
The LEXAN API and the
LEXAN source distribution



The LEXAN API and the LEXAN source distribution
Version 1.0, March 2020



iii

Table of Contents
Introduction .................................................................................................................  iv
1. The LEXAN source distribution ...................................................................................  1

The structure of the sources as a Maven project ..........................................................  1
Building the API ...................................................................................................  1
Generating Javadoc documentation ...........................................................................  2

2. The API interfaces and objects .....................................................................................  3
The lexan-api source structure ............................................................................  3
The TextAnalyzer interface ................................................................................ 3
The TextAnalyzerContext interface ..................................................................  5
API packages and classes ........................................................................................ 6

3. Implementing an Analyzer ...........................................................................................  8
Build as a separate project ......................................................................................  8
Build as a new module in the LEXAN project ............................................................  8
Testing the analyzer ...............................................................................................  8



iv

Introduction
This is still an incomplete documentation of the LEXAN API and the LEXAN source distribution.
LEXAN is a mechanism to extend ELAN with natural-language processing (NLP) or more general
text processing functionality. It was once thought of as an interfacing component between ELAN and
LEXUS (the TLA lexicon tool), but evolved to an API for extending ELAN when development of
LEXUS stopped and a (simple) LexiconComponent was added to ELAN.

Apart from the sources of the API, this distribution also contains the sources of the Analyzer
implementations created by MPI. The API models the interfacing between a text analyzer and a host
application, i.e. ELAN. A compiled version of the API is part of the ELAN distribution in the form of
a lexan-api-x.x.jar. Analyzer implementations should compile against this jar, but the sources
of the API are in the LEXAN source distribution and a convenient way of developing an analyzer is
by adding a module to the project in the source distribution.

There are two main flavors of text analyzers, those that require access to an ELAN lexicon and those
that don't. The former can implement the TextAnalyzer interface, the latter should implement the
LexiconTextAnalyzer interface.



1

Chapter 1. The LEXAN source
distribution
The structure of the sources as a Maven
project [https://maven.apache.org]

The LEXAN sources are setup as a Maven project with modules, the lexan-api being one of the
modules. In the root of the project folder there is the pom.xml, the Maven build script. Each module is
in a sub-folder containing the module's pom.xml and a src folder. So the folder hierarchy is like this:

• lexan-x.x

• pom.xml

• lexan-api

• pom.xml

• src

• analyzer-gloss

• pom.xml

• src

• annotyzer-whitespace-split

• ...

The parent pom.xml lists the modules and sets the version of the lexan-api as a common
dependency.

Building the API
The LEXAN API jar and the analyzers can be build from the command line. When in the root folder
use the command:

mvn package

or

mvn clean package

After BUILD SUCCESS the api library lexan-api-x.x.jar can be found in the lexan-api/
target folder. It is also possible to only build the API library by changing directory to lexan-
api and run the command mvn package from there or by removing all other modules from the
parent pom.xml.

Note

ELAN is no longer compatible with Java 1.6. The current distributions contain a Java 11 or higher
JRE. The parent pom.xml configures the source level to a minimum of Java 9.

https://maven.apache.org
https://maven.apache.org
https://maven.apache.org


The LEXAN source distribution

2

Generating Javadoc documentation
HTML Javadoc documentation of the API is not included in the source distribution but can be
generated from the sources. To do so on the command line cd into the lexan-api folder and execute
the command:

mvn javadoc:javadoc

After completion the documentation can be found in the sub-folder target/site/apidocs

Note

The mvn javadoc:javadoc command requires Java 1.7 or higher.



3

Chapter 2. The API interfaces and
objects
The lexan-api source structure

The lexan-api source folder contains interfaces that have to be implemented by analyzers and some
helper classes that can or should be used by each analyzer. Here is a simplified representation of the
structure of the lexan-api source code:

• lexan-api

• pom.xml

• src

• main/java/nl/mpi/lexan/analyzers (collapsing sub-folders into one line)

• helpers

• lexicon

• LexiconTextAnalyzer.java

• TextAnalyzer.java

• TextAnalyzerContext.java

• TextAnalyzerLexiconContext.java

The TextAnalyzer interface
The main interface for an analyzer to implement is TextAnalyzer or LexiconTextAnalyzer,
the latter in case the analyzer wants to access an ELAN lexicon. An analyzer communicates
with the host application via an instance of the section called “The TextAnalyzerContext
interface”TextAnalyzerContext and/or the section called “The TextAnalyzerContext
interface”TextAnalyzerLexiconContext. These interfaces are implemented by ELAN, being
the host application for the analyzer plug-in, and are described in the next section.

The main methods of TextAnalyzer to be implemented by an analyzer:

• getInformation() - should return a
nl.mpi.lexan.analyzers.helpers.Information object containing the name, a
description (optional) and a list of
nl.mpi.lexan.analyzers.helpers.parameters.Parameter objects that inform
the host context of e.g. the type and number of source and target tiers (optional). If no Parameters
are provided, ELAN assumes one source and one target tier, the target being a child tier of the source.

• setAnalyzerContext(TextAnalyzerContext tc) - connects the analyzer to the host
context. The analyzer needs this context to deliver the results of its processing tasks.

• setCacheFolder(File f) - informs the analyzer of the location of the general, shared folder
where analyzers can store data persistently. The analyzer can create and use its own sub-folder
within that folder.

• getConfigurationComponent(String s) - can return a user interface component which
allows the user to configure the behavior of the analyzer (optional). The component (usually a



The API interfaces and objects

4

JPanel) will be added to an analyzer configuration dialog by the host context (ELAN). The String
argument identifies a particular source-target configuration for which to edit the settings, null
indicates global settings.

• isConfigurable() - returns whether or not the analyzer supports configuration of
settings. This is a shorthand for the host context so that it doesn't have to call
getConfigurationComponent(String s) (which might trigger the creation of panel)
unnecessarily.

• load(List<SourceTargetConfiguration> lc) - provides a list of source tier
to target tier(s) combinations to the analyzer. The tiers are passed wrapped in a
nl.mpi.lexan.analyzers.helpers.Position object, that identify the tiers by their
name (String). The analyzer needs this information, when analyzing contents from a source tier,
to find the correct target tier(s) to deliver results to.

• partLoad(List<SourceTargetConfiguration> lc) - same as load but for loading
additional configurations.

• partUnload(List<SourceTargetConfiguration> lc) - counterpart of
partLoad(…), called when the analyzer should no longer analyze for the given configurations.
Can be called as part of the process of closing the analyzer(s) and the entire document. The analyzer
can store cached information and free resources.

• unload() - counterpart of load(...), also see partUnload().

• saveState() - informs the analyzer to store its internal state, settings, cached data etc.

• loadState() - informs the analyzer to restore data that has previously been stored.

• loadSettingsFor(String s) - tells the analyzer to load stored settings for a specific source-
target configuration. null indicates global settings. If there are no stored settings (yet), default
settings can be initialized.

• analyze(Position p) - asks the analyzer to analyze the contents at Position p, so the
actual work of the analyzer. In general the analyzer has to perform four steps when this method
is called:

• check if p corresponds to one of the source positions in the list of source-target configurations
(i.e. if the tierId of p equals the tierId of one of the source positions).

• call the readAnnotation(Position p) method of the TextAnalyzerContext. The
specified position contains the name of a tier and the start and end time of a segment. In most cases
this corresponds to (the position of) one annotation and the analyzer gets access to the annotation
via this method. The method returns a list of annotations wrapped in Suggestion objects, the
list will in most cases contain one item.

• process the annotation. The actual work, the type of processing the analyzer is designed for
(parsing. tagging, splitting etc.).

• return the results to the host context by calling one of the newAnnotation() methods of
TextAnalyzerContext (see there). The results need to be wrapped in Suggestion or
SuggestionSet objects for the target tier(s) as defined in the source-target configurations.

The LexiconTextAnalyzer interface extends TextAnalyzer and the main methods it adds
are:

• setLexiconContext(TextAnalyzerLexiconContext lc) - connects the analyzer to
the lexicon host context.

• setLexiconLinkForPosition(Position p, LexanLexicon ll, String s) -
informs the analyzer that the tier specified in p is linked to field s in lexicon ll.



The API interfaces and objects

5

• removeLexiconLinkForPosition(Position p, String s) - informs the analyzer
that the tier in p is no longer linked to entry field s.

The TextAnalyzerContext interface
The main methods of TextAnalyzerContext are:

• newAnnotation(Position p, Suggestion s) - passes one suggestion for a new
annotation at the location on the target tier specified by p. The new annotation will immediately
be created, if possible, without user interaction. Usage example: look up of the input with only one
possible result.

• newAnnotation(Position p, List<Suggestion> l) - passes a list of suggestions
for annotations to be created at the location specified by p. The list represents a single sequence
of annotations, not a set of alternatives, the annotations will be created immediately (if possible)
without user interaction. Usage example: segmentation of the input into smaller units, e.g. a sentence
divided into words.

• newAnnotations(List<SuggestionSet> l) - passes a list of SuggestionSets which
are alternatives for the user to choose from. Each SuggestionSet can contain suggestions for
one or more annotations and for one or more tiers. The host context (i.e. ELAN) will create a
user interface to present the alternatives to the user. Usage example: decomposition of a word into
morphemes combined with part-of-speech tags.

• remAnnotation(Position p) - requests the host context to remove the annotation(s) at the
specified location.

• changeAnnotation(Position p, Suggestion s) - requests the host context to change
the annotation at position p to the suggested value.

• readAnnotation(Position p) - retrieves the annotation(s) at the specified position. This
returns a List<Suggestion> object (although the annotations are not suggestions but are
merely wrapped in that kind of object). The list can be empty if there are no annotations at location p.

• readParentAnnotation(Position p) - retrieves the parent annotation(s) of the
annotation(s) at position p. This returns a List<Suggestion> object because there can be
multiple annotations at the specified position, which might not all have the same parent annotation.
Typically this will return a list with one element representing the parent annotation of the annotation
at p.

• readSiblingAnnotations(Position p) - retrieves a list of all annotations that have the
same parent annotation as the one at position p.

• prompt(Prompt pr) - not implemented yet.

• getConfigurationComponent(Information i, String s, boolean b) - allows
the host to get a configuration component through the context instance. The information object
identifies the analyzer, the string parameter a specific configuration (null meaning global settings)
and the boolean determines if the component should be created if not already there (cached).

• addSuggestionSelectionListener(LexanSuggestionSelectionListener
sl) - registers sl as listener for suggestion selection events. Such an event will be sent after
one of the newAnnotations() methods has been called and it will inform the listeners that
a suggestion was selected, including which one, or that the suggestions were cancelled without
making a selection.

• removeSuggestionSelectionListener(LexanSuggestionSelectionListener
sl) - removes sl from the list of registered listeners.



The API interfaces and objects

6

The TextAnalyzerLexiconContext interface extends TextAnalyzerContext and adds
the following methods (of which only two are implemented so far):

• getLexiconNames() - returns a list of known lexicon names.

• getLexicon(String s) - returns an instance of LexanLexicon.

• addToLexicalEntry(LexanLexicon l, LexEntry e, LexItem i) - Not
Implemented Yet - adds a new item or field to lexical entry e.

• addEntryToLexicon(LexanLexicon l, String s) - Not Implemented Yet - adds a
new entry to the lexicon with s as the value for the main field of the entry (head word, lexeme).

• addEntryToLexicon(LexanLexicon l, Map<String, String> ev) - Not
Implemented Yet - adds a new entry to the lexicon based on the field-name to value mapping in ev.

API packages and classes
The main packages and classes that are part of the API are:

• Package: nl.mpi.lexan.analyzers.helpers

• Position - contains a tier name, begin time and end time.

• PositionLexicon - extends Position, adds fields for a lexicon name and an identifier of
a field in a lexical entry.

• Suggestion - contains a Position, a content String, a list of child suggestions
(List<Suggestion>) and a lexical entry (LexEntry).

• SuggestionSet - contains a list of Suggestions, a source Position and an optional
information label (String) to be displayed along with the set in a user interface.

• Information - an object to identify an analyzer, contains a name, a description and an optional
list of Parameters.

• TierNodeType - an enum with constants for SOURCE (tier) and TARGET (tier).

• configuration classes, listeners other helper classes.

• Package: nl.mpi.lexan.analyzers.helpers.parameters

• Parameter - abstract class, contains a description and a value (Object).

• TierTypeParameter - adds a TierNodeType to the parameter and a
constraint (one of the constants NO_CONSTRAINT, DIRECT_CHILD_OF_PARAMETER,
ANY_CHILD_OF_PARAMETER or SIBLING_OR_CHILD_OF_PARAMETER). This is used by
ELAN in the panel where analyzers can be configured as to the number and type of source and
target tiers. This class also has a flag to indicate whether the tier should be connected to a lexicon
or lexical entry field.

• Package: nl.mpi.lexan.analyzers.helpers.settings

• AnalyzerSet - a set of settings/preferences for an analyzer, can contain single Setting
objects (key - value pairs) and SettingsGroup objects (settings grouped together).

• SettingsIO - a singleton class that analyzers can use to store and load settings or preferences
in (e.g.) the cache folder provided by the host application.

• other settings related classes



The API interfaces and objects

7

• Package: nl.mpi.lexan.analyzers.helpers.statistics

• SuggestionMemory - a class for saving and loading statistics of how often suggestions have
been selected by the user. It now also has a removePermanently(SuggestionSet s)
method to permanently remove the specified output for this input.

• Package: nl.mpi.lexan.analyzers.lexicon

• LexanLexicon - an interface defining a lexicon that serves as a proxy for a lexicon maintained
by the host application (ELAN's Lexicon component). The methods of this interface allow to
query the lexicon and retrieve (parts of) lexical entries that match the query. Some of the methods
are:

• getName() - returns the name of the lexicon.

• getEntryFieldNames() - returns a list of field names that can exist in entries in this
lexicon.

• getEntries(LexAtom la) - requests the lexicon to return all entries that match the
query stored in la. The query consists of a field name and a value to match. This returns a
List<LexEntry> in which each entry contains the field of the query and some standard
fields.

• getEntries(LexAtom la, List<String> fi) - same as the previous method, only
this time all fields that are in the list of field id's fi will be present in the returned LexEntry
objects.

• getEntryById(String id) - returns a single LexEntry with the specified id. The
entry includes only a minimal set of the fields.

• getEntryById(String id, List<String> fi) - same as previous method, only
this time all fields that are in the list of field id's fi will be present in the returned LexEntry.

• LexContainer - interface providing methods to retrieve LexItems; getLexItems(),
getLexItem(String qu) and getLexItems(String qu).

• LexEntry - interface that extends LexContainer and adds a getId() method.

• LexItem - interface defining one method getType() which returns the type or name of the
item (a field in a lexical entry).

• LexAtom - implements LexItem and contains fields and getters for the type of the item and
the value of the item.

• LexCont - implements LexItem and LexContainer and has a field for the type of this
container and a list of LexItems it contains. There are getters for both fields and methods to
add or remove individual LexItems to or from the list.



8

Chapter 3. Implementing an Analyzer
Build as a separate project

When developing an analyzer in a new Java project (in an IDE, using Maven or Ant or just the
command line), the lexan-api-x.x.jar doesn't need to be built from the sources. Adding the
.jar from an ELAN distribution (in the lib folder on Windows or Linux, in the Java folder on
macOS) to the classpath of the project (via the IDE or as a dependency in the Maven pom.xml
etc.) will suffice. The project needs to contain a class that implements the TextAnalyzer or
LexiconTextAnalyzer interface. After compilation the class(es) need to be packaged in a .jar
file which can be copied to the extensions folder of ELAN.

Build as a new module in the LEXAN project
Another, and maybe more convenient, way of implementing an analyzer is to add a new module
to the LEXAN Maven project. For this, a new sub-folder can be added to the lexan-api folder,
which should contain a Maven pom.xml file and a src/main/java/etc./ folder structure,
analogous to e.g. the existing analyzer-* folders. The new module can then be added to the
<modules></modules> section of the parent pom.xml. Building the LEXAN sources then also
builds and packages the new module.

Since the amount and the level of detail of the documentation, here in this document
and in the Javadoc comments of the API sources, is limited, the best approach might be
to take an existing implementation as an example to follow. For an implementation of
TextAnalyzer the WhitespaceAnalyzer (which is in the annotyzer-whitespace-
split folder) might serve as an example, for a LexiconTextAnalyzer implementation the
GlossAnalyzer (in the analyzer-gloss folder) might do the same. These examples can
illustrate how to deal with the SourceTargetConfigurations, with the Information and
ConfigurationComponent objects and with Suggestion and SuggestionSet for reading
annotations and for returning results.

Testing the analyzer
When the new analyzer has been built and packaged in a .jar file, it can be tested by copying it to the
extensions folder of ELAN (the version corresponding to the lexan-api). (Re)launch ELAN,
open a file, switch to the Interlinearization Mode (if it isn't already the selected mode) and click the
Edit Configurations button. In the window that appears, click in a cell in the Analyzer
column and check if the name of the new analyzer is listed. If so, try to configure a source and a
target tier (based on the tier types) and apply the configuration. If you then right click an annotation
on a tier that is configured as a source tier and choose Analyze / Interlinearize the
analyze(Position p) method of the new analyzer should be called.


	The LEXAN API and the LEXAN source distribution
	Table of Contents
	Introduction
	Chapter 1. The LEXAN source distribution
	The structure of the sources as a Maven project
	Building the API
	Generating Javadoc documentation

	Chapter 2. The API interfaces and objects
	The lexan-api source structure
	The TextAnalyzer interface
	The TextAnalyzerContext interface
	API packages and classes

	Chapter 3. Implementing an Analyzer
	Build as a separate project
	Build as a new module in the LEXAN project
	Testing the analyzer


