Version 3, December 2012, ELAN 4.5.0
INTRODUCTION

This README provides basic information on how to build an audio/video
recognition tool that can co-operate with ELAN. Defining the interface between
ELAN and audio-/video-recognizers is work in progress; this document
describes the third version of the interface and highlights the changes since the
second version.

Feedback on the interface and on implementing a recognizer extension can be
given on the ELAN forum: http://tla.mpi.nl/forums/software/elan/

Before experimenting with this demo recognizer or your own recognizer it is
wise to read the paragraph in the ELAN manual regarding the silence recognizer
and the Audio/Video recognizer panels.

CHANGES

Version 3: The composition of the graphical user interface of the recognizer
panels has changed. The Selection panel that allowed to add multiple manual
selections and/or complete tiers has been removed from the main panel.
Likewise for the list of media files. These items have been moved to the
configuration or parameter panel of the recognizer. A new panel has been
developed that allows to either add custom selections, or to select a tier, or to
select a file as input to the recognizer. If a recognizer does not have its own
control panel this new Selections panel will be added to the UI for the proper
parameters based on the metadata. If the recognizer does have its own control
panel, it can obtain the new Selections panel from the recognizer Host. The host
will call the setMedia(List) method to pass the linked media files to the control
panel.

The method getExampleSupport() has been removed from the Recognizer
interface.

It is now possible to have multiple cmdi files in the same folder in the extensions
folder, the name recognizer.cmdi is no longer mandatory.

Version 2: There are two major changes in the recognizer extension mechanism
since the first version. Recognizer components now have to be installed in their
own directory/folder inside the extensions directory and should provide a
component metadata file. In addition to the existing extension option based on
the Recognizer API, which means implementing the (Java) Recognizer interface,
there is now also the option to extend ELAN by recognizer software that runs as
a stand-alone executable or script.

The interfacing specification for the second option can be found here:
http://www.mpi.nl/research/research-projects/language-archiving-
technology/avatech/



DIRECTORY STRUCTURE

If you can read this you unpacked the .zip file successfully. This README is
located in the following directory structure:

recog/
api/
api/example_recognizer.cmdi
build/
dist/
lib/
src/
src/recognizer.cmdi
src/doc.html
README
recog.xml

— The api directory contains sources from ELAN that are relevant for an
audio- or video recognizer extension

— The build directory is used by the ant build script

— The dist directory will contain a recog.jar after running the ant build
script

— The lib directory must contain the latest elan.jar, you must copy it there
yourself

— The src directory contains a package sub directory named demo with the
demo recognizer sources in it

- The README is what you are reading now

— The recog.xml file is an ant build script

— The recognizer.cmdi file is a metadata file for the demo recognizer.

- The example-recognizer.cmdi file is an example metadata file for a
recognizer extension. A cmdi file is a mandatory part of a recognizer
distribution.

— The doc.html is a documentation file about the demo recognizer. This
documentation file can be used to provide information to the users about
the recognizer via the help option in the recognizer tab. To do so, this file
has to be linked through the (optional) documentation element of the
recognizer's cmdi file.

BUILD AND DEPLOYMENT INSTRUCTIONS (Recognizer API):
1. add elan.jar to the lib directory
2. run "ant -f recog.xml" to build a recog.jar in the dist directory

3. copy the recog.jar, the demo recognizer.cmdi and the doc.html file to a
directory in the extensions directory of ELAN

4. run ELAN and you will find the Demo Recognizer on the Audio (and
Video) Recognizers panel.



DEVELOPER INFORMATION (Recognizer API)

The files src/demo/ DemoRecognizer.java,
src/demo/DemoRecognizerPanel.java, src/recognizer.cmdi and src/doc.html
implement a simple demo recognizer that illustrates the basic communication
with ELAN.The only thing this demo recognizer does is creating a segmentation
based on a user definable constant interval. By default it does so in the first
seconds of the file, but if there are example selections provided by the user, the
interval in which to create segments is based on the extent of all selections.

After building and deploying it will present itself as "Demo Recognizer" in the list
of recognizers on ELAN's Audio (and Video) Recognizers Panel. It is advisable to
build and deploy this recognizer before implementing one yourself. Its behavior
in ELAN combined with the documentation in the source files should give you
the information needed to implement a more useful recognition algorithm.

If you have access to the ELAN sources you can also have a look at the
implementation of the SilenceRecognizer in the
mpi.eudico.client.annotator.recognizer.silence package.

A recognizer is required to implement the Recognizer interface and it can invoke
methods of the RecognizerHost. The RecognizerHost informs the Recognizer
about the relevant media file(s). The recognizer can present the list to the user,
possibly after filtering out the unsupported file types. Before a recognizer's
start() method is called, the host will call the validateParameters() method on
the recognizer to verify whether all parameters required to run the recognizer
are valid.

While the recognition process runs, the recognizer can give feedback regarding
the progress it is making to the RecognizerHost. The result of the recognition
process must be placed in one or more Segmentation objects. They consist of a
MediaDescriptor that has information about the media that the segmentation
refers to and an ArrayList with Segments.

The Segments contain time information and optionally a segment label. The
Segmentation objects are made available to the ELAN user through the "Create
Tier(s)" button. In general a Segmentation object translates to a tier and its
Segment objects to annotations, but ELAN also has an option to customize the
conversion from a Segmentation to a tier and e.g. create more than one tier from
a single Segmentation object.

More information on these objects can be found in the Javadoc comments in the
following java files in the api directory:

from mpi.eudico.client.annotator.recognizer.api
Recognizer.java
RecognizerHost.java



ParamPreferences.java
RecognizerConfigurationException.java

from mpi.eudico.client.annotator.recognizer.data
MediaDescriptor.java
Segment.java
AudioSegment.java
VideoSegment.java
Segmentation.java
RSelection.java

from mpi.eudico.client.annotator.recognizer.io
XmlTierlo.java

from mpi.eudico.client.annotator.recognizer.gui
TierSelectionPanel.java

Major changes since version 1:
— Selection.java renamed to RSelection.java
— Selections (input) can have a textual label now, an entire tier can now be
selected as input
— Support for a report that can be shown to the user after running the
recognizer

More descriptions can be found in the Java files.You are NOT supposed to include
these classes in your recognizer.jar. They are included in elan.jar and are only
included here for documentation purposes.

For this kind of extensions the cmdi file should:
— have the value "direct" for the attribute "recognizerType" of element
"recognizer”
- have the fully qualified name of the class that implements Recognizer.java
as the value of the attributes "runWin", "runMac" and "runLinux". Only
the platforms that are supported need be present.

— have at least one "input” element with value "audio” or "video"
DEVELOPER INFORMATION (Stand-alone component)

Instead of implementing the "Recognizer.java" interface it is also possible to
extend ELAN with a stand-alone executable in combination with a proper .cmdi
file. You can take the file "example_recognizer.cmdi" file as the basis and modify
the xml in accordance with the specifications of your recognizer software.

For this kind of extensions the cmdi file should:
— have the value "local" for the attribute "recognizerType" of element
"recognizer”
— have the executable command as the value of the attributes "runWin",
"runMac"and "runLinux". Only the platforms that are supported should be
present.



— have at least one "input” element with value "audio” or "video"
- normally have at least one "output” element, e.g. a file for storing the
segmentations



