Touo-speaking community is divided along religious, political, and geographical grounds; and the development of a successful orthography must take into account a variety of opinions. The paper examines the social, historical, and linguistic obstacles that have hitherto prevented the development of an accepted Touo orthography, and presents a new proposal which has thus far gained acceptance with community leaders. The fundamental issue is that creating an orthography for a language takes place in a social, political, and historical context; and for an orthography to be acceptable for the speakers of a language, all these factors must be taken into account.
  • Terrill, A. (2003). A grammar of Lavukaleve. Berlin: Mouton de Gruyter.
  • Terrill, A. (2003). Linguistic stratigraphy in the central Solomon Islands: Lexical evidence of early Papuan/Austronesian interaction. Journal of the Polynesian Society, 112(4), 369-401.

    Abstract

    The extent to which linguistic borrowing can be used to shed light on the existence and nature of early contact between Papuan and Oceanic speakers is examined. The question is addressed by taking one Papuan language, Lavukaleve, spoken in the Russell Islands, central Solomon Islands and examining lexical borrowings between it and nearby Oceanic languages, and with reconstructed forms of Proto Oceanic. Evidence from ethnography, culture history and archaeology, when added to the linguistic evidence provided in this study, indicates long-standing cultural links between other (non-Russell) islands. The composite picture is one of a high degree of cultural contact with little linguistic mixing, i.e., little or no changes affecting the structure of the languages and actually very little borrowed vocabulary.
  • Thompson, B., & Lupyan, G. (2018). Automatic estimation of lexical concreteness in 77 languages. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1122-1127). Austin, TX: Cognitive Science Society.

    Abstract

    We estimate lexical Concreteness for millions of words across 77 languages. Using a simple regression framework, we combine vector-based models of lexical semantics with experimental norms of Concreteness in English and Dutch. By applying techniques to align vector-based semantics across distinct languages, we compute and release Concreteness estimates at scale in numerous languages for which experimental norms are not currently available. This paper lays out the technique and its efficacy. Although this is a difficult dataset to evaluate immediately, Concreteness estimates computed from English correlate with Dutch experimental norms at $\rho$ = .75 in the vocabulary at large, increasing to $\rho$ = .8 among Nouns. Our predictions also recapitulate attested relationships with word frequency. The approach we describe can be readily applied to numerous lexical measures beyond Concreteness
  • Thompson, B., Roberts, S., & Lupyan, G. (2018). Quantifying semantic similarity across languages. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 2551-2556). Austin, TX: Cognitive Science Society.

    Abstract

    Do all languages convey semantic knowledge in the same way? If language simply mirrors the structure of the world, the answer should be a qualified “yes”. If, however, languages impose structure as much as reflecting it, then even ostensibly the “same” word in different languages may mean quite different things. We provide a first pass at a large-scale quantification of cross-linguistic semantic alignment of approximately 1000 meanings in 55 languages. We find that the translation equivalents in some domains (e.g., Time, Quantity, and Kinship) exhibit high alignment across languages while the structure of other domains (e.g., Politics, Food, Emotions, and Animals) exhibits substantial cross-linguistic variability. Our measure of semantic alignment correlates with known phylogenetic distances between languages: more phylogenetically distant languages have less semantic alignment. We also find semantic alignment to correlate with cultural distances between societies speaking the languages, suggesting a rich co-adaptation of language and culture even in domains of experience that appear most constrained by the natural world
  • Thorin, J., Sadakata, M., Desain, P., & McQueen, J. M. (2018). Perception and production in interaction during non-native speech category learning. The Journal of the Acoustical Society of America, 144(1), 92-103. doi:10.1121/1.5044415.

    Abstract

    Establishing non-native phoneme categories can be a notoriously difficult endeavour—in both speech perception and speech production. This study asks how these two domains interact in the course of this learning process. It investigates the effect of perceptual learning and related production practice of a challenging non-native category on the perception and/or production of that category. A four-day perceptual training protocol on the British English /æ/-/ɛ/ vowel contrast was combined with either related or unrelated production practice. After feedback on perceptual categorisation of the contrast, native Dutch participants in the related production group (N = 19) pronounced the trial's correct answer, while participants in the unrelated production group (N = 19) pronounced similar but phonologically unrelated words. Comparison of pre- and post-tests showed significant improvement over the course of training in both perception and production, but no differences between the groups were found. The lack of an effect of production practice is discussed in the light of previous, competing results and models of second-language speech perception and production. This study confirms that, even in the context of related production practice, perceptual training boosts production learning.
  • Tian, X., Ding, N., Teng, X., Bai, F., & Poeppel, D. (2018). Imagined speech influences perceived loudness of sound. Nature Human Behaviour, 2, 225-234. doi:10.1038/s41562-018-0305-8.

    Abstract

    The way top-down and bottom-up processes interact to shape our perception and behaviour is a fundamental question and remains highly controversial. How early in a processing stream do such interactions occur, and what factors govern such interactions? The degree of abstractness of a perceptual attribute (for example, orientation versus shape in vision, or loudness versus sound identity in hearing) may determine the locus of neural processing and interaction between bottom-up and internal information. Using an imagery-perception repetition paradigm, we find that imagined speech affects subsequent auditory perception, even for a low-level attribute such as loudness. This effect is observed in early auditory responses in magnetoencephalography and electroencephalography that correlate with behavioural loudness ratings. The results suggest that the internal reconstruction of neural representations without external stimulation is flexibly regulated by task demands, and that such top-down processes can interact with bottom-up information at an early perceptual stage to modulate perception.
  • Tilot, A. K., Kucera, K. S., Vino, A., Asher, J. E., Baron-Cohen, S., & Fisher, S. E. (2018). Rare variants in axonogenesis genes connect three families with sound–color synesthesia. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3168-3173. doi:10.1073/pnas.1715492115.

    Abstract

    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound–color (auditory–visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes—COL4A1, ITGA2, MYO10, ROBO3, SLC9A6, and SLIT2—associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences.

    Additional information

    Tilot_etal_2018SI.pdf
  • Torreira, F., & Grice, M. (2018). Melodic constructions in Spanish: Metrical structure determines the association properties of intonational tones. Journal of the International Phonetic Association, 48(1), 9-32. doi:10.1017/S0025100317000603.

    Abstract

    This paper explores phrase-length-related alternations in the association of tones to positions in metrical structure in two melodic constructions of Spanish. An imitation-and-completion task eliciting (a) the low–falling–rising contour and (b) the circumflex contour on intonation phrases (IPs) of one, two, and three prosodic words revealed that, although the focus structure and pragmatic context is constant across conditions, phrases containing one prosodic word differ in their nuclear (i.e. final) pitch accents and edge tones from phrases containing more than one prosodic word. For contour (a), short intonation phrases (e.g. [ Ma no lo ] IP ) were produced with a low accent followed by a high edge tone (L ∗ H% in ToBI notation), whereas longer phrases (e.g. [ El her ma no de la a m igadeMa no lo ] IP ‘Manolo’s friend’s brother’) had a low accent on the first stressed syllable, a rising accent on the last stressed syllable, and a low edge tone (L ∗ L+H ∗ L%). For contour (b), short phrases were produced with a high–rise (L+H ∗ ¡H%), whereas longer phrases were produced with an initial accentual rise followed by an upstepped rise–fall (L+H ∗ ¡H ∗ L%). These findings imply that the common practice of describing the structure of intonation contours as consisting of a constant nuclear pitch accent and following edge tone is not adequate for modeling Spanish intonation. To capture the observed melodic alternations, we argue for clearer separation between tones and metrical structure, whereby intonational tones do not necessarily have an intrinsic culminative or delimitative function (i.e. as pitch accents or as edge tones). Instead, this function results from melody-specific principles of tonal–metrical association.
  • Tourtouri, E. N., Delogu, F., & Crocker, M. W. (2018). Specificity and entropy reduction in situated referential processing. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 3356-3361). Austin: Cognitive Science Society.

    Abstract

    In situated communication, reference to an entity in the shared visual context can be established using eitheranexpression that conveys precise (minimally specified) or redundant (over-specified) information. There is, however, along-lasting debate in psycholinguistics concerningwhether the latter hinders referential processing. We present evidence from an eyetrackingexperiment recordingfixations as well asthe Index of Cognitive Activity –a novel measure of cognitive workload –supporting the view that over-specifications facilitate processing. We further present originalevidence that, above and beyond the effect of specificity,referring expressions thatuniformly reduce referential entropyalso benefitprocessing
  • Tribushinina, E., Mak, M., Dubinkina, E., & Mak, W. M. (2018). Adjective production by Russian-speaking children with developmental language disorder and Dutch–Russian simultaneous bilinguals: Disentangling the profiles. Applied Psycholinguistics, 39(5), 1033-1064. doi:10.1017/S0142716418000115.

    Abstract

    Bilingual children with reduced exposure to one or both languages may have language profiles that are
    apparently similar to those of children with developmental language disorder (DLD). Children with
    DLD receive enough input, but have difficulty using this input for acquisition due to processing deficits.
    The present investigation aims to determine aspects of adjective production that are differentially
    affected by reduced input (in bilingualism) and reduced intake (in DLD). Adjectives were elicited
    from Dutch–Russian simultaneous bilinguals with limited exposure to Russian and Russian-speaking
    monolinguals with andwithout DLD.Anantonymelicitation taskwas used to assess the size of adjective
    vocabularies, and a degree task was employed to compare the preferences of the three groups in the
    use of morphological, lexical, and syntactic degree markers. The results revealed that adjective–noun
    agreement is affected to the same extent by both reduced input and reduced intake. The size of adjective
    lexicons is also negatively affected by both, but more so by reduced exposure. However, production
    of morphological degree markers and learning of semantic paradigms are areas of relative strength in
    which bilinguals outperform monolingual children with DLD.We suggest that reduced input might be
    counterbalanced by linguistic and cognitive advantages of bilingualism
  • Tromp, J. (2018). Indirect request comprehension in different contexts. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.

    Abstract

    When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings.
  • Trompenaars, T. (2018). Empathy for the inanimate. Linguistics in the Netherlands, 35, 125-138. doi:10.1075/avt.00009.tro.

    Abstract

    Narrative fiction may invite us to share the perspective of characters which are very much unlike ourselves. Inanimate objects featuring as protagonists or narrators are an extreme example of this. The way readers experience these characters was examined by means of a narrative immersion study. Participants (N = 200) judged narratives containing animate or inanimate characters in predominantly Agent or Experiencer roles. Narratives with inanimate characters were judged to be less emotionally engaging. This effect was influenced by the dominant thematic role associated with the character: inanimate Agents led to more defamiliarization compared to their animate counterparts than inanimate Experiencers. I argue for an integrated account of thematic roles and animacy in literary experience and linguistics in general.
  • Trompenaars, T., Hogeweg, L., Stoop, W., & De Hoop, H. (2018). The language of an inanimate narrator. Open Linguistics, 4, 707-721. doi:10.1515/opli-2018-0034.

    Abstract

    We show by means of a corpus study that the language used by the inanimate first person narrator in the novel Specht en zoon deviates from what we would expect on the basis of the fact that the narrator is inanimate, but at the same time also differsfrom the language of a human narrator in the novel De wijde blik on several linguistic dimensions. Whereas the human narrator is associated strongly with action verbs, preferring the Agent role, the inanimate narrator is much more limited to the Experiencer role, predominantly associated with cognition and sensory verbs. Our results show that animacy as a linguistic concept may be refined by taking into account the myriad ways in which an entity’s conceptual animacy may be expressed: we accept the conceptual animacy of the inanimate narrator despite its inability to act on its environment, showing this need not be a requirement for animacy
  • Trujillo, J. P., Simanova, I., Bekkering, H., & Ozyurek, A. (2018). Communicative intent modulates production and perception of actions and gestures: A Kinect study. Cognition, 180, 38-51. doi:10.1016/j.cognition.2018.04.003.

    Abstract

    Actions may be used to directly act on the world around us, or as a means of communication. Effective communication requires the addressee to recognize the act as being communicative. Humans are sensitive to ostensive communicative cues, such as direct eye gaze (Csibra & Gergely, 2009). However, there may be additional cues present in the action or gesture itself. Here we investigate features that characterize the initiation of a communicative interaction in both production and comprehension.

    We asked 40 participants to perform 31 pairs of object-directed actions and representational gestures in more- or less- communicative contexts. Data were collected using motion capture technology for kinematics and video recording for eye-gaze. With these data, we focused on two issues. First, if and how actions and gestures are systematically modulated when performed in a communicative context. Second, if observers exploit such kinematic information to classify an act as communicative.

    Our study showed that during production the communicative context modulates space–time dimensions of kinematics and elicits an increase in addressee-directed eye-gaze. Naïve participants detected communicative intent in actions and gestures preferentially using eye-gaze information, only utilizing kinematic information when eye-gaze was unavailable.

    Our study highlights the general communicative modulation of action and gesture kinematics during production but also shows that addressees only exploit this modulation to recognize communicative intention in the absence of eye-gaze. We discuss these findings in terms of distinctive but potentially overlapping functions of addressee directed eye-gaze and kinematic modulations within the wider context of human communication and learning.
  • Udden, J., & Männel, C. (2018). Artificial grammar learning and its neurobiology in relation to language processing and development. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 755-783). Oxford: Oxford University Press.

    Abstract

    The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.
  • Ünal, E., & Papafragou, A. (2018). Evidentials, information sources and cognition. In A. Y. Aikhenvald (Ed.), The Oxford Handbook of Evidentiality (pp. 175-184). Oxford University Press.
  • Ünal, E., & Papafragou, A. (2018). The relation between language and mental state reasoning. In J. Proust, & M. Fortier (Eds.), Metacognitive diversity: An interdisciplinary approach (pp. 153-169). Oxford: Oxford University Press.
  • Ung, D. C., Iacono, G., Méziane, H., Blanchard, E., Papon, M.-A., Selten, M., van Rhijn, J.-R., Van Rhijn, J. R., Montjean, R., Rucci, J., Martin, S., Fleet, A., Birling, M.-C., Marouillat, S., Roepman, R., Selloum, M., Lux, A., Thépault, R.-A., Hamel, P., Mittal, K. and 7 moreUng, D. C., Iacono, G., Méziane, H., Blanchard, E., Papon, M.-A., Selten, M., van Rhijn, J.-R., Van Rhijn, J. R., Montjean, R., Rucci, J., Martin, S., Fleet, A., Birling, M.-C., Marouillat, S., Roepman, R., Selloum, M., Lux, A., Thépault, R.-A., Hamel, P., Mittal, K., Vincent, J. B., Dorseuil, O., Stunnenberg, H. G., Billuart, P., Nadif Kasri, N., Hérault, Y., & Laumonnier, F. (2018). Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Molecular Psychiatry, 23, 1356-1367. doi:10.1038/mp.2017.39.

    Abstract

    Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1−/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.

    Additional information

    mp201739x1.pdf
  • Vagliano, I., Galke, L., Mai, F., & Scherp, A. (2018). Using adversarial autoencoders for multi-modal automatic playlist continuation. In C.-W. Chen, P. Lamere, M. Schedl, & H. Zamani (Eds.), RecSys Challenge '18: Proceedings of the ACM Recommender Systems Challenge 2018 (pp. 5.1-5.6). New York: ACM. doi:10.1145/3267471.3267476.

    Abstract

    The task of automatic playlist continuation is generating a list of recommended tracks that can be added to an existing playlist. By suggesting appropriate tracks, i. e., songs to add to a playlist, a recommender system can increase the user engagement by making playlist creation easier, as well as extending listening beyond the end of current playlist. The ACM Recommender Systems Challenge 2018 focuses on such task. Spotify released a dataset of playlists, which includes a large number of playlists and associated track listings. Given a set of playlists from which a number of tracks have been withheld, the goal is predicting the missing tracks in those playlists. We participated in the challenge as the team Unconscious Bias and, in this paper, we present our approach. We extend adversarial autoencoders to the problem of automatic playlist continuation. We show how multiple input modalities, such as the playlist titles as well as track titles, artists and albums, can be incorporated in the playlist continuation task.
  • Valentin, B., Verga, L., Benoit, C.-E., Kotz, S. A., & Dalla Bella, S. (2018). Test-retest reliability of the battery for the assessment of auditory sensorimotor and timing abilities (BAASTA). Annals of Physical and Rehabilitation Medicine, 61(6), 395-400. doi:10.1016/j.rehab.2018.04.001.

    Abstract

    Perceptual and sensorimotor timing skills can be thoroughly assessed with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery has been used for testing rhythmic skills in healthy adults and patient populations (e.g., with Parkinson disease), showing sensitivity to timing and rhythm deficits. Here we assessed the test-retest reliability of the BAASTA in 20 healthy adults. Participants were tested twice with the BAASTA, implemented on a tablet interface, with a 2-week interval. They completed 4 perceptual tasks, namely, duration discrimination, anisochrony detection with tones and music, and the Beat Alignment Test (BAT). Moreover, they completed motor tasks via finger tapping, including unpaced and paced tapping with tones and music, synchronization-continuation, and adaptive tapping to a sequence with a tempo change. Despite high variability among individuals, the results showed good test-retest reliability in most tasks. A slight but significant improvement from test to retest was found in tapping with music, which may reflect a learning effect. In general, the BAASTA was found a reliable tool for evaluating timing and rhythm skills.
  • Van Turennout, M., Bielamowicz, L., & Martin, A. (2003). Modulation of neural activity during object naming: Effects of time and practice. Cerebral Cortex, 13(4), 381-391.

    Abstract

    Repeated exposure to objects improves our ability to identify and name them, even after a long delay. Previous brain imaging studies have demonstrated that this experience-related facilitation of object naming is associated with neural changes in distinct brain regions. We used event-related functional magnetic resonance imaging (fMRI) to examine the modulation of neural activity in the object naming system as a function of experience and time. Pictures of common objects were presented repeatedly for naming at different time intervals (1 h, 6 h and 3 days) before scanning, or at 30 s intervals during scanning. The results revealed that as objects became more familiar with experience, activity in occipitotemporal and left inferior frontal regions decreased while activity in the left insula and basal ganglia increased. In posterior regions, reductions in activity as a result of multiple repetitions did not interact with time, whereas in left inferior frontal cortex larger decreases were observed when repetitions were spaced out over time. This differential modulation of activity in distinct brain regions provides support for the idea that long-lasting object priming is mediated by two neural mechanisms. The first mechanism may involve changes in object-specific representations in occipitotemporal cortices, the second may be a form of procedural learning involving a reorganization in brain circuitry that leads to more efficient name retrieval.
  • Van Berkum, J. J. A., Zwitserlood, P., Hagoort, P., & Brown, C. M. (2003). When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Cognitive Brain Research, 17(3), 701-718. doi:10.1016/S0926-6410(03)00196-4.

    Abstract

    In two ERP experiments, we assessed the impact of discourse-level information on the processing of an unfolding spoken sentence. Subjects listened to sentences like Jane told her brother that he was exceptionally quick/slow, designed such that the alternative critical words were equally acceptable within the local sentence context. In Experiment 1, these sentences were embedded in a discourse that rendered one of the critical words anomalous (e.g. because Jane’s brother had in fact done something very quickly). Relative to the coherent alternative, these discourse-anomalous words elicited a standard N400 effect that started at 150–200 ms after acoustic word onset. Furthermore, when the same sentences were heard in isolation in Experiment 2, the N400 effect disappeared. The results demonstrate that our listeners related the unfolding spoken words to the wider discourse extremely rapidly, after having heard the first two or three phonemes only, and in many cases well before the end of the word. In addition, the identical nature of discourse- and sentence-dependent N400 effects suggests that from the perspective of the word-elicited comprehension process indexed by the N400, the interpretive context delineated by a single unfolding sentence and a larger discourse is functionally identical.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van den Broek, G., Takashima, A., Segers, E., & Verhoeven, L. (2018). Contextual Richness and Word Learning: Context Enhances Comprehension but Retrieval Enhances Retention. Language Learning, 68(2), 546-585. doi:10.1111/lang.12285.

    Abstract

    Learning new vocabulary from context typically requires multiple encounters during which word meaning can be retrieved from memory or inferred from context. We compared the effect of memory retrieval and context inferences on short‐ and long‐term retention in three experiments. Participants studied novel words and then practiced the words either in an uninformative context that required the retrieval of word meaning from memory (“I need the funguo”) or in an informative context from which word meaning could be inferred (“I want to unlock the door: I need the funguo”). The informative context facilitated word comprehension during practice. However, later recall of word form and meaning and word recognition in a new context were better after successful retrieval practice and retrieval practice with feedback than after context‐inference practice. These findings suggest benefits of retrieval during contextualized vocabulary learning whereby the uninformative context enhanced word retention by triggering memory retrieval.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1991). Aspects of computer simulations in education. Education & Computing, 6(3/4), 231-239.

    Abstract

    Computer simulations in an instructional context can be characterized according to four aspects (themes): simulation models, learning goals, learning processes and learner activity. The present paper provides an outline of these four themes. The main classification criterion for simulation models is quantitative vs. qualitative models. For quantitative models a further subdivision can be made by classifying the independent and dependent variables as continuous or discrete. A second criterion is whether one of the independent variables is time, thus distinguishing dynamic and static models. Qualitative models on the other hand use propositions about non-quantitative properties of a system or they describe quantitative aspects in a qualitative way. Related to the underlying model is the interaction with it. When this interaction has a normative counterpart in the real world we call it a procedure. The second theme of learning with computer simulation concerns learning goals. A learning goal is principally classified along three dimensions, which specify different aspects of the knowledge involved. The first dimension, knowledge category, indicates that a learning goal can address principles, concepts and/or facts (conceptual knowledge) or procedures (performance sequences). The second dimension, knowledge representation, captures the fact that knowledge can be represented in a more declarative (articulate, explicit), or in a more compiled (implicit) format, each one having its own advantages and drawbacks. The third dimension, knowledge scope, involves the learning goal's relation with the simulation domain; knowledge can be specific to a particular domain, or generalizable over classes of domains (generic). A more or less separate type of learning goal refers to knowledge acquisition skills that are pertinent to learning in an exploratory environment. Learning processes constitute the third theme. Learning processes are defined as cognitive actions of the learner. Learning processes can be classified using a multilevel scheme. The first (highest) of these levels gives four main categories: orientation, hypothesis generation, testing and evaluation. Examples of more specific processes are model exploration and output interpretation. The fourth theme of learning with computer simulations is learner activity. Learner activity is defined as the ‘physical’ interaction of the learner with the simulations (as opposed to the mental interaction that was described in the learning processes). Five main categories of learner activity are distinguished: defining experimental settings (variables, parameters etc.), interaction process choices (deciding a next step), collecting data, choice of data presentation and metacontrol over the simulation.
  • Van Berkum, J. J. A., Brown, C. M., Hagoort, P., & Zwitserlood, P. (2003). Event-related brain potentials reflect discourse-referential ambiguity in spoken language comprehension. Psychophysiology, 40(2), 235-248. doi:10.1111/1469-8986.00025.

    Abstract

    In two experiments, we explored the use of event-related brain potentials to selectively track the processes that establish reference during spoken language comprehension. Subjects listened to stories in which a particular noun phrase like "the girl" either uniquely referred to a single referent mentioned in the earlier discourse, or ambiguously referred to two equally suitable referents. Referentially ambiguous nouns ("the girl" with two girls introduced in the discourse context) elicited a frontally dominant and sustained negative shift in brain potentials, emerging within 300–400 ms after acoustic noun onset. The early onset of this effect reveals that reference to a discourse entity can be established very rapidly. Its morphology and distribution suggest that at least some of the processing consequences of referential ambiguity may involve an increased demand on memory resources. Furthermore, because this referentially induced ERP effect is very different from that of well-known ERP effects associated with the semantic (N400) and syntactic (e.g., P600/SPS) aspects of language comprehension, it suggests that ERPs can be used to selectively keep track of three major processes involved in the comprehension of an unfolding piece of discourse.
  • Van Gompel, R. P., & Majid, A. (2003). Antecedent frequency effects during the processing of pronouns. Cognition, 90(3), 255-264. doi:10.1016/S0010-0277(03)00161-6.

    Abstract

    An eye-movement reading experiment investigated whether the ease with which pronouns are processed is affected by the lexical frequency of their antecedent. Reading times following pronouns with infrequent antecedents were faster than following pronouns with frequent antecedents. We argue that this is consistent with a saliency account, according to which infrequent antecedents are more salient than frequent antecedents. The results are not predicted by accounts which claim that readers access all or part of the lexical properties of the antecedent during the processing of pronouns.
  • Van Rhijn, J. R., Fisher, S. E., Vernes, S. C., & Nadif Kasri, N. (2018). Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Structure and Function, 223(9), 4211-4226. doi:10.1007/s00429-018-1746-6.

    Abstract

    Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-mediated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive.

    Additional information

    429_2018_1746_MOESM1_ESM.docx
  • Van Berkum, J. J. A., & De Jong, T. (1991). Instructional environments for simulations. Education & Computing, 6(3/4), 305-358.

    Abstract

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving context, to practise task performance without stress, to systematically explore both realistic and hypothetical situations, to change the time-scale of events, and to interact with simplified versions of the process or system being simulated. However, learners are often unable to cope with the freedom offered by, and the complexity of, a simulation. As a result many of them resort to an unsystematic, unproductive mode of exploration. There is evidence that simulation-based learning can be improved if the learner is supported while working with the simulation. Constructing such an instructional environment around simulations seems to run counter to the freedom the learner is allowed to in ‘stand alone’ simulations. The present article explores instructional measures that allow for an optimal freedom for the learner. An extensive discussion of learning goals brings two main types of learning goals to the fore: conceptual knowledge and operational knowledge. A third type of learning goal refers to the knowledge acquisition (exploratory learning) process. Cognitive theory has implications for the design of instructional environments around simulations. Most of these implications are quite general, but they can also be related to the three types of learning goals. For conceptual knowledge the sequence and choice of models and problems is important, as is providing the learner with explanations and minimization of error. For operational knowledge cognitive theory recommends learning to take place in a problem solving context, the explicit tracing of the behaviour of the learner, providing immediate feedback and minimization of working memory load. For knowledge acquisition goals, it is recommended that the tutor takes the role of a model and coach, and that learning takes place together with a companion. A second source of inspiration for designing instructional environments can be found in Instructional Design Theories. Reviewing these shows that interacting with a simulation can be a part of a more comprehensive instructional strategy, in which for example also prerequisite knowledge is taught. Moreover, information present in a simulation can also be represented in a more structural or static way and these two forms of presentation provoked to perform specific learning processes and learner activities by tutor controlled variations in the simulation, and by tutor initiated prodding techniques. And finally, instructional design theories showed that complex models and procedures can be taught by starting with central and simple elements of these models and procedures and subsequently presenting more complex models and procedures. Most of the recent simulation-based intelligent tutoring systems involve troubleshooting of complex technical systems. Learners are supposed to acquire knowledge of particular system principles, of troubleshooting procedures, or of both. Commonly encountered instructional features include (a) the sequencing of increasingly complex problems to be solved, (b) the availability of a range of help information on request, (c) the presence of an expert troubleshooting module which can step in to provide criticism on learner performance, hints on the problem nature, or suggestions on how to proceed, (d) the option of having the expert module demonstrate optimal performance afterwards, and (e) the use of different ways of depicting the simulated system. A selection of findings is summarized by placing them under the four themes we think to be characteristic of learning with computer simulations (see de Jong, this volume).
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Van Bergen, G., & Bosker, H. R. (2018). Linguistic expectation management in online discourse processing: An investigation of Dutch inderdaad 'indeed' and eigenlijk 'actually'. Journal of Memory and Language, 103, 191-209. doi:10.1016/j.jml.2018.08.004.

    Abstract

    Interpersonal discourse particles (DPs), such as Dutch inderdaad (≈‘indeed’) and eigenlijk (≈‘actually’) are highly frequent in everyday conversational interaction. Despite extensive theoretical descriptions of their polyfunctionality, little is known about how they are used by language comprehenders. In two visual world eye-tracking experiments involving an online dialogue completion task, we asked to what extent inderdaad, confirming an inferred expectation, and eigenlijk, contrasting with an inferred expectation, influence real-time understanding of dialogues. Answers in the dialogues contained a DP or a control adverb, and a critical discourse referent was replaced by a beep; participants chose the most likely dialogue completion by clicking on one of four referents in a display. Results show that listeners make rapid and fine-grained situation-specific inferences about the use of DPs, modulating their expectations about how the dialogue will unfold. Findings further specify and constrain theories about the conversation-managing function and polyfunctionality of DPs.
  • Van Campen, A. D., Kunert, R., Van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2018). Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict. Psychophysiology, 55(3): e13003. doi:10.1111/psyp.13003.

    Abstract

    In the recent literature, the effects of noninvasive neurostimulation on cognitive functioning appear to lack consistency and replicability. We propose that such effects may be concealed unless dedicated, sensitive, and process-specific dependent measures are used. The expression and subsequent suppression of response capture are often studied using conflict tasks. Response-time distribution analyses have been argued to provide specific measures of the susceptibility to make fast impulsive response errors, as well as the proficiency of the selective suppression of these impulses. These measures of response capture and response inhibition are particularly sensitive to experimental manipulations and clinical deficiencies that are typically obfuscated in commonly used overall performance analyses. Recent work using structural and functional imaging techniques links these behavioral outcome measures to the integrity of frontostriatal networks. These studies suggest that the presupplementary motor area (pre-SMA) is linked to the susceptibility to response capture whereas the right inferior frontal cortex (rIFC) is associated with the selective suppression of action impulses. Here, we used repetitive transcranial magnetic stimulation (rTMS) to test the causal involvement of these two cortical areas in response capture and inhibition in the Simon task. Disruption of rIFC function specifically impaired selective suppression of conflicting action tendencies, whereas the anticipated increase of fast impulsive errors after perturbing pre-SMA function was not confirmed. These results provide a proof of principle of the notion that the selection of appropriate dependent measures is perhaps crucial to establish the effects of neurostimulation on specific cognitive functions.
  • Van Leeuwen, E. J. C., Cohen, E., Collier-Baker, E., Rapold, C. J., Schäfer, M., Schütte, S., & Haun, D. B. M. (2018). The development of human social learning across seven societies. Nature Communications, 9: 2076. doi:10.1038/s41467-018-04468-2.

    Abstract

    Social information use is a pivotal characteristic of the human species. Avoiding the cost of individual exploration, social learning confers substantial fitness benefits under a wide variety of environmental conditions, especially when the process is governed by biases toward relative superiority (e.g., experts, the majority). Here, we examine the development of social information use in children aged 4–14 years (n = 605) across seven societies in a standardised social learning task. We measured two key aspects of social information use: general reliance on social information and majority preference. We show that the extent to which children rely on social information depends on children’s cultural background. The extent of children’s majority preference also varies cross-culturally, but in contrast to social information use, the ontogeny of majority preference follows a U-shaped trajectory across all societies. Our results demonstrate both cultural continuity and diversity in the realm of human social learning.

    Additional information

    VanLeeuwen_etal_2018sup.pdf
  • Van Donkelaar, M. M. J., Hoogman, M., Pappa, I., Tiemeier, H., Buitelaar, J. K., Franke, B., & Bralten, J. (2018). Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes. Frontiers in Behavioral Neuroscience, 12: 61. doi:10.3389/fnbeh.2018.00061.

    Abstract

    Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus accumbens and amygdala volumes, respectively.
  • Van Leeuwen, E. J. C., Cronin, K. A., & Haun, D. B. M. (2018). Population-specific social dynamics in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 115(45), 11393-11400. doi:10.1073/pnas.1722614115.

    Abstract

    Understanding intraspecific variation in sociality is essential for characterizing the flexibility and evolution of social systems, yet its study in nonhuman animals is rare. Here, we investigated whether chimpanzees exhibit population-level differences in sociality that cannot be easily explained by differences in genetics or ecology. We compared social proximity and grooming tendencies across four semiwild populations of chimpanzees living in the same ecological environment over three consecutive years, using both linear mixed models and social network analysis. Results indicated temporally stable, population-level differences in dyadic-level sociality. Moreover, group cohesion measures capturing network characteristics beyond dyadic interactions (clustering, modularity, and social differentiation) showed population-level differences consistent with the dyadic indices. Subsequently, we explored whether the observed intraspecific variation in sociality could be attributed to cultural processes by ruling out alternative sources of variation including the influences of ecology, genetics, and differences in population demographics. We conclude that substantial variation in social behavior exists across neighboring populations of chimpanzees and that this variation is in part shaped by cultural processes.

    Additional information

    pnas.1722614115.sapp.pdf
  • Van der Veer, G. C., Bagnara, S., & Kempen, G. (1991). Preface. Acta Psychologica, 78, ix. doi:10.1016/0001-6918(91)90002-H.
  • Van de Ven, M., & Ernestus, M. (2018). The role of segmental and durational cues in the processing of reduced words. Language and Speech, 61(3), 358-383. doi:10.1177/0023830917727774.

    Abstract

    In natural conversations, words are generally shorter and they often lack segments. It is unclear to what extent such durational and segmental reductions affect word recognition. The present study investigates to what extent reduction in the initial syllable hinders word comprehension, which types of segments listeners mostly rely on, and whether listeners use word duration as a cue in word recognition. We conducted three experiments in Dutch, in which we adapted the gating paradigm to study the comprehension of spontaneously uttered conversational speech by aligning the gates with the edges of consonant clusters or vowels. Participants heard the context and some segmental and/or durational information from reduced target words with unstressed initial syllables. The initial syllable varied in its degree of reduction, and in half of the stimuli the vowel was not clearly present. Participants gave too short answers if they were only provided with durational information from the target words, which shows that listeners are unaware of the reductions that can occur in spontaneous speech. More importantly, listeners required fewer segments to recognize target words if the vowel in the initial syllable was absent. This result strongly suggests that this vowel hardly plays a role in word comprehension, and that its presence may even delay this process. More important are the consonants and the stressed vowel.
  • Vanderauwera, J., De Vos, A., Forkel, S. J., Catani, M., Wouters, J., Vandermosten, M., & Ghesquière, P. (2018). Neural organization of ventral white matter tracts parallels the initial steps of reading development: A DTI tractography study. Brain and Language, 183, 32-40. doi:10.1016/j.bandl.2018.05.007.

    Abstract

    Insight in the developmental trajectory of the neuroanatomical reading correlates is important to understand related cognitive processes and disorders. In adults, a dual pathway model has been suggested encompassing a dorsal phonological and a ventral orthographic white matter system. This dichotomy seems not present in pre-readers, and the specific role of ventral white matter in reading remains unclear. Therefore, the present longitudinal study investigated the relation between ventral white matter and cognitive processes underlying reading in children with a broad range of reading skills (n = 61). Ventral pathways of the reading network were manually traced using diffusion tractography: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). Pathways were examined pre-reading (5–6 years) and after two years of reading acquisition (7–8 years). Dimension reduction for the cognitive measures resulted in one component for pre-reading cognitive measures and a separate phonological and orthographic component for the early reading measures. Regression analyses revealed a relation between the pre-reading cognitive component and bilateral IFOF and left ILF. Interestingly, exclusively the left IFOF was related to the orthographic component, whereas none of the pathways was related to the phonological component. Hence, the left IFOF seems to serve as the lexical reading route, already in the earliest reading stages.
  • Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.

    Abstract

    Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval.
  • Vanlangendonck, F., Willems, R. M., & Hagoort, P. (2018). Taking common ground into account: Specifying the role of the mentalizing network in communicative language production. PLoS One, 13(10): e0202943. doi:10.1371/journal.pone.0202943.
  • Varma, S., Daselaar, S. M., Kessels, R. P. C., & Takashima, A. (2018). Promotion and suppression of autobiographical thinking differentially affect episodic memory consolidation. PLoS One, 13(8): e0201780. doi:10.1371/journal.pone.0201780.

    Abstract

    During a post-encoding delay period, the ongoing consolidation of recently acquired memories can suffer interference if the delay period involves encoding of new memories, or sensory stimulation tasks. Interestingly, two recent independent studies suggest that (i) autobiographical thinking also interferes markedly with ongoing consolidation of recently learned wordlist material, while (ii) a 2-Back task might not interfere with ongoing consolidation, possibly due to the suppression of autobiographical thinking. In this study, we directly compare these conditions against a quiet wakeful rest baseline to test whether the promotion (via familiar sound-cues) or suppression (via a 2-Back task) of autobiographical thinking during the post-encoding delay period can affect consolidation of studied wordlists in a negative or a positive way, respectively. Our results successfully replicate previous studies and show a significant interference effect (as compared to the rest condition) when learning is followed by familiar sound-cues that promote autobiographical thinking, whereas no interference effect is observed when learning is followed by the 2-Back task. Results from a post-experimental experience-sampling questionnaire further show significant differences in the degree of autobiographical thinking reported during the three post-encoding periods: highest in the presence of sound-cues and lowest during the 2-Back task. In conclusion, our results suggest that varying levels of autobiographical thought during the post-encoding period may modulate episodic memory consolidation.
  • Verdonschot, R. G., & Kinoshita, S. (2018). Mora or more? The phonological unit of Japanese word production in the Stroop color naming task. Memory & Cognition, 46(3), 410-425. doi:10.3758/s13421-017-0774-4.

    Abstract

    In English, Dutch, and other European languages, it is well established that the fundamental phonological unit in word production is the phoneme; in contrast, recent studies have shown that in Chinese it is the (atonal) syllable and in Japanese the mora. The present study investigated whether this cross-language variation in the size of the unit of word production is due to the type of script used in the language (i.e., alphabetic, morphosyllabic, or moraic). Capitalizing on the multiscriptal nature of Japanese, and using the Stroop color naming task, we show that the overlap in the initial mora between the color name and the written distractor facilitates color naming independent of script type. These results confirm the mora as the phonological unit of word production in Japanese, and establish the Stroop color naming task as a useful task for investigating the fundamental (or "proximate") phonological unit used in speech production.
  • Verheijen, J., Van der Zee, J., Gijselinck, I., Van den Bossche, T., Dillen, L., Heeman, B., Gómez-Tortosa, E., Lladó, A., Sanchez-Valle, R., Graff, C., Pastor, P., Pastor, M. A., Benussi, L., Ghidoni, R., Binetti, G., Clarimon, J., De Mendonça, A., Gelpi, E., Tsolaki, M., Diehl-Schmid, J. and 12 moreVerheijen, J., Van der Zee, J., Gijselinck, I., Van den Bossche, T., Dillen, L., Heeman, B., Gómez-Tortosa, E., Lladó, A., Sanchez-Valle, R., Graff, C., Pastor, P., Pastor, M. A., Benussi, L., Ghidoni, R., Binetti, G., Clarimon, J., De Mendonça, A., Gelpi, E., Tsolaki, M., Diehl-Schmid, J., Nacmias, B., Almeida, M. R., Borroni, B., Matej, R., Ruiz, A., Engelborghs, S., Vandenberghe, R., De Deyn, P. P., Cruts, M., Van Broeckhoven, C., Sleegers, K., BELNEU Consortium, & EU EOD Consortium (2018). Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort. Neurobiology of Aging, 62, 245.e1-245.e7. doi:10.1016/j.neurobiolaging.2017.10.012.

    Abstract

    TANK-binding kinase 1 (TBK1) loss-of-function (LoF) mutations are known to cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), often combined with memory deficits early in the disease course. We performed targeted resequencing of TBK1 in 1253 early onset Alzheimer's disease (EOAD) patients from 8 European countries to investigate whether pathogenic TBK1 mutations are enriched among patients with clinical diagnosis of EOAD. Variant frequencies were compared against 2117 origin-matched controls. We identified only 1 LoF mutation (p.Thr79del) in a patient clinically diagnosed with Alzheimer's disease and a positive family history of ALS. We did not observe enrichment of rare variants in EOAD patients compared to controls, nor of rare variants affecting NFκB induction. Of 3 common coding variants, rs7486100 showed evidence of association (OR 1.46 [95% CI 1.13–1.9]; p-value 0.01). Homozygous carriers of the risk allele showed reduced expression of TBK1 (p-value 0.03). Our findings are not indicative of a significant role for TBK1 mutations in EOAD. The association between common variants in TBK1, disease risk and reduced TBK1 expression warrants follow-up in FTD/ALS cohorts. © 2017 The Author(s)

    Additional information

    Supplementary data
  • Verheijen, J., & Sleegers, K. (2018). Understanding Alzheimer Disease at the interface between genetics and transcriptomics. Trends in Genetics, 34(6), 434-447. doi:10.1016/j.tig.2018.02.007.

    Abstract

    Over 25 genes are known to affect the risk of developing Alzheimer disease (AD), the most common neurodegenerative dementia. However, mechanistic insights and improved disease management remains limited, due to difficulties in determining the functional consequences of genetic associations. Transcriptomics is increasingly being used to corroborate or enhance interpretation of genetic discoveries. These approaches, which include second and third generation sequencing, single-cell sequencing, and bioinformatics, reveal allele-specific events connecting AD risk genes to expression profiles, and provide converging evidence of pathophysiological pathways underlying AD. Simultaneously, they highlight brain region- and cell-type-specific expression patterns, and alternative splicing events that affect the straightforward relation between a genetic variant and AD, re-emphasizing the need for an integrated approach of genetics and transcriptomics in understanding AD. © 2018 The Authors
  • Verhoeven, L., Schreuder, R., & Baayen, R. H. (2003). Units of analysis in reading Dutch bisyllabic pseudowords. Scientific Studies of Reading, 7(3), 255-271. doi:10.1207/S1532799XSSR0703_4.

    Abstract

    Two experiments were carried out to explore the units of analysis is used by children to read Dutch bisyllabic pseudowords. Although Dutch orthography is highly regular, several deviations from a one-to-one correspondence occur. In polysyllabic words, the grapheme e may represent three different vowels:/∊/, /e/, or /λ/. In Experiment 1, Grade 6 elementary school children were presented lists of bisyllabic pseudowords containing the grapheme e in the initial syllable representing a content morpheme, a prefix, or a random string. On the basis of general word frequency data, we expected the interpretation of the initial syllable as a random string to elicit the pronunciation of a stressed /e/, the interpretation of the initial syllable as a content morpheme to elicit the pronunciation of a stressed /∊/, the interpretation of the initial syllable as a content morpheme to elicit the pronunciation of a stressed /∊/, and the interpretation as a prefix to elicit the pronunciation of an unstressed /&lamda;/. We found both the pronunciation and the stress assignment for pseudowords to depend on word type, which shows morpheme boundaries and prefixes to be identified. However, the identification of prefixes could also be explained by the correspondence of the prefix boundaries in the pseudowords to syllable boundaries. To exclude this alternative explanation, a follow-up experiment with the same group of children was conducted using bisyllabic pseudowords containing prefixes that did not coincide with syllable boundaries versus similar pseudowords with no prefix. The results of the first experiment were replicated. That is, the children identified prefixes and shifted their assignment of word stress accordingly. The results are discussed with reference to a parallel dual-route model of word decoding
  • Vernes, S. C. (2018). Vocal learning in bats: From genes to behaviour. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 516-518). Toruń, Poland: NCU Press. doi:10.12775/3991-1.128.
  • Viebahn, M., McQueen, J. M., Ernestus, M., Frauenfelder, U. H., & Bürki, A. (2018). How much does orthography influence the processing of reduced word forms? Evidence from novel-word learning about French schwa deletion. The Quarterly Journal of Experimental Psychology, 71(11), 2378-2394. doi:10.1177/1747021817741859.

    Abstract

    This study examines the influence of orthography on the processing of reduced word forms. For this purpose, we compared the impact of phonological variation with the impact of spelling-sound consistency on the processing of words that may be produced with or without the vowel schwa. Participants learnt novel French words in which the vowel schwa was present or absent in the first syllable. In Experiment 1, the words were consistently produced without schwa or produced in a variable manner (i.e., sometimes produced with and sometimes produced without schwa). In Experiment 2, words were always produced in a consistent manner, but an orthographic exposure phase was included in which words that were produced without schwa were either spelled with or without the letter . Results from naming and eye-tracking tasks suggest that both phonological variation and spelling-sound consistency influence the processing of spoken novel words. However, the influence of phonological variation outweighs the effect of spelling-sound consistency. Our findings therefore suggest that the influence of orthography on the processing of reduced word forms is relatively small.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • De Vos, J., Schriefers, H., Nivard, M. C., & Lemhöfer, K. (2018). A meta‐analysis and meta‐regression of incidental second language word learning from spoken input. Language Learning, 68(4), 906-941. doi:10.1111/lang.12296.

    Abstract

    We meta‐analyzed the effectiveness of incidental second language word learning from spoken input. Our sample contained 105 effect sizes from 32 primary studies employing meaning‐focused word‐learning activities with 1,964 participants with typical cognitive functioning. The random‐effects meta‐analysis yielded a mean effect size of g = 1.05, reflecting generally large vocabulary gains from spoken input in meaning‐focused activities. A meta‐regression with three substantive and two methodological predictors also revealed that adult participants outperformed children in terms of word learning and that interactive learning tasks were more effective than noninteractive ones. Furthermore, learning scores were higher when measured with recognition than with recall tests. Methodologically, the use of a no‐input control group seemed to protect against an overestimation of learning effects, evidenced by smaller effect sizes. Finally, whether a pretest–posttest design was used did not influence effect sizes. All data and the analysis script are publicly available.
  • De Vos, C., & Nyst, V.A.S (2018). Introduction: The time-depth and typology of rural sign languages. Sign Language Studies, 18(4), 477-487.
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2018). Noticing vocabulary holes aids incidental second language word learning: An experimental study. Bilingualism: Language and Cognition, 22(3), 500-515. doi:10.1017/S1366728918000019.

    Abstract

    Noticing the hole (NTH) occurs when speakers want to say something, but realise they do not know the right word(s). Such awareness of lacking knowledge supposedly facilitates the acquisition of the unknown word(s) from later input (Swain, 1993). We tested this claim by experimentally inducing NTH in a second language (L2) for some participants (experimental), but not others (control). Then, in a price comparison game, all participants were exposed to spoken L2 input containing the to-be-learned words. They were unaware of taking part in an L2 study. Post-tests showed that participants who had noticed holes in their vocabulary had indeed learned more words compared to participants who had not. This held both for the experimental group as well as those participants in the control group who later reported to have noticed holes. Thus, when we become aware of vocabulary holes, the first step to improve our vocabulary is already taken.
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • De Vries, C., Reijnierse, W. G., & Willems, R. M. (2018). Eye movements reveal readers’ sensitivity to deliberate metaphors during narrative reading. Scientific Study of Literature, 8(1), 135-164. doi:10.1075/ssol.18008.vri.

    Abstract

    Metaphors occur frequently in literary texts. Deliberate Metaphor Theory (DMT; e.g., Steen, 2017) proposes that metaphors that serve a communicative function as metaphor are radically different from metaphors that do not have this function. We investigated differences in processing between deliberate and non-deliberate metaphors, compared to non-metaphorical words in literary reading. Using the Deliberate Metaphor Identification Procedure (Reijnierse et al., 2018), we identified metaphors in two literary stories. Then, eye-tracking was used to investigate participants’ (N = 72) reading behavior. Deliberate metaphors were read slower than non-deliberate metaphors, and both metaphor types were read slower than non-metaphorical words. Differences were controlled for several psycholinguistic variables. Differences in reading behavior were related to individual differences in reading experience and absorption and appreciation of the story. These results are in line with predictions from DMT and underline the importance of distinguishing between metaphor types in the experimental study of literary reading.
  • Vromans, R. D., & Jongman, S. R. (2018). The interplay between selective and nonselective inhibition during single word production. PLoS One, 13(5): e0197313. doi:10.1371/journal.pone.0197313.

    Abstract

    The present study investigated the interplay between selective inhibition (the ability to suppress specific competing responses) and nonselective inhibition (the ability to suppress any inappropriate response) during single word production. To this end, we combined two well-established research paradigms: the picture-word interference task and the stop-signal task. Selective inhibition was assessed by instructing participants to name target pictures (e.g., dog) in the presence of semantically related (e.g., cat) or unrelated (e.g., window) distractor words. Nonselective inhibition was tested by occasionally presenting a visual stop-signal, indicating that participants should withhold their verbal response. The stop-signal was presented early (250 ms) aimed at interrupting the lexical selection stage, and late (325 ms) to influence the word-encoding stage of the speech production process. We found longer naming latencies for pictures with semantically related distractors than with unrelated distractors (semantic interference effect). The results further showed that, at both delays, stopping latencies (i.e., stop-signal RTs) were prolonged for naming pictures with semantically related distractors compared to pictures with unrelated distractors. Taken together, our findings suggest that selective and nonselective inhibition, at least partly, share a common inhibitory mechanism during different stages of the speech production process.

    Additional information

    Data available (link to Figshare)
  • Wagner, A., & Braun, A. (2003). Is voice quality language-dependent? Acoustic analyses based on speakers of three different languages. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 651-654). Adelaide: Causal Productions.
  • Waller, D., & Haun, D. B. M. (2003). Scaling techniques for modeling directional knowledge. Behavior Research Methods, Instruments, & Computers, 35(2), 285-293.

    Abstract

    A common way for researchers to model or graphically portray spatial knowledge of a large environment is by applying multidimensional scaling (MDS) to a set of pairwise distance estimations. We introduce two MDS-like techniques that incorporate people’s knowledge of directions instead of (or in addition to) their knowledge of distances. Maps of a familiar environment derived from these procedures were more accurate and were rated by participants as being more accurate than those derived from nonmetric MDS. By incorporating people’s relatively accurate knowledge of directions, these methods offer spatial cognition researchers and behavioral geographers a sharper analytical tool than MDS for studying cognitive maps.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.

    Abstract

    Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.

    Abstract

    Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
  • Wang, M., Shao, Z., Chen, Y., & Schiller, N. O. (2018). Neural correlates of spoken word production in semantic and phonological blocked cyclic naming. Language, Cognition and Neuroscience, 33(5), 575-586. doi:10.1080/23273798.2017.1395467.

    Abstract

    The blocked cyclic naming paradigm has been increasingly employed to investigate the mechanisms underlying spoken word production. Semantic homogeneity typically elicits longer naming latencies than heterogeneity; however, it is debated whether competitive lexical selection or incremental learning underlies this effect. The current study manipulated both semantic and phonological homogeneity and used behavioural and electrophysiological measurements to provide evidence that can distinguish between the two accounts. Results show that naming latencies are longer in semantically homogeneous blocks, but shorter in phonologically homogeneous blocks, relative to heterogeneity. The semantic factor significantly modulates electrophysiological waveforms from 200 ms and the phonological factor from 350 ms after picture presentation. A positive component was demonstrated in both manipulations, possibly reflecting a task-related top-down bias in performing blocked cyclic naming. These results provide novel insights into the neural correlates of blocked cyclic naming and further contribute to the understanding of spoken word production.
  • Wanke, K., Devanna, P., & Vernes, S. C. (2018). Understanding neurodevelopmental disorders: The promise of regulatory variation in the 3’UTRome. Biological Psychiatry, 83(7), 548-557. doi:10.1016/j.biopsych.2017.11.006.

    Abstract

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome-sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1-2% of the human genome. With the advent of whole-genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and non-coding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of non-coding variants identified per individual can be overwhelming, making it prudent to focus on non-coding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3’UTRome is a region of the non-coding genome that perfectly fulfils these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3’UTRome as binding sites for microRNAs, RNA binding proteins or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3’UTRome will lead to the identification of new risk factors, new candidate disease genes and a better understanding of the molecular mechanisms contributing to NDDs.

    Additional information

    1-s2.0-S0006322317321911-mmc1.pdf
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A., & Becker, E. B. E. (2018). A simplified method for generating purkinje cells from human-induced pluripotent stem cells. The Cerebellum, 17(4), 419-427. doi:10.1007/s12311-017-0913-2.

    Abstract

    The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser—insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor β (TGFβ)-receptor blocker SB431542—hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.

    Additional information

    12311_2017_913_MOESM1_ESM.docx
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In M. J. Solé, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of Phonetic Sciences.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 1437-1440). Adelaide: Causal Productions.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signalto-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Weekes, B. S., Abutalebi, J., Mak, H.-K.-F., Borsa, V., Soares, S. M. P., Chiu, P. W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 5-12. doi:10.15448/1984-7726.2018.1.30954.

    Abstract

    Reports of an advantage of bilingualism on brain structure in young adult participants
    are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the
    Flanker task in young bilinguals compared to young monolingual speakers. The present study
    compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young
    adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result
    from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic
    levels and Flanker conflict and interference effects (c) different associations in bilingual and
    monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism,
    specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations
    between metabolic levels and conflict and interference effects and no significant evidence of
    differential relationships between bilingual and monolingual speakers. Furthermore, we found no
    evidence of significant differences in the mean size of conflict and interference effects between
    groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults
    compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive
    control during conflict monitoring because of their extensive bilingual experience.
  • Weissenborn, J. (1988). Von der demonstratio ad oculos zur Deixis am Phantasma. Die Entwicklung der lokalen Referenz bei Kindern. In Karl Bühler's Theory of Language. Proceedings of the Conference held at Kirchberg, August 26, 1984 and Essen, November 21–24, 1984 (pp. 257-276). Amsterdam: Benjamins.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Wheeldon, L. (2003). Inhibitory from priming of spoken word production. Language and Cognitive Processes, 18(1), 81-109. doi:10.1080/01690960143000470.

    Abstract

    Three experiments were designed to examine the effect on picture naming of the prior production of a word related in phonological form. In Experiment 1, the latency to produce Dutch words in response to pictures (e.g., hoed , hat) was longer following the production of a form-related word (e.g., hond , dog) in response to a definition on a preceding trial, than when the preceding definition elicited an unrelated word (e.g., kerk , church). Experiment 2 demonstrated that the inhibitory effect disappears when one unrelated word is produced intervening prime and target productions (e.g., hond-kerk-hoed ). The size of the inhibitory effect was not significantly affected by the frequency of the prime words or the target picture names. In Experiment 3, facilitation was observed for word pairs that shared offset segments (e.g., kurk-jurk , cork-dress), whereas inhibition was observed for shared onset segments (e.g., bloed-bloem , blood-flower). However, no priming was observed for prime and target words with shared phonemes but no mismatching segments (e.g., oom-boom , uncle-tree; hex-hexs , fence-witch). These findings are consistent with a process of phoneme competition during phonological encoding.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • Wittenburg, P. (2003). The DOBES model of language documentation. Language Documentation and Description, 1, 122-139.
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Zeshan, U. (2003). Aspects of Türk Işaret Dili (Turkish Sign Language). Sign Language and Linguistics, 6(1), 43-75. doi:10.1075/sll.6.1.04zes.

    Abstract

    This article provides a first overview of some striking grammatical structures in Türk Idotscedilaret Dili (Turkish Sign Language, TID), the sign language used by the Deaf community in Turkey. The data are described with a typological perspective in mind, focusing on aspects of TID grammar that are typologically unusual across sign languages. After giving an overview of the historical, sociolinguistic and educational background of TID and the language community using this sign language, five domains of TID grammar are investigated in detail. These include a movement derivation signalling completive aspect, three types of nonmanual negation — headshake, backward head tilt, and puffed cheeks — and their distribution, cliticization of the negator NOT to a preceding predicate host sign, an honorific whole-entity classifier used to refer to humans, and a question particle, its history and current status in the language. A final evaluation points out the significance of these data for sign language research and looks at perspectives for a deeper understanding of the language and its history.

Share this page