Publications

Displaying 801 - 815 of 815
  • Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3: 39, pp. 39. doi:10.3389/neuro.09.039.2009.

    Abstract

    If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009). During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.
  • Willems, R. M., & Hagoort, P. (2009). Broca's region: Battles are not won by ignoring half of the facts. Trends in Cognitive Sciences, 13(3), 101. doi:10.1016/j.tics.2008.12.001.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage, 47, 1992-2004. doi:10.1016/j.neuroimage.2009.05.066.

    Abstract

    Several studies indicate that both posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and left inferior frontal gyrus (LIFG) are involved in integrating information from different modalities. Here we investigated the respective roles of these two areas in integration of action and language information. We exploited the fact that the semantic relationship between language and different forms of action (i.e. co-speech gestures and pantomimes) is radically different. Speech and co-speech gestures are always produced together, and gestures are not unambiguously understood without speech. On the contrary, pantomimes are not necessarily produced together with speech and can be easily understood without speech. We presented speech together with these two types of communicative hand actions in matching or mismatching combinations to manipulate semantic integration load. Left and right pSTS/MTG were only involved in semantic integration of speech and pantomimes. Left IFG on the other hand was involved in integration of speech and co-speech gestures as well as of speech and pantomimes. Effective connectivity analyses showed that depending upon the semantic relationship between language and action, LIFG modulates activation levels in left pSTS.

    This suggests that integration in pSTS/MTG involves the matching of two input streams for which there is a relatively stable common object representation, whereas integration in LIFG is better characterized as the on-line construction of a new and unified representation of the input streams. In conclusion, pSTS/MTG and LIFG are differentially involved in multimodal integration, crucially depending upon the semantic relationship between the input streams.

    Additional information

    Supplementary table S1
  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.

    Abstract

    Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action.
  • Willems, R. M., & Hagoort, P. (2009). Hand preference influences neural correlates of action observation. Brain Research, 1269, 90-104. doi:10.1016/j.brainres.2009.02.057.

    Abstract

    It has been argued that we map observed actions onto our own motor system. Here we added to this issue by investigating whether hand preference influences the neural correlates of action observation of simple, essentially meaningless hand actions. Such an influence would argue for an intricate neural coupling between action production and action observation, which goes beyond effects of motor repertoire or explicit motor training, as has been suggested before. Indeed, parts of the human motor system exhibited a close coupling between action production and action observation. Ventral premotor and inferior and superior parietal cortices showed differential activation for left- and right-handers that was similar during action production as well as during action observation. This suggests that mapping observed actions onto the observer's own motor system is a core feature of action observation - at least for actions that do not have a clear goal or meaning. Basic differences in the way we act upon the world are not only reflected in neural correlates of action production, but can also influence the brain basis of action observation.
  • Willems, R. M. (2009). Neural reflections of meaning in gesture, language, and action. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Willems, R. M. (2007). The neural construction of a Tinkertoy [‘Journal club’ review]. The Journal of Neuroscience, 27, 1509-1510. doi:10.1523/JNEUROSCI.0005-07.2007.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609-1612. doi:10.1126/science.1139597.

    Abstract

    Brain processing depends on the interactions between neuronal groups. Those interactions are governed by the pattern of anatomical connections and by yet unknown mechanisms that modulate the effective strength of a given connection. We found that the mutual influence among neuronal groups depends on the phase relation between rhythmic activities within the groups. Phase relations supporting interactions between the groups preceded those interactions by a few milliseconds, consistent with a mechanistic role. These effects were specific in time, frequency, and space, and we therefore propose that the pattern of synchronization flexibly determines the pattern of neuronal interactions.
  • Won, S.-O., Hu, I., Kim, M.-Y., Bae, J.-M., Kim, Y.-M., & Byun, K.-S. (2009). Theory and practice of Sign Language interpretation. Pyeongtaek: Korea National College of Rehabilitation & Welfare.
  • Wood, N. (2009). Field recording for dummies. In A. Majid (Ed.), Field manual volume 12 (pp. V). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Xiao, M., Kong, X., Liu, J., & Ning, J. (2009). TMBF: Bloom filter algorithms of time-dependent multi bit-strings for incremental set. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications & Workshops.

    Abstract

    Set is widely used as a kind of basic data structure. However, when it is used for large scale data set the cost of storage, search and transport is overhead. The bloom filter uses a fixed size bit string to represent elements in a static set, which can reduce storage space and search cost that is a fixed constant. The time-space efficiency is achieved at the cost of a small probability of false positive in membership query. However, for many applications the space savings and locating time constantly outweigh this drawback. Dynamic bloom filter (DBF) can support concisely representation and approximate membership queries of dynamic set instead of static set. It has been proved that DBF not only possess the advantage of standard bloom filter, but also has better features when dealing with dynamic set. This paper proposes a time-dependent multiple bit-strings bloom filter (TMBF) which roots in the DBF and targets on dynamic incremental set. TMBF uses multiple bit-strings in time order to present a dynamic increasing set and uses backward searching to test whether an element is in a set. Based on the system logs from a real P2P file sharing system, the evaluation shows a 20% reduction in searching cost compared to DBF.
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
  • Zwitserlood, I. (2009). Het Corpus NGT. Levende Talen Magazine, 6, 44-45.

    Abstract

    The Corpus NGT
  • Zwitserlood, I. (2009). Het Corpus NGT en de dagelijkse lespraktijk (1). Levende Talen Magazine, 8, 40-41.

Share this page