Version 4.1, May 2024, ELAN 6.8
INTRODUCTION

This README provides basic information on how to build an audio, video or
other media (e.g. timeseries) recognition tool that can co-operate with ELAN.
Defining the interface between ELAN and audio-/video/other-recognizers is
work in progress; this document describes the fourth version of the interface and
highlights the changes since the previous version.

Before experimenting with the demo recognizer in this package and
subsequently your own recognizer it is advised to read the paragraph in the
ELAN manual regarding the silence recognizer and the Recognizer panel.

CHANGES

Version 4.1: Minor changes in the method definitions of some of the data
classes and updates of Java and Maven versions. Existing recognizer
implementation might have to be recompiled.

Version 4: The RecognizerHost has one new method: appendToReport(String),
which is now the default way to send messages about the process to the user.
The method getSelectionPanel(String) now returns an AbstractSelectionPanel
object. The Recognizer interface also has one new method:
updateLocaleBundle(ResourceBundle), which not only informs the Recognizer
of a change in the interface language but also gives access to the translated key-
value pairs available in ELAN.

The Audio and Video tabs in ELAN have been merged into one Recognizer tab,
listing the recognizers for all sort of media, including timeseries data. A
recognizer will be informed of the linked files for its main type (e.g audio) in a
call to its setMedia(List). If a recognizer wishes to have the list of other media
types (e.g.video, timeseries), it can get them from the recognizer host by calling
getMediaFiles(int) .

Version 3: The composition of the graphical user interface of the recognizer
panels has changed. The Selection panel that allowed to add multiple manual
selections and/or complete tiers has been removed from the main panel.
Likewise for the list of media files. These items have been moved to the
configuration or parameter panel of the recognizer. A new panel has been
developed that allows to either add custom selections, or to select a tier, or to
select a file as input to the recognizer. If a recognizer does not have its own
control panel this new Selections panel will be added to the Ul for the proper
parameters based on the metadata. If the recognizer does have its own control
panel, it can obtain the new Selections panel from the recognizer Host. The host
will call the setMedia(List) method to pass the linked media files to the control
panel.

The method getExampleSupport() has been removed from the Recognizer
interface.

It is now possible to have multiple cmdi files in the same folder in the
extensions folder, the name recognizer.cmdi is no longer mandatory.


https://tla.mpi.nl/forums/software/elan/

Version 2: There are two major changes in the recognizer extension mechanism
since the first version. Recognizer components now have to be installed in their
own directory/folder inside the extensions directory and should provide a
component metadata file. In addition to the existing extension option based on
the Recognizer API, which means implementing the (Java) Recognizer interface,
there is now also the option to extend ELAN by recognizer software that runs as
a stand-alone executable or script.

The interfacing specification for the second option can be found here:
https://www.mpi.nl/tools/elan/docs/Avatech-interface-spec-2014-03-06.pdf

DIRECTORY STRUCTURE

The directory structure of this API and Demo package is as follows:

recognizer/

api/ (api related java source files)
lib/ recognizer-api-xxx.jar
src/ (demo source tree)
docs/recognizer.cmdi
doc.html
README.pdf
example_recognizer.cmdi
pom.xml

— The api directory contains sources from ELAN that are relevant for an
audio-, video- or other recognizer extension

— The lib directory contains the latest recognizer-api.jar, the compiled
version of the source files in the api directory. This jar is added to the
classpath in the Maven build file

— The src directory contains a package sub directory with the demo
recognizer sources in it

— The README is what you are reading now

— The pom.xml file is a Maven build script for compiling and packaging

— The recognizer.cmdi file is a metadata file for the demo recognizer.

— The example-recognizer.cmdi file is an example metadata file for a
recognizer extension. A cmdi file is a mandatory part of a recognizer
distribution.

— The doc.html is a documentation file about the demo recognizer. This
documentation file can be used to provide information to the users about
the recognizer via the help option in the recognizer tab. To do so, thisfile
has to be linked through the (optional) documentation element of the
recognizer's cmdi file.

BUILD AND DEPLOYMENT INSTRUCTIONS (Recognizer API):
1. Run “mvn compile” and “mvn package” to compile and build the sources

2. Copy the resulting .jar, the demo recognizer.cmdi and the doc.html file
to a directory in the extensions directory of ELAN


http://www.mpi.nl/research/research-

3. Run ELAN and you will find the Demo Recognizer in the list of
recognizers in the Recognizer panel.

DEVELOPER INFORMATION (Recognizer API)

The files src/main/java/nl/mpi/recognizer/demo/DemoRecognizer.java,
DemoRecognizerPanel.java, docs/recognizer.cmdi and docs/doc.html
implement a simple demo recognizer that illustrates the basic communication
with ELAN.The only thing this demo recognizer does is creating a segmentation
based on a user definable constant interval. By default it does so in the first
seconds of the file, but if there are example selections provided by the user, the
interval in which to create segments is based on the extent of all selections.

After building and deploying it will present itself as "Demo Recognizer" in the list
of recognizers on ELAN's Recognizer Panel. It is advisable to build and deploy
this recognizer before implementing one yourself. Itsbehavior in ELAN
combined with the documentation in the source files should give you the
information needed to implement a more useful recognition algorithm.

If you have access to the ELAN sources you can also have a look at the
implementation of the SilenceRecognizer in the
mpi.eudico.client.annotator.recognizer.silence package.

A recognizer is required to implement the Recognizer interface and it can invoke
methods of the RecognizerHost. The RecognizerHost informs the Recognizer
about the relevant media file(s). The recognizer can present the list to the user,
possibly after filtering out the unsupported file types. Before arecognizer's
start() method is called, the host will call the validateParameters() method on
the recognizer to verify whether all parameters required to run therecognizer
are valid.

While the recognition process runs, the recognizer can give feedbackregarding
the progress it is making to the RecognizerHost. The result of the recognition
process must be placed in one or more Segmentation objects. They consist of a
MediaDescriptor that has information about the media that the segmentation
refers to and an ArrayList with Segments.

The Segments contain time information and optionally a segment label. The
Segmentation objects are made available to the ELAN user through the "Create
Tier(s)" button. In general a Segmentation object translates to a tier and its
Segment objects to annotations, but ELAN also has an option to customize the
conversion from a Segmentation to a tier and e.g. create more than one tier from
a single Segmentation object.

More information on these objects can be found in the Javadoc comments in the
following java files in the api directory:

from mpi.eudico.client.annotator.recognizer.api
AbstractSelectionPanel
ParamPreferences.java
Recognizer.java



RecognizerConfigurationException.java
RecognizerHost.java

from mpi.eudico.client.annotator.recognizer.data
AudioSegment.java
Boundary.java
BoundarySegmentation.java
MediaDescriptor.java
RSelection.java
Segment.java
Segmentation.java
SelectionComparator.java
VideoSegment.java

More descriptions can be found in the Java files. You are NOT supposed to
include these classes in your recognizer.jar. They are included in elan.jar and are
only included here for documentation purposes.

For this kind of extensions (direct Java plugins) the cmdi file should:

— have the value "direct" for the attribute "recognizerType" of element
"recognizer”

— have the fully qualified name of the class that implements Recognizer.java
as the value of the attributes "runWin", "runMac" and "runLinux". Only
the platforms that are supported need be present.

— have at least one "input” element with value "audio”, "video" or

“timeseries”
DEVELOPER INFORMATION (Stand-alone component as extension)

Instead of implementing the "Recognizer.java" interface it is also possible to
extend ELAN with a stand-alone executable in combination with a proper .cmdi
file. You can take the file "example_recognizer.cmdi" file as the basis and modify
the xml in accordance with the specifications of your recognizer software.

For this kind of extensions the cmdi file should:

— have the value "local" for the attribute "recognizerType" of element
"recognizer”

— have the executable command as the value of the attributes "runWin",
"runMac"and "runLinux". Only the platforms that are supported should be
present.

— have at least one "input"” element with value "audio”, "video" or
timeseries

— normally have at least one "output” element, e.g. a file for storing the
segmentations



	INTRODUCTION
	CHANGES
	Version 4: The RecognizerHost has one new method: appendToReport(String), which is now the default way to send messages about the process to the user. The method getSelectionPanel(String) now returns an AbstractSelectionPanel object. The Recognizer in...
	The Audio and Video tabs in ELAN have been merged into one Recognizer tab, listing the recognizers for all sort of media, including timeseries data. A recognizer will be informed of the linked files for its main type (e.g audio) in a call to its setMe...
	DIRECTORY STRUCTURE
	BUILD AND DEPLOYMENT INSTRUCTIONS (Recognizer API):
	DEVELOPER INFORMATION (Recognizer API)
	DEVELOPER INFORMATION (Stand-alone component as extension)



