You are here: Home Q&A Questions and Answers

Questions and Answers

Vragen en Antwoorden Nederlands Fragen und Antworten Deutsch

Is there something you have always wanted to know about language? We might have an answer! On this page we answer questions about various aspects of language asked by people outside of the language researcher community.

Show or Hide answer Is there a language gene that other species do not have?
Link & Share

Language appears to be unique in the natural world, a defining feature of the human condition. Although other species have complex communication systems of their own, even our closest living primate relatives do not speak, in part because they lack sufficient voluntary control of their vocalizations. After years of intensive tuition, some chimpanzees and bonobos have been able to acquire a rudimentary sign language. But still the skills of these exceptional cases have not come close to those of a typical human toddler, who will spontaneously use the generative power of language to express thoughts and ideas about present, past and future.


It is certain that genes are important for explaining this enigma. But, there is actually no such thing as a "language gene" or "gene for language", as in a special gene with the designated job of providing us with the unique skills in question. Genes do not specify cognitive or behavioural outputs; they contain the information for building proteins which carry out functions inside cells of the body. Some of these proteins have significant effects on the properties of brain cells, for example by influencing how they divide, grow and make connections with other brain cells that in turn are responsible for how the brain operates, including producing and understanding language. So, it is feasible that evolutionary changes in certain genes had impacts on the wiring of human brain circuits, and thereby played roles in the emergence of spoken language. Crucially, this might have depended on alterations in multiple genes, not just a single magic bullet, and there is no reason to think that the genes themselves should have appeared "out of the blue" in our species.

There is strong biological evidence that human linguistic capacities rely on modifications of genetic pathways that have a much deeper evolutionary history. A compelling argument comes from studies of FOXP2 (a gene that has often been misrepresented in the media as the mythical "language gene"). It is true that FOXP2 is relevant for language – its role in human language was originally discovered because rare mutations that disrupt it cause a severe speech and language disorder. But FOXP2 is not unique to humans. Quite the opposite, versions of this gene are found in remarkably similar forms in a great many vertebrate species (including primates, rodents, birds, reptiles and fish) and it seems to be active in corresponding parts of the brain in these different animals. For example, songbirds have their own version of FOXP2 which helps them learn to sing. In-depth studies of versions of the gene in multiple species indicate it plays roles in the ways that brain cells wire together. Intriguingly, while it has been around for many millions of years in evolutionary history, without changing very much, there have been at least two small but interesting alterations of FOXP2 that occurred on the branch that led to humans, after we split off from chimpanzees and bonobos. Scientists are now studying those changes to find out how they might have impacted the development of human brain circuits, as one piece of the jigsaw of our language origins.

by Simon Fisher, Katerina Kucera & Katherine Cronin

Further readings:

Revisiting Fox and the Origins of Language (link)

Fisher S.E. & Marcus G.F. (2006) The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 7, 9-20. (link)

Fisher, S.E. & Ridley, M. (2013). Culture, genes, and the human revolution. Science, 340, 929-930.(link)

Show or Hide answer Do languages tend to become more similar over time or do they become more different?
Link & Share

A basic assumption of language change is that if two linguistic groups are isolated from each other, then their languages will become more different over time.  If the groups come into contact again, then they may become more similar to each other, for instance by borrowing parts of each others’ languages.  This is the case in many parts of the world where aspects of language have been borrowed into many different languages.  A recent example is the word ‘internet’ which has been adopted by many languages. However, before global communication was possible, borrowing was restricted to languages in the same geographic area. This might cause languages in the same area to become more similar to each other.  Linguists call these ‘areal effects’, and they are influenced by factors such as migration or a group being more powerful or prestigious. 


Another possibility that would make languages more similar is if there were certain words or linguistic rules were easier to learn or somehow ‘fit’ the human brain better.  This is similar to different biological species sharing similar traits, such as birds, bats and some dinosaurs evolving wings.  In this case, languages that were even on opposite sides of the world might change to become more similar. Researchers have noticed some features in words across languages which seem to make a direct link between a word's sound and its meaning (this is known as sound-symbolism). For instance, words for ‘nose’ tend to involve sounds made with the nose such as [n].  Languages all over the world use a similar word to question what someone else has said – ‘huh?’ or ‘what?’ – possibly because it’s a short, question-like word that’s effective at getting people’s attention.

Telling the difference between these effects and the similarities caused by borrowing is difficult because their effects can be similar.  One of the goals of evolutionary linguistics is to find ways of teasing these effects apart.

This question strikes at the heart of linguistic research, because it involves asking whether there are limits on what languages can be like. Some of the first modern linguistic theories suggested that there were limits on how different languages could be because of biological constraints.  More recently, field linguists have been documenting many languages that show a huge diversity in their sounds, words and rules.  It may be the case that for every way in which languages become more similar, there is another way in which they become more different at the same time.

by Seán Roberts & Gwilym Lockwood

Some links

Can you tell the difference between languages? (link)
Why is it studying linguistic diversity difficult? (link)
Is ‘huh?’ a universal word? (link)

Further Reading

Nettle, D. (1999). Linguistic Diversity. Oxford: Oxford University Press.

Dingemanse, M., Torreira, F., & Enfield, N. J. (in press). Is “Huh?” a universal word? Conversational infrastructure and the convergent evolution of linguistic items. PLoS One. (link)

Dunn, M., Greenhill, S. J., Levinson, S. C., & Gray, R. D. (2011). Evolved structure of language shows lineage-specific trends in word-order universals. Nature, 473, 79-82. (link)

Show or Hide answer Why is English the universal language?
Link & Share

Unlike most of the other answers here, language itself doesn't really come into it; English is perceived by many people as the universal language because of the former influence of the British Empire and the current influence of American political and economic hegemony.


Image: Jurriaan Persyn

It is possible to try giving a strictly linguistic explanation; it could be that English is a simple language which is relatively easy to pick up. English has no noun genders, no complicated morphology, no tone system, it is written in the Roman alphabet which is pretty good at accurately mapping sounds to symbols, and the prevalence of English-language films, TV, and music makes it readily accessible and easy to practise. However, English also has an extensive vocabulary, a highly inconsistent spelling system, many irregular verbs, some problematic sounds such as "th", and a large inventory of vowels which can make it difficult for non-native speakers to tell words apart. Arguments about which languages are easy or difficult to learn are ultimately circular, as the perception of what is easy and what is difficult to learn depends on the person doing the learning. 

The second explanation is historical. The UK was the first industrialised nation, and discovered that one of the advantages to this was that they could colonise the rest of the developing world far faster than other European countries could. The British Empire covered a quarter of the globe at its largest, including North America, the Caribbean, Australia, New Zealand, much of West and Southern Africa, South Asia, and parts of South-East Asia. The UK set up English-speaking systems of government, industry, and exploitation in these areas, which established English as the language of global power in the industrial era. The British Empire finally fell apart after the Second World War, but the 20th century saw the transfer of power from one English-speaking expansionist power to another. The USA's cultural, economic, political, and military domination of the 20th and 21st centuries has ensured that English remains the most important and influential global language. As the official language of business, science, diplomacy, communications, and IT (not to mention the main language of the most popular websites), this is unlikely to change any time soon. 

Written by Gwilym Lockwood & Katrin Bangel

Show or Hide answer What was language like in the very beginning?
Link & Share

Nobody knows! This is one of the biggest problems in the field of language evolution. Unlike stone tools or skeletons, the language that people use doesn't fossilise, so we can’t study it directly. We have examples of writing from over 6,000 years ago which can help us work out what languages were like relatively recently, but recent research suggests that people have been using languages very much like our own for maybe 500,000 years.


Image: Alexandre Duret-Lutz

In order to get an idea of how languages might have evolved, researchers use model systems. These might include computational models, experiments with real people or the study of languages that have developed very recently such as sign languages or creoles. We can’t know for sure what the first languages would have sounded like, but we can work out how communication systems tend to evolve and develop. 

For example, one series of experiments studied how communication systems develop by using a game like Pictionary: players had to communicate about meanings by drawing. They found that negotiation and feedback during communication was very important for a successful communication system to develop.

Another experiment used a chain of learners who had to learn an artificial language. The first learner had to learn a language with no rules, then teach the next person in the chain whatever they could remember. This second person tried to learn the language and then passed it on to the third person in the chain, just like a game of ‘broken telephone’. In this way, we can simulate the process of passing a language down through the generations, but now it only takes one afternoon rather than thousands of years. What researchers noticed is that the language changed from having a different word for every possible meaning to having smaller words that referred to parts of the meaning that could be put together. That is, a language with rules emerged. 

So, early languages may have had a different word for every meaning and gradually broken them apart to create rules. However, other researchers think that languages started with small words for every meaning and gradually learned to stick them together. Some think that language evolved very suddenly, while others think it evolved slowly. Some think that parts of language evolved in many different places at the same time, and contact between groups brought the ideas together. Some think that early languages would have sounded more like music. There are many suggestions that the first languages were signed languages, and that spoken language developed later.

Researchers in this field have to find creative ways of studying the problem and integrate knowledge from many fields such as linguistics, psychology, biology, neuroscience and anthropology.

 Written by Seán Roberts & Harald Hammarström

Experiments on language evolution:

Communicating with slide whistles (link)
The iterated learning experiments (link)
Blog posts on language evolution experiments (link1link2)

Further reading:

Galantucci, B. (2005). An Experimental Study of the Emergence of Human Communication Systems. Cognitive Science, 29, 737-767. (link)

Hurford. J. (forthcoming). Origins of language: A slim guide. Oxford University Press.

Johansson. S. (2005), Origins of Language: Constraints on hypotheses. Amsterdam: John Benjamins.

Kirby, S., Cornish, H. & Smith, K. (2008). Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences of the United States of America, 105,10681–10686. (link)

Show or Hide answer Why can't apes speak?
Link & Share

Unlike humans, apes lack the anatomical pre-requisites for verbal language production. The organs within the vocal tract, such as larynx muscles and vocal cords, cannot be moved as freely and coordinated as in humans, especially not at a comparable speed. For this reason, we cannot talk with apes in the first place, even though they certainly understand and imitate a lot! (Click here for an example.)

Still, the communicative behavior of apes shares many characteristics with human language. Like many other animals, apes have developed ways to communicate that seem to resemble verbal language. However, most researchers refuse to call animal sign systems 'language' in the human sense because they are fairly restricted on many levels. For example, communicative signs are limited in number and cannot be combined to create new meaning. Also, apes can only communicate about things in their immediate surroundings, unlike humans who can refer to the past, the future or places and objects which are not present in the here and now.

Another reason why apes cannot speak is because they lack the cognitive capacity necessary for complex communication processes. Humans for instance are able to combine a limited number of words in such a way that they can express an infinite number of messages. We can also sequence smaller units of information, put them in a meaningful order and the result is a story. The brains of apes do not provide the cognitive resources to process such amounts of information. Apes can learn hundreds of words, but fail to use them in a creative way to convey complex meaning and intentions.


Recent evidence however indicates that brain structures supporting language production in the human brain might not only have been present in the ancestors of today's humans but also in the ancestors of chimpanzees. It was found that an area of the brain involved in the planning and production of spoken and signed language in humans (Broca's area) plays a similar role in chimpanzee communication.

Written by Katrin Bangel and Franziska Hartung

Further reading:

More videos on animals and language (link)

Chimps May Have A 'Language-Ready' Brain (link)

Did Neandertals have language? (link)

Pinker, S. (1994). The language instinct: how the mind creates language. New York: William Morrow & Co.

Taglialatela J.P., Russell J.L., Schaeffer J.A., Hopkins W.D. (2008). Communicative Signaling Activates 'Broca's' Homolog in Chimpanzees. Current Biology, 18, 343-348. (link)

Show or Hide answer To what extent is language used by other animals?
Link & Share

We learn our language, use it to refer to things that are in another time or place, combine familiar words to create entirely novel messages, and use it intentionally to inform others. To some extent, each of these characteristics can be found in the communication systems of other species as well:


Dolphins develop personalized whistles that indicate to others who is calling, and pygmy marmosets “babble” like human infants, slowly pruning their vocal repertoire to match those of the adults. These examples of vocal learning demonstrate that animals can minimally shape or modify their communication as they develop.

Bees waggle dance

Image: Chittka L: Dances as Windows into Insect Perception. PLoS Biol 2/7/2004: e216.


Bees communicate the location of distant food to members of their colony through a dance they perform in their hives, and vervet monkeys call out alarms that differ based on the identity of the predator. Behaviour of bees and the vervet monkeys shows us that some limited referential communication is possible, at least about referents that are in a different location.


The evidence for the combinatorial nature of nonhuman language (i.e., the ability to combine familiar communicative elements to create novel messages) is limited, but some cases do exist, such as when Campbell’s monkeys combine call components to create meanings that differ from the original parts.


Whether communication in other species is intentional has primarily been studied in one of the species most closely related to humans, chimpanzees. Chimpanzees use alarm calls to warn ignorant others of danger more often than knowledgeable ones, and change their screams during aggressive encounters when someone nearby is likely to be able to defeat their enemy.

Despite decades of research, determining exactly which features of human language are unique and which are shared with other species is still a largely unanswered question. Given the diversity of efficient communication systems in the animal world, the more interesting and productive question moving forward may be how the communication systems of other animals work in ways that are entirely different from our own. 

Written by Katherine Cronin & Judith Holler

Further reading:

More videos on animals and language. (link)

Fedurek, P., & Slocombe, K. E. (2011). Primate vocal communication: A useful tool for understanding human speech and language evolution? Human Biology, 83, 153-173. (link)

Janik, V. M. (2013). Cognitive skills in bottlenose dolphin communication. Trends in Cognitive Sciences, 17, 157-159. (link)

Show or Hide answer Is there a gene, or genes, that make some people better speakers, or learners?
Link & Share

Human children have a unique, and highly mysterious, ability to acquire proficient speech and language skills without the need to be formally taught. After only a few years, a typical infant has assembled a huge vocabulary of words, can use grammatical rules to combine them into a potentially limitless number of meaningful utterances, communicates these with rapid and precise coordination of the speech muscles, and is similarly adept at decoding the utterances of others. It has long been suspected that the answers to this puzzle may lie somewhere in our genetic makeup. Importantly, the human genome does not contain the information (the sets of words and rules) for any specific languages themselves; we all need exposure to a language in order to learn it. A child growing up surrounded by Dutch speakers becomes fluent in Dutch, while the same child growing up in Japan would learn to speak Japanese. Rather, our genes help to build brain circuits that are well-tuned to soak up language from the social environment.


For many years, it was only possible to speculate about potential genetic contributions to language acquisition. With the rise of new molecular techniques, scientists have now started to identify and study individual genes that are important. So far, most research has focused on searching for causative genes in children and adults who have problems with speech and/or language development that cannot be explained by another cause (like deafness or intellectual disability). It is clear that there is not just one single factor at play, instead an orchestra of genes and their interactions are responsible. Some genes have greater effects than others. For example, one gene with a large effect is FOXP2, the first gene implicated in an inherited speech and language disorder. If a child carries a disruptive mutation in this gene, it is enough to cause serious problems with learning to make sequences of speech sounds, problems that persist throughout life. In contrast to the rare severe mutations of FOXP2, more commonly occurring variants seen in other genes, such as CNTNAP2, ATP2C2, or CMIP have more subtle effects, increasing risk of language difficulties in small but significant ways.

While quite a lot is known about genetic variants that lead to language problems, there is less insight into genetic effects that make certain people in the general population better at acquiring language(s). Some of the genes involved in language impairments, like CNTNAP2, are also known to have effects on language development and function in people without disorders, yet further studies are required to uncover the genes and variants that might give some people a linguistic advantage. An exciting new step for this research will be to exploit the latest genomic techniques to look at the other extreme of the spectrum, people who have unusual talents in acquiring or using language.

Written by Katerina Kucera & Simon Fisher

Further reading:

The Language Fossils Buried in Every Cell of Your Body (link)

Graham S.A., Fisher, S.E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43-51. (link)

About MPI

This is the MPI

The Max Planck Institute for Psycholinguistics is an institute of the German Max Planck Society. Our mission is to undertake basic research into the psychological,social and biological foundations of language. The goal is to understand how our minds and brains process language, how language interacts with other aspects of mind, and how we can learn languages of quite different types.

The institute is situated on the campus of the Radboud University. We participate in the Donders Institute for Brain, Cognition and Behaviour, and have particularly close ties to that institute's Centre for Cognitive Neuroimaging. We also participate in the Centre for Language Studies. A joint graduate school, the IMPRS in Language Sciences, links the Donders Institute, the CLS and the MPI.


Questions and Answers

whiet question mark on MPG green 124pt, stroke 2pt

This project was coordinated by:

Katrien Segaert 
Katerina Kucera
Judith Holler

Sean Roberts
Agnieszka Konopka
Gwilym Lockwood
Elma Hilbrink
Joost Rommers
Mark Dingemanse
Connie de Vos