The LEXAN API and the
LEXAN source distribution

The LEXAN API and the LEXAN source distribution

Version 1.0, March 2020

Table of Contents

Introduction
1. The LEXAN source distribution
The structure of the sources as a Maven project
Building the API
Generating Javadoc documentation
2. The API interfaces and objects
The | exan- api source structure
The Text Anal yzer interface
The Text Anal yzer Cont ext interface
API packages and classes

3. Implementing an Analyzer

Build as a separate project
Build as a new module in the LEXAN project
Testing the analyzer

il

Introduction

This is still an incomplete documentation of the LEXAN API and the LEXAN source distribution.
LEXAN is a mechanism to extend ELAN with natural-language processing (NLP) or more general
text processing functionality. It was once thought of as an interfacing component between ELAN and
LEXUS (the TLA lexicon tool), but evolved to an API for extending ELAN when development of
LEXUS stopped and a (simple) LexiconComponent was added to ELAN.

Apart from the sources of the API, this distribution also contains the sources of the Analyzer
implementations created by MPI. The API models the interfacing between a text analyzer and a host
application, i.e. ELAN. A compiled version of the API is part of the ELAN distribution in the form of
al exan- api - x. X. j ar . Analyzer implementations should compile against this jar, but the sources
of the API are in the LEXAN source distribution and a convenient way of developing an analyzer is
by adding a module to the project in the source distribution.

There are two main flavors of text analyzers, those that require access to an ELAN lexicon and those
that don't. The former can implement the Text Anal yzer interface, the latter should implement the
Lexi conText Anal yzer interface.

v

Chapter 1. The LEXAN source
distribution

The structure of the sources as a Maven
project [https://maven.apache.org]

The LEXAN sources are setup as a Maven project with modules, the | exan- api being one of the
modules. In the root of the project folder there is the pom xmi , the Maven build script. Each module is
in a sub-folder containing the module's pom xm and a sr ¢ folder. So the folder hierarchy is like this:
e lexan-x.x
* pom.xml
* lexan-api
* pom.xml
* src
+ analyzer-gloss
* pom.xml

¢ Src¢

+ annotyzer-whitespace-split

The parent pom xm lists the modules and sets the version of the | exan- api as a common
dependency.

Building the API

The LEXAN API jar and the analyzers can be build from the command line. When in the root folder
use the command:

nvn package

or

nvn cl ean package

After BUI LD SUCCESS the api library | exan- api - X. X. j ar can be found in the | exan- api /
t ar get folder. It is also possible to only build the API library by changing directory to | exan-

api and run the command nvn package from there or by removing all other modules from the
parent pom xni .

5 Note

ELAN is no longer compatible with Java 1.6. The current distributions contain a Java 11 or higher
JRE. The parent pom xm configures the source level to a minimum of Java 9.

1

https://maven.apache.org
https://maven.apache.org
https://maven.apache.org

The LEXAN source distribution

Generating Javadoc documentation

HTML Javadoc documentation of the API is not included in the source distribution but can be
generated from the sources. To do so on the command line cd into the | exan- api folder and execute
the command:

nvn j avadoc: j avadoc

After completion the documentation can be found in the sub-folder t ar get / si t e/ api docs

The mvn j avadoc: j avadoc command requires Java 1.7 or higher.

Chapter 2. The API interfaces and
objects

The | exan- api source structure

The |l exan- api source folder contains interfaces that have to be implemented by analyzers and some
helper classes that can or should be used by each analyzer. Here is a simplified representation of the
structure of the | exan- api source code:

* lexan-api
* pom.xml
e src
* main/java/nl/mpi/lexan/analyzers (collapsing sub-folders into one line)

* helpers
* lexicon
* LexiconTextAnalyzer.java
» TextAnalyzer.java
» TextAnalyzerContext.java

» TextAnalyzerLexiconContext.java

The Text Anal yzer interface

The main interface for an analyzer to implement is Text Anal yzer or Lexi conText Anal yzer,
the latter in case the analyzer wants to access an ELAN lexicon. An analyzer communicates
with the host application via an instance of the section called “The Text Anal yzer Cont ext
interface”Text Anal yzer Cont ext and/or the section called “The Text Anal yzer Cont ext
interface”Text Anal yzer Lexi conCont ext . These interfaces are implemented by ELAN, being
the host application for the analyzer plug-in, and are described in the next section.

The main methods of Text Anal yzer to be implemented by an analyzer:

« getiInformation() - should return a
nl . mpi . | exan. anal yzers. hel pers. I nformati on object containing the name, a
description (optional) and a list of

nl . mpi . | exan. anal yzers. hel pers. par anet ers. Par anet er objects that inform
the host context of e.g. the type and number of source and target tiers (optional). If no Par anmet er s
are provided, ELAN assumes one source and one target tier, the target being a child tier of the source.

» set Anal yzer Cont ext (Text Anal yzer Cont ext tc) - connects the analyzer to the host
context. The analyzer needs this context to deliver the results of its processing tasks.

» set CacheFol der (Fi | e f) -informs the analyzer of the location of the general, shared folder
where analyzers can store data persistently. The analyzer can create and use its own sub-folder
within that folder.

» get Configurati onConponent (String s) -canreturn a user interface component which
allows the user to configure the behavior of the analyzer (optional). The component (usually a

The API interfaces and objects

JPanel) will be added to an analyzer configuration dialog by the host context (ELAN). The String
argument identifies a particular source-target configuration for which to edit the settings, nul |
indicates global settings.

* i sConfigurable() - returns whether or not the analyzer supports configuration of
settings. This is a shorthand for the host context so that it doesn't have to call
get Confi gurati onConponent (String s) (which might trigger the creation of panel)
unnecessarily.

» | oad(Li st <Sour ceTarget Configuration> 1c) - provides a list of source tier
to target tier(s) combinations to the analyzer. The tiers are passed wrapped in a
nl . npi . | exan. anal yzers. hel pers. Posi ti on object, that identify the tiers by their
name (St r i ng). The analyzer needs this information, when analyzing contents from a source tier,
to find the correct target tier(s) to deliver results to.

» partLoad(Li st <SourceTar get Configuration> |c) -same as | oad but for loading
additional configurations.

« part Unl oad(Li st <Sour ceTar get Confi gurati on> lc) - counterpart of
part Load(..), called when the analyzer should no longer analyze for the given configurations.
Can be called as part of the process of closing the analyzer(s) and the entire document. The analyzer
can store cached information and free resources.

» unl oad() - counterpart of | oad(. . .),also see part Unl oad() .
+ saveSt at e() - informs the analyzer to store its internal state, settings, cached data etc.
* | oadSt at e() - informs the analyzer to restore data that has previously been stored.

* | oadSettingsFor(String s) -tells the analyzer to load stored settings for a specific source-
target configuration. nul | indicates global settings. If there are no stored settings (yet), default
settings can be initialized.

+ anal yze(Position p) - asks the analyzer to analyze the contents at Posi ti on p, so the
actual work of the analyzer. In general the analyzer has to perform four steps when this method
is called:

 check if p corresponds to one of the source positions in the list of source-target configurations
(i.e.iftheti erl d of p equalstheti er| d of one of the source positions).

« call the readAnnot ati on(Posi ti on p) method of the Text Anal yzer Cont ext . The
specified position contains the name of a tier and the start and end time of a segment. In most cases
this corresponds to (the position of) one annotation and the analyzer gets access to the annotation
via this method. The method returns a list of annotations wrapped in Suggest i on objects, the
list will in most cases contain one item.

+ process the annotation. The actual work, the type of processing the analyzer is designed for
(parsing. tagging, splitting etc.).

* return the results to the host context by calling one of the newAnnot at i on() methods of
Text Anal yzer Cont ext (see there). The results need to be wrapped in Suggesti on or
Suggest i onSet objects for the target tier(s) as defined in the source-target configurations.

The Lexi conText Anal yzer interface extends Text Anal yzer and the main methods it adds
are:

+ set Lexi conCont ext (Text Anal yzer Lexi conCont ext | c) - connects the analyzer to
the lexicon host context.

» set Lexi conLi nkFor Position(Position p, LexanLexicon Il, String s) -
informs the analyzer that the tier specified in p is linked to field s in lexicon | | .

The API interfaces and objects

* renovelexi conLi nkFor Position(Position p, String s) -informs the analyzer
that the tier in p is no longer linked to entry field s.

The Text Anal yzer Cont ext interface

The main methods of Text Anal yzer Cont ext are:

* newAnnot ati on(Position p, Suggestion S) - passes one suggestion for a new
annotation at the location on the target tier specified by p. The new annotation will immediately
be created, if possible, without user interaction. Usage example: look up of the input with only one
possible result.

* newAnnot ati on(Position p, List<Suggestion> |) -passes a list of suggestions
for annotations to be created at the location specified by p. The list represents a single sequence
of annotations, not a set of alternatives, the annotations will be created immediately (if possible)
without user interaction. Usage example: segmentation of the input into smaller units, e.g. a sentence
divided into words.

* newAnnot at i ons(Li st <Suggesti onSet > |) -passesalistof Suggest i onSet s which
are alternatives for the user to choose from. Each Suggest i onSet can contain suggestions for
one or more annotations and for one or more tiers. The host context (i.e. ELAN) will create a
user interface to present the alternatives to the user. Usage example: decomposition of a word into
morphemes combined with part-of-speech tags.

* remAnnot ati on(Posi tion p) -requests the host context to remove the annotation(s) at the
specified location.

+ changeAnnot ati on(Position p, Suggestion s) -requests the host context to change
the annotation at position p to the suggested value.

« readAnnot ati on(Position p) -retrieves the annotation(s) at the specified position. This
returns a Li st <Suggest i on> object (although the annotations are not suggestions but are
merely wrapped in that kind of object). The list can be empty if there are no annotations at location p.

» readPar ent Annotation(Position p) - retrieves the parent annotation(s) of the
annotation(s) at position p. This returns a Li St <Suggesti on> object because there can be
multiple annotations at the specified position, which might not all have the same parent annotation.
Typically this will return a list with one element representing the parent annotation of the annotation
atp.

» readSi bl i ngAnnot ati ons(Position p) -retrieves a list of all annotations that have the
same parent annotation as the one at position p.

* pronpt (Pronmpt pr) -notimplemented yet.

+ get Confi gurati onConponent (I nformation i, String s, bool ean b) -allows
the host to get a configuration component through the context instance. The information object
identifies the analyzer, the string parameter a specific configuration (nul | meaning global settings)
and the boolean determines if the component should be created if not already there (cached).

+ addSuggesti onSel ecti onLi st ener (LexanSuggesti onSel ecti onLi st ener
sl) - registers Sl as listener for suggestion selection events. Such an event will be sent after
one of the newAnnot ati ons() methods has been called and it will inform the listeners that
a suggestion was selected, including which one, or that the suggestions were cancelled without
making a selection.

* renoveSuggesti onSel ecti onLi st ener (LexanSuggesti onSel ecti onLi st ener
sl) -removes sl from the list of registered listeners.

The API interfaces and objects

The Text Anal yzer Lexi conCont ext interface extends Text Anal yzer Cont ext and adds
the following methods (of which only two are implemented so far):

3

get Lexi conNanmes() - returns a list of known lexicon names.
get Lexi con(String s) -returns an instance of LexanLexi con.

addToLexi cal Entry(LexanLexicon |, LexEntry e, Lexltem i) - Not
Implemented Yet - adds a new item or field to lexical entry €.

addEnt ryToLexi con(LexanLexicon |, String s) - Not Implemented Yet - adds a
new entry to the lexicon with S as the value for the main field of the entry (head word, lexeme).

addEntryTolLexi con(LexanLexicon |, Map<String, String> ev) - Not
Implemented Yet - adds a new entry to the lexicon based on the field-name to value mapping in ev.

APl packages and classes

The main packages and classes that are part of the API are:

Package: nl . npi . | exan. anal yzers. hel pers
» Posi ti on - contains a tier name, begin time and end time.

« PositionLexi con -extends Posi ti on, adds fields for a lexicon name and an identifier of
a field in a lexical entry.

» Suggestion - contains a Position, a content String, a list of child suggestions
(Li st <Suggest i on>) and a lexical entry (LexEnt ry).

+ Suggesti onSet - contains a list of Suggesti ons, a source Posi ti on and an optional
information label (St ri ng) to be displayed along with the set in a user interface.

* | nf or mat i on - an object to identify an analyzer, contains a name, a description and an optional
list of Par anmet er s.

» Ti er NodeType - an enum with constants for SOURCE (tier) and TARGET (tier).

+ configuration classes, listeners other helper classes.

Package: nl . npi . | exan. anal yzers. hel pers. paraneters

« Par anet er - abstract class, contains a description and a value (Cbj ect).

e TierTypeParaneter - adds a TierNodeType to the parameter and a
constraint (one of the constants NO_CONSTRAI NT, DI RECT_CHI LD _OF PARANETER,
ANY_CHI LD _OF PARAMETERorSI BLI NG_OR _CHI LD_OF _PARAMETER). This is used by
ELAN in the panel where analyzers can be configured as to the number and type of source and

target tiers. This class also has a flag to indicate whether the tier should be connected to a lexicon
or lexical entry field.

Package: nl.mpi.lexan.analyzers.helpers.settings

* Anal yzer Set - a set of settings/preferences for an analyzer, can contain single Set ti ng
objects (key - value pairs) and Set t i ngsG oup objects (settings grouped together).

» Settingsl O- a singleton class that analyzers can use to store and load settings or preferences
in (e.g.) the cache folder provided by the host application.

+ other settings related classes

The API interfaces and objects

» Package: nl . npi . | exan. anal yzers. hel pers. statistics

+ Suggest i onMenory - a class for saving and loading statistics of how often suggestions have
been selected by the user. It now also has a r enovePer manent | y(Suggesti onSet s)
method to permanently remove the specified output for this input.

» Package: nl . npi . | exan. anal yzers. | exi con

» LexanLexi con - an interface defining a lexicon that serves as a proxy for a lexicon maintained
by the host application (ELAN's Lexicon component). The methods of this interface allow to
query the lexicon and retrieve (parts of) lexical entries that match the query. Some of the methods
are:

e get Nane() - returns the name of the lexicon.

« get EntryFi el dNames() - returns a list of field names that can exist in entries in this
lexicon.

» getEntries(LexAtom | a) - requests the lexicon to return all entries that match the
query stored in | a. The query consists of a field name and a value to match. This returns a
Li st <LexEnt r y> in which each entry contains the field of the query and some standard
fields.

« getEntries(LexAtomla, List<String> fi) -same as the previous method, only
this time all fields that are in the list of field id's f i will be present in the returned LexXEnt r y
objects.

e getEntryByld(String id) -returns a single LeXEnt ry with the specified i d. The
entry includes only a minimal set of the fields.

* getEntryByld(String id, List<String> fi) -same as previous method, only
this time all fields that are in the list of field id's f i will be present in the returned LeXEnt ry.

+ LexCont ai ner - interface providing methods to retrieve Lex| t ers; get Lex| t ens(),
getlLexlten(String qu) andget Lexltens(String qu).

* LexEntry - interface that extends LexContainer and adds a get | d() method.

* Lexl t em- interface defining one method get Type() which returns the type or name of the
item (a field in a lexical entry).

+ LexAt om- implements Lex| t emand contains fields and getters for the type of the item and
the value of the item.

* LexCont - implements Lex|t emand LexCont ai ner and has a field for the type of this
container and a list of Lex| t ens it contains. There are getters for both fields and methods to
add or remove individual Lex| t ens to or from the list.

Chapter 3. Implementing an Analyzer

Build as a separate project

When developing an analyzer in a new Java project (in an IDE, using Maven or Ant or just the
command line), the | exan- api - X. X. j ar doesn't need to be built from the sources. Adding the
. j ar from an ELAN distribution (in the | i b folder on Windows or Linux, in the Java folder on
macOS) to the classpath of the project (via the IDE or as a dependency in the Maven pom xmi

etc.) will suffice. The project needs to contain a class that implements the Text Anal yzer or
Lexi conText Anal yzer interface. After compilation the class(es) need to be packagedina. j ar
file which can be copied to the ext ensi ons folder of ELAN.

Build as a new module in the LEXAN project

Another, and maybe more convenient, way of implementing an analyzer is to add a new module
to the LEXAN Maven project. For this, a new sub-folder can be added to the | exan- api folder,
which should contain a Maven pom xmni file and a src/ mai n/ j aval/ et c./ folder structure,
analogous to e.g. the existing anal yzer - * folders. The new module can then be added to the
<nmodul es></ modul es> section of the parent pom xnl . Building the LEXAN sources then also
builds and packages the new module.

Since the amount and the level of detail of the documentation, here in this document
and in the Javadoc comments of the API sources, is limited, the best approach might be
to take an existing implementation as an example to follow. For an implementation of
Text Anal yzer the Wi t espaceAnal yzer (which is in the annot yzer - whi t espace-
split folder) might serve as an example, for a Lexi conText Anal yzer implementation the
G ossAnal yzer (in the anal yzer - gl oss folder) might do the same. These examples can
illustrate how to deal with the Sour ceTar get Conf i gur at i ons, with the | nf or mat i on and
Conf i gur ati onConponent objects and with Suggest i on and Suggest i onSet for reading
annotations and for returning results.

Testing the analyzer

When the new analyzer has been built and packaged ina. j ar file, it can be tested by copying it to the
ext ensi ons folder of ELAN (the version corresponding to the | exan- api). (Re)launch ELAN,
open a file, switch to the Interlinearization Mode (if it isn't already the selected mode) and click the
Edit Confi gurati ons button. In the window that appears, click in a cell in the Anal yzer
column and check if the name of the new analyzer is listed. If so, try to configure a source and a
target tier (based on the tier types) and apply the configuration. If you then right click an annotation
on a tier that is configured as a source tier and choose Anal yze / Interlinearize the
anal yze(Posi ti on p) method of the new analyzer should be called.

	The LEXAN API and the LEXAN source distribution
	Table of Contents
	Introduction
	Chapter 1. The LEXAN source distribution
	The structure of the sources as a Maven project
	Building the API
	Generating Javadoc documentation

	Chapter 2. The API interfaces and objects
	The lexan-api source structure
	The TextAnalyzer interface
	The TextAnalyzerContext interface
	API packages and classes

	Chapter 3. Implementing an Analyzer
	Build as a separate project
	Build as a new module in the LEXAN project
	Testing the analyzer

