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PREFACE

In the latter half of the 1950’s, Noam Chomsky began to develop
mathematical models for the description of natural langnages.
Two disciplines originated in his work and have grown (o maturity.
The first of these is the theory of formal grammars, a branch of
mathematics which has proven to be of great interest to informa-
tion and computer sciences. The second is generative, or more
specifically, transformational linguistics. Although these disciplines
are independent and develop each according to its own aims and
criteria, they remain closely interwoven. Without access to the
theory of formal languages, for example, the contemporary study
of the foundations of linguistics would be unthinkable.

The collaboration of Chomsky and the psycholinguisi, George
Miller, around 1960 Jed to a considerable impact of transforma-
tional linguistics on the psychology of language. During a period
of near feverish experimental activity, psycholinguisis studied the
various ways in which the new linguistic notions might be nsed in
the development of models for language user and language acquisi-
tion. A good number of the original conceptions were naive and
could not withstand critical test, but in spite of this, transformational
linguistics has greatiy influenced modern psycholinguistics.

The theory of formal langnages, transformational lnguistics,
psycholinguistics, and their mutual relationships are the theme of
this work, Volume I is an introduction to the theory of formal
languages and automata; grammars are treated only as format
systems, and no application of the theory, linguistic or other, is
made. Volume 11 in turn deals with applications of those mathe-
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matical models to linguistic theory. Volume IlI treats applications
of grammatical systems to models of langnage user and language
learner, as well as the formal questions which have arisen as a
result of such applications, The material is camulative: Volume IT
supposes a general understanding of Volume I, and Volume HI
refers to the subjects dealt with in Volumes I and 11, Volumes 11
and ITl have their own preface, so we can now turn to some
introductory remarks with respect to the present volume.

Volume I, independent of the two following volumes, should
be seen as an introduction to the theory of formal languages and
automata. A number of similar introductions are available at the
moment, but I have nevertheless undertaken the present work for
three reasons. Firsi, most available texts, because they suppose
an acquaintance with sophisticated mathematical theories and
methods, are beyond the reach of many students of linguistics
and psychology. More often than not, Chomsky’s and Miller’s
contributions to the Hondbook of Mathematical Psychology prove
too difficult for early graduate teaching. The present introduction
is kept at a rather elementary level; a general knowledge of college
mathematics will be sufficient to follow the text, although familiarity
with the elements of set theory and statistics will certainly be an
advantage.

Second, existing introductions treat a number of subjects which
have little obvious relation to linguistics or psychology. The
linguist or the psychologist is obliged to make his own selection
from among a series of topics which he does not yet understand,
and he might search in vain for a treatment of topics which are
especially relevant to his field. Probabilistic grammars and gram-
matical inference, for example, are not treated in any of the
existing iniroductions. Special attention has been paid to these
topics in the present volume, but matters not directly relevant to
linguistics or psychology have not been completely excluded, as a
balanced presentation of the theory sets its own demands.

The third reason for writing this introduction is to supply
teaders of the two following volumes with a concise survey of the
main notions of formal langnage theory used there. The subject
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index of this volume can be used to find definitions of technical
terms: definitions are indicated by italicized page numbers.

Without the help and cooperation of many, these three volumes
could not have been realized. A first version was written during
a sabbatical year at The Institute for Advanced Study in Princeton,
New Jersey. 1 am deeply grateful o Professor Duncan Luce and
to The Institute for the invitation which made my stay possible.
Much in this work is due to the help and insights of Professor
George Miller, former director of the Harvard Center for Cognitive
Studies, where the new psychology of language originated under
his guidance. Thanks to him I was granted a Research Fellowship
at the Center in 1965, and by happy coincidence, he too was at the
Instifute for Advanced Study when I was composing the text. His
attentive advice was most useful, especially in the writing of the
third volume. Likewise, regular discussions with Dr. Philip Johnson-
Faird helped to clarify many of the psychological issues. Conver-
sations with Professor Aravind Joshi on the subject matter of the
first two volumes were also enormously stimulating and enjoyable;
1 profited almost daily from his erudition in the fields of both
formal systems theory and mathematical linguistics.

Finally, I wish to express my gratitude to all those who have
contributed by critically reading the text in the original Dutch
version: Professor L. Verbeek, Dr. H. Brandt Corstins, Mr. R.
Broas, Dr. G. Kempen, Dr. A. van der Ven, Mr. E, Schils, Mr.
L. Noordman, Dr. A. De Wachter-Schaerlackens, and Professor
A. Kraak, Their remarks not only prevented the printing of many
disturbing errors, but also led to many enriching additions to the
text.

March 1973 W.J. M. Levelt
Nijmegen
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1

GRAMMARS AS FORMAL SYSTEMS

1.]. GRAMMARS, AUTOMATA, AND INFERENCE

The theory of formal languages originated in the study of natural
languages. The description of a natural language is traditionally
called a GRAMMAR; it should indicate how the sentences of a
language are composed of elements, how elements form larger
units, and how these units are related within the context of the
sentence, The theory of formal languages proceeds from the need
to provide a formal mathematical basis for such descriptions,

Chomsky, the founder of the theory, envisaged more than a
simple refinement of traditional linguistic description. He was
primarily concerned with a more thorough examination of the
basis of linguistic theory. This involves such questions as “what
are the goals of linguistic theory?”, “what conditions mwust a
grammar fulfill in order to be adequate in view of these goais?”,
and “what is the general form of a linguistic theory 7" Without a
formal basis, these and similar questions cannot be handled with
sufficient precision, Volume II of this book will deal with these
issues; it will be shown that a formal language can serve as a
mathematical model for a natural language, while a formal gram-
mar can act as a model for a linguistic theory.

From a mathematical point of view, grammars are FORMAL
SYSTEMS, like Turing machines, computer programs, propositional
logic, theories of inference, neural neis, and so forth. Formal
systems characteristically transform a certain INPUT into a par-
ticular oUTPUT by means of completely explicit, mechanically
applicable rules. Input and output are strings of symbols taken
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from a particular alphabet or vocABULARY. For a formal grammar
the input is an abstract START SYMBOL; the output is a string of
“words™ which constituies a “sentence” of the formal “language”.
Therefore a grammar may be considered as a GENERATIVE system;
this feature is often emphasized by the use of the term GENERATIVE
GRaMMAR. The quotation marks around “word”, “sentence”, and
“language” indicate that these terms are not used in their full
lingnistic sense, but rather are concepts which must be strictly
defined within the formal system. In linguistic applications of
formal language theory, as in Volume II of this book, care must
be taken to establish the relationships between the formal and
linguistic notions. In the present volume, however, we will no
longer use the quotation marks, and will omit the adjective
“formal” for both language and grammar where the context allows.

A second type of formal system can use the sentences of a lan-
guage as input; its ouiput is generally an abstract stop symbol.
Systems of this type are called AUTOMATA, and may be considered
as ACCEPTING SvsTEMS. The theory of automata is older than that
of formal language, and historically it was rather surprising that
the two theories showed such close parallels that they often
appeared to be mere notational variants. One can very well use
an automaton rather than a formal grammar as a model for a
theory of natural language, but although this has in fact been
done, the generative grammar remains the preferred model. The
interchangeability of grammars and automata indicates that the
distinction between generative and accepting is less fundamental
than it may at first appear. It is primarily a conceptual distinction;
there are indeed automata with no “preferential direction” such
as Turing machines, and grammars which are accepting rather
than generative systems such as categorical grammars. However,
from the point of view of presentation and application, the dicho-
tomy has its merits. In psycholinguistics in particular it has a
natural interpretation with reference to SPEAKER-HEARER models.
Volume TI of this book will offer several examples of such applica-
iions,

The third and [ast type of formal system which will be discussed
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in this volume takes a sample of the sentences of a language as
mput; its output is a grammar which is in some way adequate
for the language. Such systems are ¢alled GRAMMATICAL INFERENCE
PROCEDURES. They can serve as models not only for linguistic
discovery procedures (how can one find a grammar for a given
corpus of sentences ?) but also for theories of language acquisition.

The mathematical growth of formal language theory has resulted
in an enormous extension of its range of applications. Beyond its
obvious applications in the analysis of computer languages, the
theory is used for the formal description of visual patterns (see
Volume III, paragraph 3.6.7. for such picture grammars), for
subdivisions of logic, and for several other fields which deal with
the formal representation of knowledge.

Conversely, the integration of formal language theory into the
theory of formal systems bas made various mathematical {ools,
such as recursive function theory, available to the study of formal
languages.

The reader, however, need not be acquainted with such areas
of mathematics in order to understand the present work which
is meant to be an introduction. Our discussion will be limited to
the relationship between formal Iangnage theory on the one hand
and the theories of automata and inference on the other, Each of
these has rather direct linguistic and psycholinguistic applications,
and it is precisely the possibility of application which has served
as the principal, though not only, criterion for selecting properties
of the theories for discussion. This does not alter the fact that
it is better to treat the structure of grammar, of automata, and of
inference from an abstract than from an applied poimt of view.
Such is the method which we shall follow here, beginning with a
formal definition of the concept “grammar”.

1.2. THE DEFINITION OF “GRAMMAR"™

For the formal definition of “grammar™ we must introduce four
concepts: terminal vocabulary, nonterminal vocabulary, produc-
tion rule, and start symbol.
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The TERMINAL VOCABULARY Fp is the set of terminal elements
with which the sentences of a language may be construcied.
Elements of Vp will be denoted by lower case letters from the
beginning of the Latin alphabet. We write @ € Vi or a in Vp when
a belongs to the terminal vocabulary.

The NONTERMINAL VOCABULARY Fx conmsists of elements which
are only used in the derivation of a sentence; they mever occur
as such in the sentences of the language. Elements of Vy are
upper case Latin letters and are called VARIABLES or CATEGORY
SYMBOLS.

Va and Vr are disjoint: their intersection, ¥y N ¥V, is empty.
Together Vxy and Vp form the vocabulary ¥ of the grammar,
thus ¥V = ¥y U Fp. A string of elements in ¥V, regardless of
whether they are variables, terminal clements, or both, will be
denoted by a lower case letter of the Greek alphabet. A string
may have 0, 1, or more elements; the siring of 0 elements is called
the NULL-STRING, and is represented by A. A string consisting
exclusively of terminal elements may be denoted by a lower case
letter from the end of the Latin alphabet.

The symbol V7 is used to denote the set of all finite strings of
elements from the terminal vocabulary. For example, if ¥r cousists
of two elements, a and b, i.e. V; = {a, b}, V7 consists of 4, a, b,
aa, ab, bb, ba, aaa, aab, aba, bba, ... I we wish explicitly to exclude
the null-string A, we write V7, the set of all strings of positive
length. Thus, V¥ = V7 — A. Obviously, therefore, if ¥ is not
empty, then ¥ and V7 contain an infinite number of elements
(strings). Analogously one can define V" as the set of all possible
strings of vocabulary elements, and P+ as the set of all possibie
strings of vocabulary elements except the null-string. The length
of a string o is denoted by |af; thus (¢} = 1, jaab] = 3, and |A| = 0.

‘The PRODUCTION RULES or productions of a grammar are ordered
pairs of strings. They take the form o —» §, where o« € ¥+ and
S € V°. This means that string of elements « of positive length can
be replaced by, or rewritten as, string of elements §, possibly 4.
Such rules apply in any context, i.e. if’ # is part of a longer string
yad, then yed may be rewritten as 88 by the same rule. When a
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string is rewritten as another string by a single application of a
production rule, we use the symbol =-; thus yad = y#5. The latter
siring DERIVES DIRECTLY from the former. If there are productions
such that oy =y, @3 = @y, ... %y_y = 0, We may write o; = o,
read “oy derives @n”. The set of productions of a grammar is
denoted by P; the set may also be described as a CARTESIAN
PRODUCT. The set of all possible rules consists of all ordered pairs
of strings which can be constructed in this manner; it may be
denoted by ¥+ x V', the cartesian product of V+and ¥, The
productions of a grammar are a subset of this product: some
strings of ¥+ may be replaced by some strings in ¥*, Thus P <
yrx v

The START SYMBOL of a grammar is denoted by S (originally
for “sentence™); it is a particular element of ¥y.

We can at this point define a grammar as follows.

A GRAMMAR G = (Vy, Fr, P, §) is a system counsisting of a
nonterminal vocabulary Fy, a terminal vocabulary Vr, a set of
productions P, and a start symbol S, with the following properties:

(1) Vx, Vr and P are finite, nonempty sets.
2D Vyn¥Vr=10

B PcV+x v,

4 SeVy

A SENTENCE generated by G is every element s of ¥ for which
S = 5, i.e. it is a terminal string derivable from S by the produc-
tions of P.

The LANGUAGE L(G) gencrated by G is the set of sentences
generated by G,

Two grammars Gy and Gg are (WEAKLY) EQUIVALENT if L(Gy) =
L{Gs), i.e. if they generate the same set of sentences. Another
form of equivalence, STRONG EQUIVALENCE, will be discussed in

Volume JII, paragraph 2.1.
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1.3, EXAMPLES

ExampLe 1.1. Let G = (Vy, Vr, P, ), where Vg = {S§}, ie. Sis
the only nonterminal symbol, Vp = {q, 5}, P = {§ = a5, § - ¥}.
Which language is generaied by G'? Repeated application of the
first production gives § = aS = ga¥ = qaaS, etc. None of these
strings is a sentence, for all include the nonterminal symbol S.
The only way to eliminate S is by use of the second production
§ — 5. This will produce sentences such as &, ab, aab, aaab, etc,
A sentence generated by G is thus a siring of 4’s followed by a
single b. A simple notation for language L(G) is {a'b}, where &' is
any string of a’s of length = 0.

EXAMPLE 1.2, Let G = (Vn, Vi, P, S), where Vy = {S}, Vo =
{a, b}, P = {8 = aSa, § - bSh, § — aa, § - bb}. The first iwo
rules may be applied and repeated in any order. This will produce
such derivations as S = aSq = abSha = abbSbba = abbaSabba.
The only way to derive sentences from such strings is by use of
the third or fourth production; these replace § with ae or bb. In
all cases the result is a string of a’s and b’s, followed by the same
string in reverse order. G is said to generate language {wwR},
where w® represents the reflection of w, and |w| = 1. L(G) is
called a MIRROR IMAGE language.

Exampre 1.3, Let G = (Vy, Vr, P, S), where Vy = {S,EF},
Vp = {a,b,c,d}, P= {8 - ESF, S = EF, E - ab, F > cd}. By
applying the first production of P »n —1 times, we obtain the string
Er-1SFn~1 (the exponent indicates the number of successive occur-
rences of the element). By then using the second production once,
one obtains E*Fe, When, by application of the third and fourth
productions respectively, all the E’s are replaced by ab and all
the F’s by cd, the resulting string consists of n ab-pairs followed
by n cd-pairs. Language L{G) consists of all sentences of the form
(ab)*(ed)®, where n = 1.

In this example a aiternates with b, and ¢ with 4 in the sentences
of L(G). It is possible to modify the grammar in such a way that
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the terminal elements will be neatly grouped in the sentences of L:
first all @’s, then all b’s, etc. This will be the case in the following
example.

ExampLE 1.4. Language {a®h%c*d»}, where n > 1, is generated by
grammar ¢ = (Vy, Vo, P, 8), in which Vy = {5, E, F, B, C},
Vr = {a, b, ¢, d}, and P consists of the following productions:

1. S = ESF 4, Fe Cd 7. BC = be
2. 8§~ EF 5, Ba —» aB 8. Bb— bb
3. E—>aB 6. dC > Cd 9, el > ec

The first four productions are essentially the same as those of
Example 1.3. They produce strings of the form (eBy{(Cd)y, where
n =22 1. The other five productions serve in the further grouping
of the elements, By means of production 5 one can replace 2 siring
aBaBaB... of arbitrary length by a siring of &'s followed by a
string of B's. Production 6 acts similarly with respect to C4CdCd...
sequences. We must now see to it that further rewriting in terminal
symbols is possible only when these arrangements have in fact
been performed; this is the purpose of rules 7 through 9. Rule 7
serves to replace the pair BC in the center of the string with
terminal elements, but it can be applied only if B and C are found
in the right place in the center of the string. By means of produc-
tion 8 ithe variables B are replaced by the terminal symbol b, on
condition that each B is located directly to the left of a 5. The
process can be completed only when all the B’s are already in the
correct positions. Finally production 9 acts similarly in the right
hand half of the string. The result is a string of the desired form,
arbrends; sentences of other forms cannot be generated by this
grammar,

ExampLE 1.5, 1t is possible to write a stil more compact grammar
for langnage {apbncudt}, namely G = (Fw, Vr, P, S), in which
Va = {8, E, F}, Vr = {a, b, ¢, d}, and P consists of the following
productions:
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1, § o ESF 4, dF - Fd
2. S - abed 5, Eb ~» abb
3. Ega »aFE 6. ¢F = ced

The reader himself may now experiment with the operation of
this grammar.
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THE HIERARCHY OF GRAMMARS

2.1. CLASSES OF GRAMMARS

The definition of grammar given in the preceding chapter is abso-
lutely general in the following iniuvitive sense: if a mechanical
procedure cant be contrived, according to which the sentences of
language L can be enumerated in some order, then language L
can be generated by a grammar in the defined form. We call this
statement intoitive becanse the concept “mechanical procedure™
has not yet been defined. One definition of it will be given in
paragraph 7.4., but for the present one can roughly conceive of
it as follows. Let us assome that we dispose of a general purpose
computer with an unlimited memory. Let us further assume that
a program can be written for this computer according to which
each sentence of L, and only sentences of L, will appear in the
ouiput after a finite number of operations, (The program might,
for example, produce the sentences in order of length: first A if it
is in the language, then the sentences of length 1, followed by the
sentences of length 2, etc.) We could then say that a procedure
exists for the enumeration of the sentences of L, and that L is
RECURSIVELY ENUMERABLE. Every recursively enumerable language
can be generated by a grammar corresponding to the definition
(we chall return to this matter in paragraph 7.4.).

The class of recursively enumerable languages is large, but it is
of little interest from a lingnistic point of view, One would expect
that natural languages have characteristic properties which would
rather limit the range of possible syntactic structures in certain
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respects. The class of recursively enumerable languages is therefore
an unattractive model for natural languages because it is defined
by procedures which may be completely arbitrary, Models of
empirical interest will result only from the definition of more
limited classes of grammars. It is better to reject too strong a
model with good reason than to maintain a weak model and never
discover the characteristic structure of a language. The class of
recursively enumerable langnages is the weakest conceivable model.
Chomsky (1959 a, b) devised a schema for the classification of
grammars which is now in general use. It is based om three in-
creasingly restrictive conditions on the production rules.

FIRST LIMITING CONDITION: For every production ¢« — 8 in P,
let < |#l. Thus the grammar contains no productions whose
application would result in a decrease of string length,

SECOND LIMITING CONDITION: For every production a — § in P,
(1} o consists of only one variable, i.c. x € Vy, and (2) # # A The
productions are of the form 4 — 5, where § € V.

THIRD LIMITING CONDITION: For every production « — f in P,
(1) ¢ € Vy, and (2) § has the form g or aB, where ¢ € V» and
B e V. The rules are thus either of the form 4 — ¢ or of the form
A —aB.

With these limiting conditions, grammars may be classified in
the following way.

Tyre-0 GRAMMARS are grammars which are not restricted by any
of the limiting conditicns. Their definition is simply that of “gram-
mar”; they are aiso called UNRESTRICTED REWRITING SYSTEMS.
Productions are of the form « — §.

TyPe-1 GRAMMARS are grammars restricted by the first limiting
condition. Productions have the form « — §, where [of < |8l
Type-1 grammars are also called CONTEXT-SENSITIVE GRAMMARS for
reasons to be mentioned in paragraph 2.4. They obviously consti-
tute a subclass of type-0 grammars. In fact they are a strict subset
of the set of type-0 grammars, for there are type-0 grammars
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which are not of type-1, namely, those grammars with at least one
production where |«| > |§|. The grammars given in Examples 1.1.
through 1.5. satisfy this first condition and are therefore context-
sensitive.

TyPE-2 GRAMMARS are grammats restricted by the second limiting
condition. Productions have the form 4 — £ where § # A. Gram-
mars of this type are called CONTEXT-FREE GRAMMARS, The second
condition implies the first: from |§] = 1 and |4| =1 it follows
that |4] < |#]. Context-free grammars are therefore context-sensi-
tive, but the inverse is not true; the class of context-free grammars
is a strict subset of the class of context-sensitive grammars, The
grammars given in Examples 1.1., 1.2, and 1.3. are context-frec.

TYPE-3 GRAMMARS are grammars restricted by the third limiting
condition. Productions have the form A — 2 or 4 —» aB. These
are REGULAR GRAMMARS (in linguistic literature they are often called
FINITE STATE GRAMMARS). In its turn the third limiting condition
implies the second. Therefore the class of regular grammars is a
subclass of the class of context-free grammars; in fact it is a strict
subset, The grammar given in Example 1.1, is a regular grammar.

Language types may be defined according to the various classes
of grammars. A type-3 grammar generates a regular language (or
finite state languape), a type-2 grammar generates a context-free
language, a type-1 grammar generates a context-sensitive language,
and a type-0 grammar generates a (recursively enumerable) lan-
guage.

It does not follow, however, from the relations of inclusion
which exist among the various types of grammars that corres-
ponding languages are bound by the same relations of inclusion,
We cannot exclude the possibility a priori that for every context-
free grammar there might exist an equivalent regular grammar.
In that case all coniext-free languages might be generated by
regular grammars, and consequently regular languages would not
form a sirict subset of context-free grammars. However in the
following it will become apparent that the language types do show
the same relations of strict inclusion as the grammar types: there




12 THE HIERARCHY OF GRAMMARS

are type-0 languages which are not context-sensitive, context-
sengitive languages which are not contexi-free, and context-free
langnages which are not regular. Figure 2.1. illustrates this hierarch-
ical relation, called the Chomsky Hierarchy.

recursively enumerable languages
context-sensitive languages

context-free languages

regular languages

Fig, 2.1, The Chomsky Hisrarchy of Languages.

It is obvious that the null-string can be present only in type-0
languages. Sometimes, however, it is convenient to add it to other
languages as well. In the following we shall suppose in all cases,
except in Chapter 3, that A1 has been added to the language,
unless otherwise stated.

In the remaining part of this chapter we shall deal with a few
properties of each of the grammars.

2.2, REGULAR GRAMMARS

Most properties of regular grammars {RG’s) can best be treated
on the basis of the theory of automata (cf. chapter 4). Our discus-
sion here will be limited to five theorems which will be needed in
the remainder of the present chapter; four of them can easily be
explained without reference to automata theory.

We must first introduce a means of visual representation of
grammatical derivations, called DEREVATION TREES, TREE DIAGRAMS,
or PHRASE MARKERS (P-markers). The procedure is a general one
which may be used not only for regular grammars, but also for
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context-free grammars and sorae context-sensitive grammars. An
example will illustrate the procedure.

Exampie 2.1. Let G = (P, Vo, P, §), where Vy = {S,B}, Vr =
{a, b}, and P = {§ - aB, B > bS, B -+ b}. & is thus a regular
grammar. The sentences in L(G) consist of alternating ¢’s and b's,
beginning with @ and ending with 5. Thus L(G) = {(ah)"} (by
convention A € L(G)).

Let us examine the derivation of the sentence ababab; it can
be generated only in the following way: 8 = aB = gbS = abaB >
abab§ = gbabgB = ababab. Figure 2.2,a, gives the iree diagram
for this derivation, clearly illustrating each step. Beginning at S
(at the top of the diagram), the tree divides into two branches,
one leading to a, the other to B; this is the first step in the deriva-
tion. From B two further branches lead to b and to S respectively,
showing the second step. The remaining steps in the derivation
may be discovered by inspection.

Formally speaking, a (derivation) tree is a system of nodes and
branches (or edges). Branches are directed connections beiween
nodes, ie. branches enter and leave the nodes. A tree has only
one node which no branch enters; it is called the root or origin
of the trec. Exactly one branch enters each of the remaining nodes,
Moreover, a path may be found from each node to the root of the
tree. Finally, each node bears a label,

a. ) /KB b. /a\a
" "

VAN
"
S/

Fig. 2.2. a. Derivation Tree for the Seatence ababab (Example 2.1.),
b. Incomplete Derivation Tree.
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A derivation in a context-free grammar can be represented by
a tree diagram, all the nodes of which are labeled with elements
of V. The root is the start symbol S, nodes from which branches
leave are elements of Fy, and nodes from which no branches leave
are elements of Vp. Each of these features can easily be verified
in Figure 2.2.a.

Sometimes it is considered unnecessary to show the entire deri-
vation, and only the first few steps are given in an incomplete
tree, as in Figure 2.2.b. In such a case it is possible that nodes
from which no branches leave may be labeled as elements of V.

We can now return to the subject of regular grammars. It is
evident that each string in a regular grammar derivation contains
at most one variable, and that this variable is the last element of
the string. Consequently, tree diagrams for such derivations branch
to the right, i.e. at each step it is the rightmost node which further
divides into two branches.

The definition given for regular grammars is in some sense
econornical. It is possible that the class of languages generated
by regular grammars be generaied also by grammars with a more
complicated rule structure. While this fact is not interesting in
itself, it should cantion us against concluding on the class to
which a langnage might belong solely on the basis of the type of
grammar by which it is generated. An example will serve to
illusirate this,

ExampLE 2.2, Let G == (Vx, Vi, P, S), with ¥ = {8}, Vr = {a},
and P = {§ — aSq, § = aa, S — a}. This is obviously a congext-
free grammar; the productions are not of the form of those of
regular grammars. But L(G) is a regnlar language, for there is
also a regular grammar by which it can be generated. L{G) consists
of all possible strings of @’s; it can likewise be generated by gram-
mar G’ with P’ = {§ — a5, § - q}. G’ is thus a regular grammar
equivalent to G, and consequenily L(G) is a regular language.

A grammar is called rRiGHT-LINEAR if all its productions are of
the form 4 -» xB or 4 -» x (notice that x represents a string of
terminal elements).
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TreorEM 2.1. The class of right-linear grammars generates pre-
cisely the class of regular languages.

Proor. All regular grammars are right-linear, and therefore all
regular languages can be generated by right-linear grammars. The
inverse, that each right-linear grammar has an equivaleni regular
grammar, must also be shown to be true. Let G = (Fy, Vo, P, S)
be a right-linear grammar. We must show that there is a regular
grammar G such that I{G") = L{G). Take G’ = (V}, Vi, P', §)
with the following composition. For every production 4 — xin P,
where x = @19z ... d, P’ contains the following sct of productions:
A = 1Ay, A1 — agAs, ..., An_2 — @n_14n_1 and Ay_3 = ag. These
productions are clearly of the prescribed regular form, and A
generates x. If we see to it that the variables 4;, Az, ..., dpa do
not occur in any other production of P, ¢’ will generate only x.
Likewise for each production of the type A -» xB in P, where
x = bibs ... by, let P’ comtain a set of productions A — b By,
By - baBa, ..., Bu_i1 — by B, also taking care that the new varia-
bles Bi, Bs, ..., By_1 appear only in these productions. Further,
let the nonterminal vocabulary ¥’y contain Fy plus all the new
variables introduced in the above way, and Vi = V. It follows
from the construction that L(G") = L(G).

THeOREM 2.2. A context-free grammar, with productions such that
all derivations are either of the form xB or of the form x, generates
a regular language. The same holds if ali derivations are of the
form Bx or x,

Proor (summarized). If all the derivations of a context-free
grammar must be of the form xB or x, then ail the productions
must have the form 4 = xB or 4 -+ x. Tt follows from Theorem
2.1, that such grammars only generate regular languages. A similar
argument holds for grammars, all the derivations of which have
the form Bx or x, but it must be shown that grammars with pro-
ductions exclusively of the form 4 - Ba or A - a generale only

regular languages.
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TueoreM 2.3. All finite langnages are regular.

Proor, Let L be the finite set {53, 52, ..., Sn}, Where 5 = auaia ...
ay, One can generate s, by a finite set of regular productions,
namely S — a;;4,, A = a4, .., Ay, — a5, following the
construction used in the proof of Theorem 2.1. The combination
of all sets of productions for all 5; gives a finite regular grammar
which generates L.

TaEOREM 2.4. The union of two regular languages is regular.

ProOOF, Let L; and Ls be regular langnages. We must show that
Lg, where Ly = L1 \J Lz (ie. Ly consists of all the sentences of Ly
and all the sentences of L), is also regular. Let G; = (V§, V*
P, §%) be a regular grammar which generates L;, and G, =
(V2 VZ, P?, 5%) be a regular grammar which generates L, taking
care that Vi n V2 = @ (this is always possible). We compose
grammar G5 = (V3, V3, P*, S)as follows. (D V5 = V3 u V5 U S,
ie. V& contains the variables of G, and G, plus a new variable S,
which will also serve as the start symbol of G. (2} V3 = ViU V2.
(3) P? contains all productions P? and P2 as well as all possible
productions § — « such that either ST - o is & production in P,
or S2 — ¢ is a production in P2 Thus § = & in Gs in precisely
the cases where S* =g in G; and $% > ¢ in Gz Therefore
Ly = Ly W L. Because all the productions of G are of the required
regular form, Ls is regular.

Ly may be called the propUCT of L; and Lg if L3 consists of
all strings xy with x in L; and y in Ls.

TreOREM 2.5, The product of two regular langnages is regular.
(This theorem will be proven in paragraph 4.4. in connection with
the discussion of finite automata.)

2.3, CONTEXT-FREE GRAMMARS

The definition of context-free grammars (CFG) is less economical
than that of regular grammars. Any production of the form
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A = B, where |ff # 0, is allowed; f can therefore be any string
of terminal and nonterminal elements. However, one can greatly
simplify the form of productions without diminishing the gene-
rative capacity of the grammars. Such simplified forms of grammars
are called NORMAL-FORMS. The most important normal-forms of
contexi-free grammars are the CHOMSKY NORMAT-FORM and the
GREIBACH NORMAL-FORM, We shall discuss each of these, and will
likewise prove that every context-free gramimar is equivalent to a
grammar of the Chomsky normal-form.

2.3.1. The Chomsky Normal-Form

A grammar is said to be of the Chomsky normal-form if all
productions have the form 4 — BC or 4 - a.

THEOREM 2.6. Any context-free language can be generated by a
grammar of the Chomsky normal-form.

Proor. By definition a context-free language can be generated by
a grammar with productions of the form A — . We can distin-
guish three possibilities for such productions: (1} f e V¢ (2) f € Vi,
(3) all other cases. In order to construct a grammar G in
Chomsky normal-form and equivalent {o context-free grammar G,
we must see if production forms (1), (2), and (3) can be replaced
by the appropriate normal production forms. (1) Productions
A = B, where § = a, are of the required form and call for no
further discussion. (2) If 4 - B is a production of G, there are
two possibilities: (a) G contains no productions of the form B — x,
i.e. B cannot be further rewritten; in this case we can simply ignore
the production 4 — B in the consiruction of G'. (b) B can be
further rewritten in G, for instance by the productions 8 — f,
B -+ fis, ..., B — Bu. Without diminishing the generative capacity
of the grammar we can now replace these productions, as well as
A —» B with the set of productions A —» $1, A < s, ..., A > f,.
In spite of rewriting, one or more of these new productions may
retain the same form, for instance A — C. In that case we can
repeat the procedure and replace 4 — € by the productions 4 — 3
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for every y; for which C — . This can in its turn Jead to the
same problem, but, as & contains a finite number of variables,
the process will reach an end, except if the replacement chain
contains a loop (for example 4 —~ B, B — C, C — A). But in that
case, the variables in the loop are interchangeable, and one of
them, A for instance, can replace the others in all the productions
of the grammar. The result is that all the newly constrocted
productions are of form (1) or (3). Those of form (1) are of the
Chomsky normal-form. Both the new productions of form (3) and
the original form (3) productions from & can be treated as follows.
(3) In the remaining productions 4 — 8, § consists of terminal
andfor nonterminal elements, We replace all the terminal elements
with new variables. Assume that the /" element of § is a terminal
element b;; we replace it with a new variable By, and add the
production B; — b;, which is of the required normal form. By
repeating the operation for all terminal elements in f§, we replace
the production 4 — j by a production 4 — BiBs ... B, and a
terminal production of the form mentioned above. Finally we must
replace nonterminal productions with productions of the form
A - BC. Here we again apply the construction used in the proof
of theorem 2.1., replacing production 4 — BBz ... B, with a set
of productions 4 — By.Dy, Dy —» BaDs, ... Dy_» = By_j By, which
are all of the required form. It follows from the consiruction that
grammar & thus obtained is equivalent to G and in the Chomsky
normal-form.

Exampik 2.3, Let G = (Vw, Vi, P, §), where Fw = {5,4,B},
Vp = {a,b}, and P contains the following productions:

1. § - aSB 3. 4A—ab
2.8 4 4, B b

& generates all strings of the form a®b* (n = | when 4 is excluded).
Sentence a%h3, for example, has the following derivation: § ~
aSB = qaSBB = aaSBb = aaShb = anabbb. We shall now con-
struct 2 grammar G’ in the Chomsky normal-form and equivalent
to G.
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The only production in the required form is production 4; afi
others must be replaced. Beginning with production 1, we replace
8§ — aSB with two productions § - CSB and C —» g, as in (2} in
the above proof. S = CSE can in turn be replaced by § - CD
and D - SB, as in (I).

In production 2 we first replace 4 with the strings as which it
can be directly rewritten. In the present case, the only such string
is ab (cf. production 3), and production 2 is thus replaced by
A — ab. The normal-form can be obtained by the replacement
of g and & with new variables and the addition of two terminal
productions. As we already dispose of terminal productions C — a
(from production 1) and B — b (production 4), it is sufficient to
replace production 2 with § - CB. Production 3 is at the same
time replaced by productions of the required form. Thus &’
contains the following productions;

i, S~»CB 3. 8-0C0
2. D—-SB 4. C—oa
5. Bob

The derivation of sentence 36 in G’ is therefore S = CD =
abl = aSB = aCDb = aaDb = aaSBb = gaShb = aaabbb.

Although grammars G and G’ are equivalent, the derivations
differ. This can easily be observed from the derivation trees for
sentence 4363 given in Figure 2.3.a. (derivation in G) and Figure
2.3.b. (derivation in G").

2.3.2. The Gretbach Normal-Form

A grammar is in the Greibach normal-form if all the productions
are of the form A — af, where § is a string of 0 or more variables

BeVy
THEOREM 2.7. Any context-free language can be generated by a
grammar in the Greibach normal-form.

For the proof of this theorem we refer the reader to Greibach
(1965}. Qur discussion here will be limited to the following example.
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a/l\\ \ a/ a//!)\B
N AN AN
a/\b / S/\ \b \b

AN

I3 b

Fig. 2.3, Derivation Trees for a2,
a. Derivation Tree in G.
b. Derivation Tree in G’ (Chomsky normal-form).
¢. Derivation Tree in ¢* (Greibach normal-form}.

ExaMrLE 2.4. Let us once again consider grammar G of Example
2.3, In order to find a grammar G” in Greibach normal-form
which is equivalent to it, we may use grammar & in Chomsky
normal-form as starting point. The variables of ¢’ are S, B, C,
and D. We number these in an arbitrary order, indicaiing the
number by subscript: thus, 51, Bs, Cs, D;. We shall at this point
change the productions in such a way that the direct rewriting of
a variable has as its first element either a termminal element or a
variable with a higher number. Production 1 ($) — CaBs) and
production 3 (S1 — C:Dy) already have this form. Production 2
{D4 — S1B2) can be adapted by first replacing 53 with the strings
as which it can be directly rewritten, namely CgBz and CyDy,
giving Dy = C3BaBs and Dy —» C3DyBs. It Temains the case that
the subscripts decrease (from 4 to 3), but the required form can
be obtained by replacing Cs in both productions with the only
string as which it can be rewritten, ¢ (see production 4). This gives
the productions Ds -» aBeBs and D4 — aD¢Bz. Productions 4
(€ — g) and 5 (B — b) are already of the required form. Recapi-
tulating, at this point we have the following productions: Sy —»
CaB2, Si - CaDy, Dy - aDyBs, Dy — aBsBs, Cy —+a, Bz =+ b2
1 This example is relatively simple, as ihe case where the two subscripts are
equal does not occur. In that case a special procedure is applied, and it is this

which is the heart of Greibach’s proof. We refer the reader to her original
article, or to Hoperoft and Ullman (1968).
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The first two productions are not yet of the Greibach normal-
form; we thus replace the variable Cs in these two productions
with the only siring as which it can be rewritten, 4, thus also
eliminating the need for the production Cs — a. In this way we
arrive at the following productions for grammar G" in Greibach
normal-form (the subscripts are no longer necessary):

1. § = gB 3, D> aBB
2. S—abh 4, D-oabB
5. B—b

Grammar " will thus generate sentence a%6® as follows: § =
aD = aaDB = agaBBB - aaaBBb = aaaBbb = aaqbbb, The tree
diagram for this derivation is given in Figure 2.3.c.

2.3.3. Self-embedding

The economical production forms for context-free languages,
especially the Chomsky normal-form (4 —+ a, A - BC), show the
minute difference in type of production which distingunishes
context-free and regular langnages (the regular form is 4 —~ g or
A - BC). What is the characteristic difference between these two
classes of languages? Onme important property characterizing all
nouregalar context-free langnages and absent in regular languages
is that of SELF-EMBEDDING,

A context-free grammar G = (Fy, Vm, P, 5) is called seif-
embedding if there is a variable B in ¥y, and elements o and y in ¥+
such that B = aBy.

Thus there is a variable B which, by application of the produc-
tions, can be rewritten as a string in which B itself occurs, but
neither at the beginning nor at the end. The definition implies that
a regular grammar is not self-embedding, since nonterminal
symbols occur in regular derivations only at the end of a string,

A language is self-embedding if’ all grammars generating it are
self-embedding.

1t is therefore not sufficient that one of its grammars be self-
embedding, as some self-embedding grammars merely generate
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regular langnages. This is the case with the grammar of Example
2.2, Its productions are § — aSe¢ § — aa, S — a, generating the
language {a*|n == 1}. The language is regular, but the grammar is
self-embedding because S = aSa. The same example showed that
', with productions § — a$ and § ~» 4, gencrates the same
language. Grammar G’ is not self-embedding, and generates L(G),
and consequently, by definition, L(G) is not self-embedding,

THEOREM 2.8, Al nonregular context-free langnages are self-
embedding, and all sclf-embedding languages are nonregular.

Proor. The second member of this theorem follows direcily from
the definitions. A self-embedding language is generated exclusively
by self-embedding grammars; a self-embedding grammar is, as
we have seen, nonregolar. Therefore a self~embedding language is
nonregular.

The first member of the theorem can be otherwise formulated.
It must be shown that all grammars of a nonregular context-free
language are self-embedding. This can be done by proving that if
a language L is generated by a non-seif-embedding grammar,
it is necessarily a regular language. To do this, however, we shall
have to refer to a lemma which in turn will be easy to prove after
the discussion of finite automatia in Chapter 4.

Lemma. Let Ly and Lp be regolar languages, and 2 be a terminal
element of I, Let Ly be a language consisiing of all sentences
in Ly in which the element @ does not occur, as well as all strings
which can be obtained by replacing the element g in the remaining
sentences of Ly with a sentence of Lz (if Ly is infinite, this can be
done in an infinite number of ways}. Lg is then a regular langnage.

We shall now prove that a language generated by a grammar
which is not self-embedding is a regular language. Let language L
be generated by a grammar G which is not self-embedding and
which contains the variables A1, Az, ..., 4a-

Let us assume that grammar G is comnected: a grammar is
CONNECTED if for each pair of variables 4y, 4; (i=1,2,..,n,
where 7 is the number of variables in the grammar), there are
strings «, and a, in V" such that 4, = ¢, A, Let 4, 4, be an
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arbitrary pair of variables in G. Since @ is connected, we have
A; = @Ay, for some pair ¢,, ¢, Let us further assume that
|@s] > 0. Let 4,, 4, also be an arbitrary pair of variables in G,
with A, = ¥, 4, and assume that J,] > 0. Let us examine
the consequences of the two conditions |¢:] > 0 and |wa] > 0. Kt
follows from the fact that G is connected that strings wy and ws
exist such that A; = @,4,0, and that one can therefore make
the following derivation in G: 4; = ¢,4,;0, = ¢,0,4,0,0, >
@10,Y, AW,0,0,. But it follows from the same fact that 4; =
&, 4;8,. Therefore we have the following derivation in &:
A; = oo E AL Wa0,0,. Tt follows from the two additional
conditions that 4; is self~embedding in &. But G is not self-embed-
ding. At least one of the additional conditions must not be valid
for a grammar to be comnected, ie, if a connected grammar has
a pait of variables 4;, 4;, for which 4; = a4, with Jo| > 0,
then there is no pair of variables for which |as| > 0, including
tie pair 4;, A; Therefore all the derivations in & are either all
of the forms x4 and x, or all of the forms 4x and x. Ii follows
from Theorem 2.2. that & is regular. Theorem 2.8. is thus valid
for connected grammars. We must show that the theorem also
holds for grammars which are not connected,

A nonconuected grammar has af least one pair of variables Ay,
A, for which it is mot the case that 4, = ¢4, for some pair
o1, ¢z. We shall prove the theorem for such cases by Mathematical
induction, in two steps: (i} we must first show that the theorem
is valid for grammars with only one variable, .3, (i) then we assume
that it hoilds for all grammars with less than » variables (the
induction-hypothesis) and prove that in that case the theorem also
holds for grammars with » variables. ¥t follows from (i} and (if)
that the theorem holds for all grammars with one or more variables.
{i) G has only one variable, S, The only possible pair of variables
is thus §,S, and consequently there is no pair «; and «z such that
S = a,Su,. Since all productions are of the form S — x, language
L(G) is finite; on the basis of Theorem 2.3. it is regular. The theo-
rem is thus valid for nonconnected grammars with one variable,
(i) Let us assume that the theorem is valid for all grammars with



24 THE HIERARCHY OF GRAMMARS

Iess than » variables (the induction-hypothesis). Take grammar G
with » variables A4y, A, ..., Ap, where § = A;1. Because S is the
start symbol, it is true for all variables which may occur in the
derivation of a sentence (we suppose without loss of generality
that & contains no “dummy” variables from which no derivation
is possible) that S = ¢,4,0, (j > 1) and for strings ¢, and @,
in ¥". Because  is not connected, there must be a variable A; such
that it is not true that 4, = &,Sa, for a pair «,, ¢;. Otherwise we
would have 4, = «,¢,4;0,a,, but we know that there is at least
one pair 4;, A; for which this is not the case.

Let us first examine the case where i >> 1, that is, where 4 # S,
We can consiruct a grammar &' with # — 1 variables by removing
all productions of the form 4; — y from &, and by replacing A4;
in all produciions with a new terminal element 4. From the
induction-hypothesis it follows that L{G’) is regular. Next let us
examine the set K of ferminal strings x for which 4; % x in G,
K = {x|4,=> x}. This set can be generated by a grammar G
which includes all the productions of G except those containing S
(4; = o,Sa, is impossible), and with 4, as start symbol, Because
@" has fewer than n variables, K is regular (by the induction-
hypothesis). L(G), however, is precisely the language which results
from the replacement of the element & in the strings of L(G') with
strings x from K. It follows from the lemma that L(G) is regular.

Let us now consider the case where 4; = S. Take the produc-
tions in G of the form § - «; an arbitrary o can be rewritten as
a string of terminal andfor nonterminal elements &1, &3, ..., &m.
For each & in o we can define a set of strings Ly for which
&, x on the basis of the productions in G, Thus L, = {x|¢, = x}.
From the induction-hypothesis it follows that L; is regular for
all js. Let K, be the set of strings y for which &; = y, ie.
K; = {y|m = y}. From the composition of &, it foilows that each
¥ consists of & sequence of x’s respectively taken from Li, Ls, ...,
Ly, all of which are regular. From Theorem 2.5. it then follows
that K; is regular. L(G) is the union of all K¢’s. As a consequence
of Theorem 2.4, therefore, L{G) is itself regular. This completes
the proof of Theorem 2.8.
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2.3.4. Ambiguity

The generation of a sentence by a context-free grammar can be
represented by a tree diagram. This however does not mean that
a given iree diagram corresponds to only one way in which a
sentence can be derived.

ExamPLE 2.5, Let G be a context-free grammar with the following
productions:

1. § = 4B 5. B Sd
2. 8-CD 6 C-a¥
3. S—bc 7. D->d
4 A4 —oa

The sentence abed can be derived from this grammar as follows:
8 = AB = gB = aSd = abed. The corresponding derivation tree
is shown in Figure 2.4, There are, however, other derivations of
abed which correspond to the same tree, for example, the deriva-
tion S = AR = ASd = Abed = abed, where the productions are
applied in a different order. This capnot be detected in the tree
diagram, which fact corresponds to our intuition that the two
derivations determine the same syntactic structure. Therefore we
caonot consider this to be a case of real ambiguity.

In order to define ambiguity in terms of derivations, we must
introduce the concept of LEFTMOST DERIVATION. We can speak of
a lefimost derivation of x if at each step in the derivation S = x
it is the variable farthest to the left of the string which is rewritien.
A leftmost derivation of the sentence abed can begin with § = AR,
At this stage the leftmost variable is 4; thus the following step
will be AB = aB. The leftmost variable is now B, and the next

g
A/\B

n/ s/\ d
5 /\a
Fig. 2.4, Derivation Tree for the Sentence abed (Example 2.5.).




26 THE HIERARCHY OF GRAMMARS

step is aB = aSd, and the final step, aSd = abed. The first deriva-
tion given in this example was in fact a leftmost derivation. 1t is
clear that every iree diagram corresponds to no more than one
leftmost derivation, and every leftmost derivation with only one
trec diagram.

A grammar G is ampiGuous if there is a sentence in I{G) for
which there are two or more leftmost derivations.

The grammar given in Example 2.5. is ambiguous, for sentence
abed has another leftmosi derivation: § = CD = aSD = abeD =
abcd, The tree diagram for this derivation is shown in Figure 2.5.

C/\D
AN\

7N

Fig. 2.5. Alternative Derivation Tree for the Sentence abed (Gxample 2.5.).

A langunage L is (inherently) ambiguous if all grammars which
gencrate it are ambiguous.

Although grammar & of Example 2.5. is ambiguous, Z(G) is
noi. Language L(G) consists of sentences a'bed", which can be
generated by grammar ¢ with productions § - aSd and S — be;
G’ is not ambiguous. Languages exist, however, which are in-
herently ambiguous. An example is the union of {#fbfc!} and
{@*bicd}, briefly noted L = {a'B/cE|i = j or j =k, where i, j,
k = 1}. Any grammar for L will generate sentences with 7 = j by
a different process than sentences with j = &. But then sentences
with { = j = &k can be generated by both processes.

2.3.5. Linear Grammars

A production is called LingaR if it is of the form 4 —+ xBy, ie. if
the string derived contains only one variable. A RIGHT-LINEAR
production has the form 4 — xB; a LEFT-LINEAR production has
the form 4 ~ Bx.
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A grammar is linear if each of its productions is either linear
or of the form 4 — x; a grammar is right-linear if each of its
productions is either right-linear or of the form 4 — x; a grammar
is left-linear if each of its prednctions is either left-linear or of
the form 4 — x.

It follows from Theorem 2.1. that a right-linear grammar
generates a regular language. Left-linear grammars also generate
only regular languages.

An example of a linear grammar is ¢" mentioned in the preceding
paragraph, with productions S — aS4 and § — be. The language
generated by it, {a’bcd"}, is not regular; it is therefore self-embed-
ding. Although ihe class of linear grammars bas a greater gene-
rative capacity than the class of regnlar grammars, it does not
coincide with the class of context-free langunages.

‘FTHEOREM 2.9, There are context-free languages for which no linear
grammar exists.

For proof of this theorem we refer the reader to Chomsky and
Schiitzenberger (1963). An example of a context-free language for
which no linear grammar can be found is language I with sentences
aTipgIETe | @"EpTRb, where m; >t and k > 1, thus strings
of alternating sequences of &’s and b’s, where each sequence of
b’s is as long as the sequence of @”s which precedes it, and ending
in g single b, A grammar for this language has the productions
8 — 4S8, § — b. The first of these productions is not linear, All
other grammars for this language likewise have at least one non-
lingar production.

2.4, CONTEXT-SENSITIVE GRAMMARS

24.1. Context-sensitive Productions

The definition of context-sensitive grammars (grammars in which
all productions are of the form & — f, where laf < |fl) does not
indicate in what way such grammars are “sensitive to context”,

ﬁ
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The original definition given by Chomsky (19592) was in fact
different from the present one. He defined context-sensitive gram-
mars {CSG) as grammars the productions of which have the form
o1 Aoz — ooz, where a1 and az are elements of ¥*, and 8 is an
element of ¥+ Thus 4 can be replaced by § only if 4 appears
in the context ay—og This type of context-sensitive production
can also be written as A — ffar—az. In spite of the change of
definition, the following theorem remains valid,

Treoreym 2.10. The class of langnages generated by grammars
exclusively containing context-sensitive productions is the class of

type-1 languages,

Proor. Let G1 be a type-1 grammar, and G, be a grammar exclu-
sively containing context-sensitive productions. Every G, is evi-
dently also a G1, because for all productions & — # in G, it is frue
that [a¢] < |f). However it must likewise be shown that for every
(7 there is an equivalent G,

Let Gt = (Vy, Vo, P, 5) be a type-l grammar, There is a
grammar &' = (Vi, Vy, P, §) equivalent to it, where all the
productions « - § in P’ have the following “normai-form™: either
both & and § are sirings exclusively containing variables, or «
and £ are of the forms 4 and a respectively (i.e. the productions
are of the type A — g). This will become evident from the following.
Let Vi consist of all the elements in Vy as well as an additional
variable X, for each element a in Vy, thus Vy = Vy v {X e € Vi)
To compose P’ we must change the productions of 2 in such a
way that every terminal element g in them is replaced by X, then
add productions X, — a4 for every a in ¥p. Thus all productions
in P’ are of the “normal-form™ (note that this normal-form can
also be used for all type-0 grammars), and L{G") = L{G1).

We musi now find a grammar G* which contains only context-
sensitive productions, and is equivalent to G, Let a = § be a
production in P’, with @ = Ay 4s ... Am, and § = By Bz ... By,
where n = m. We replace this prodnciion with the following set
of equivalent contexi-sensitive productions in P*:
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Ay > A [—Aydy.. A, A >By g et
Az - A’z ,“ Ai _ Aa-.-Am a-nd '2 - Bz ’/ ) fli‘_
Ay > Al | Ay e Ay — A, > BuBysr By [

The first group of context-sensitive productions (4, though A4,,)
Teplaces @ = A A, ... 4, 10 a string of new variables A, 45...4;,.
This can in turn be replaced by BiBs ... By by way of the second
group of context-sensiiive productions (A} through 4,) if n 2> m.
When all the productions of P’ have been replaced in this way
by sets of context-sensitive productions, and ¥y includes ¥V and
the newly introduced variables, then G” is equivalent to G’ and
consequently also to G'. G", however, is a G..

ExaMPLE 2.6, The production CD — DC is of type-1 form.
Application of the procedure mentioned above yields the following
set of context-sensitive productions equivalent to CD — DC:

1. C—C/—-D 3. C' =D
2. D= DiC— 4. D >C

An advantage of a type-l grammar in context-sensitive form
(that is, contaiping productions exclusively in context-sensitive
form) is that the derivation of a sentence in it can be represented
by means of a tree diagram. Context-sensitive productions, in
effect, replace only one variable in the string at each step; each
step, therefore, corresponds to the branches leaving only one node.
This wilt be illustrated by the foHowing example.

Examerr 2.7. Let us examine the derivation of sentence aabbecdd
in grammar G of Example 1.5, G contains the following produe-
tions:

I. S ESF 4 dF - Fd
2. 8 o gbed 5, Eb — gbb
3. Ea »gE 6. ¢F -+ ced
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As a first step we replace grammar G with grammar &', containing
the following “normal form™ productions, obtained by application
of the procedure explained in the proof of Theorem 2.10.:

1. & - ESF 6. Xp—=b
2.8 - Xa XX Xz T EXp = XaXp X
3. EX,; - XE 8, X .F— X X X;
4 Xe—oa 9 Xo—oc
5. XgF - FX3 10, Xg=»d

The productions are now replaced by context-sensitive produc-
tions where necessary by application of the procedure given in
Example 2.6. This yields the following productions; prodnctions
3-6 and 8-11 were obtained by means of this procedure:

1. 8 —» ESF 9. X;-» X,/ —F
2.8 XXX X, 10, F' = X,
3E-FE}|—X, 1. X;~F

4. X,—- X, | E— 12. X, > b

5 F X, 13.E—» XX, | — X
6. X, > E 4 F-> XX, X, —
7. X,— a 15. X, - ¢

8B FoF [ X 16, X, > d

These productions can be used to derive the sentence aabbeedd
in the following way (the numbers over the arrows refer to the
productions applied):

S & ESF 2 EX, X, X.XF > E'X X, X X F

L EXX,XXF 2> XXX XXF > X EXXXF

2 X EX, X X.F > X,EXX.X,F' & X,EX,X.X.X,

2 XEX,XFX; B XXX XXFX, 2 X XXX XX XX,

7,12,15,16

st=——cr= aabbcedd.

All sixteen productions have been used in this derivation. Figure
2.6., gives the corresponding tree diagram,
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Er l' xr Fr
|° ]
4’a E F xd
Ta lb '0 Td
a a b b a e d d

Fig. 2.6. Derivation Tree for the Sentence aabbecdd (Example 2.7.).

Nevertheless, tree diagrams for derivations in context-sensitive
grammars are less exhaustive in iHustrating the precise steps of
derivation than iree diagrams for derivations in context-free
grammars. More specifically, the diagrams do not show the
contextual restrictions operative at the various steps of rewriting
in a context-sensitive grammar, and it is possible that two deriva-
tions, based on different sets of productions, will be represented
by the same iree diagram. For a context-sensitive derivation, as
opposed to a context-free derivation, the “ambiguity of x™ does
not correspond to “more than one possible tree diagram for x”.

24.2. The Kuroda Normal-Form

In the preceding paragraph two restricted forms of context-sensi-
tive productions were discussed; they may be called normal-forms.
The first of them contains two types of production, « — § with
«and fin ¥y and Jo] < [#], and A - a. The second is the context-
sensitive form 4 - Bfay —as, with oy and &z in P* and § in ¥+,
We shall now introduce a third normal-form, developed by
Kuroda, which is relevant not only to the discussion of the refation-
ship between context-sensitive grammars and automata {chapter 6},
but also to the proof of certain essential properties of trans-
formational grammars (Volume 11, chapter 5).

THEOREM 2.11, Every context-sensitive grammar is equivalent to
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a context-sensitive grammar with productions exclusively in the
following forms:

() §— 8B, (i) CD > EF, (iii) G - H, (iv) 4 > a, where the
variables 4, B, C, D, E, F, and H are different from the start symbol
S (G may be identical to S).

Proor. Tt is striking that no string in these production forms has
more than two elements. We shall first show that if G is confext-
sensitive, there exists a grammar G equivalent to it, in which
for each production « — §, la| << 2, and | << 2. In the second
place we will prove that there is a grammar Gy in the Kuroda
normal-form which is equivalent to G'.

Let ¢ = (Vw, Vi, P, 5) be a context-sensitive grammar. We
already know that there is an equivalent grammar G of the first
normal-form, i.e. with production types 4 — ¢ and « — §, where
o and # are strings of variables such that {#{ = l«| > 0. Suppose
that the maximum length of any string of a production of G" is n.
We must construct a grammar G” = (Vy, ¥, P”, 8) equivalent
to G” (and thus also to &), for which the maximum string length
for any production is not greater than » — 1. To do so, we let P*
inclade ail the productions of P” where the string length is no
greater than 2; the remaining productions have string lengths of
3 or more, (Ifn# = 1 or n = 2, G" already conforms to the limita-
tion on string length and this step may be omitted.) Let & — §
be such a production; we write it then as

A’ — BCDP' (where |o/) > 0 and [§'] > 0).

If &' = A, we create two new variables 4; and A2, and add the
following productions to P7:

A= A14z
Ay - BC
As — Df’

¥ lo| > 0, &' can be replaced by Ex”. In that case we add the
following productions to P":
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AE - A'F'
A =B
E'a" - CDF’

It is clear that in both cases no string length is greater than n — I,
If we follow this procedure for all the productions of £* and add
the resulting productions to P¥, in virtue of the construction G*
will be equivalent to G", and consequently also to G. By induction
on n it follows that there is a grammar ¢’ = {V, Vy, F', §) in
which the length of the strings in productions is limited to 2, and
which is equivalent to G.

At this point we must show that there is a grammar G, which
is equivalent to G’ and G, and which contains only productions
of types (i) through (iv). Take grammar G, = (V§, ¥4, P, §°),
where Vy = {V; v 8" L @}. Thus we have added two new varia-
bles, one of which, S, is a new start symbol. The productions
in P# are the following:

1. 88 - 8¢

28 -8

i fg :: E’g for all variables 4 in ¢*

5.4 — B forall productions 4 - Bin G’

6, A —b for all productions 4 — b in G’

7. AB — CD for all productions 48 - CD in ¢
8. A0 —~ BC for all productions A — BC in G’

it is clear that the productions of Gy are subject io the same
restriction of string length as the productions of G'; all strings in
productions are of a length no greater than 2. Productions 1
through 8, moreover, are all of types (i) through (iv). (Note that
the start symbol is §', while S is an ordinary variable.)

Finally, we must prove that Gy, is equivalent to ¢”; to do so it
will be necessary to show that if x € L(Gy), it is also true that
x € L(G"), as well as the inverse. {1} If x € L(G,), then §' = x,
When every §’ in the derivation is replaced by S and all {’s are
onuitted, every step of the derivation is in . This may be seen
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when the same operation is performed on the eight productions
of Gy. The first and second productions become 8 -+ S (which
adds nothing essential); the third and fourth productions become
A — 4 (which is equally uninteresting); the fifth, sixth, and
seventh productions remain unchanged, and the eighth production
becomes A — BC. Thus if §' = x, each step in the derivation of x
can be simulated by the application of the productions of G, and
therefore it is true that x € I{G).

{2) Let x € I{G"); then S = x. Tt is true of every production
¢ ~» B in &' that 1t is either contained in G or has been replaced
by a production of type 8, 40 — BC. Therefore, in order to ge-
nerate x in Gy, we must see to it that there is exactly one @ available
for each step of derivation in which a production of the type
A - BC is involved. The Q nst be placed directly to the right
of the variable 4 to be rewritten, This can easily be done in G,:
we first count the number of steps in the derivation § = x in
which the situation occurs, for instance » times. We then begin
the derivation of x in Gy, by applying the first production » times;
this may be written as S’ = 5'Q". Next we replace 8’ with S by
means of the second production, thus $'Q" == SQ". The rest of the
derivation can proceed in the same way as the derivation S5 = x,
except where the eighth type of production is involved. In this
laiter case we must move one Q to the position directly to the
right of the variable to be rewritten; this is done by application
of produciions of the third and fourth types. The @ is then eli-
minated npon application of a production of the eighth type. In
this way G can generate x,

Tt follows from (f) and (2} that L(Gs) = L(G"). Since G is
equivalent to G, G, in the Kureda normai-form is also equivalent
to G. This concludes the proof of Theorem 2.11.

We would note in conclusion that Kuroda called his normal-form
a “linear bounded grammar™, analogous to the equivalent auto-
maton of the same name (cf. chapter 6).
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PROBABILISTIC GRAMMARS

3.1. DEFINITIONS AND CONCEPTS

Until now we have limited the concept of grammar to a system
of rules according to which the sentences of a language may be
generated. On the basis of such a concept one can distinguish
differences in the sentences of a language only in iheir derivation,
also called their STRUCTURAL DESCRIPTION. However one might
also consider the differences in frequency with which sentence
types occur in a language. One reason for doing so, as we shall
see in chapter 8, is to facilitate the choice between two or more
grammars which generate the same language. One might determine
the efficiency of a grammar on the basis of the frequencies with
which particular derivations or senience types occur in a language.
But the concept “efficiency™ has not been clearly defined, and the
usefulness of a probabilistic interpretation of it will have to be
considered in each concrete situation. We shall return to this
subject in chapter 8.

‘We shalil limit our discussion in the present chapter to an exien-
sion of the concept “grammar” which will enable us to describe
the probability of occurrence of sentences in a language. There-
fore, we shall first define the concept of a probabilistic grammar,

A PROBABILISTIC GRAMMAR (' is a system (¥, Vo, P, S} in which:

(1} Vi (the nonterminal vocabulary), Ve (the terminal vocabul-
ary), and P (the productions) are finite, nonempty sets.
O Vus Vo =6
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(3) Let Vo w Vp= V; P is composed of ordered groups of

three elements (a;, f; p;), ordinarily written o, & B;, where
ay € P+, By V7, and py; is a real number indicating the pro-
bability that a given string a; will be rewritten as ;5. The number
Pt is called the PRODUCTION PROBABILITY of ¢z —> 5.

@) SePn

This definition differs from the original definition of grammar
only in that a probability is assigned to every production.
A probabilistic grammar is NORMALIZED if for every production
o 5 By, it is true that 3 p, = 1 for every ; in the productions.
J

This means that if o occurs in a derivation, the total chance that
az will be rewritten by means of some production i equal to .
A production whose probability is equal to 0 cannot be used; it
can simply be excluded from P. The reason for allowing the possi-
bility that p = 0 is only of practical interest in some calculations.
In the following, however, we shall suppose that every pgy >0
unless otherwise mentioned,

We use the notation « = pfora derivation a 2 &, 2 &, .. 2 8,
where each step is the result of the application of one production,
and where p = f(p1, p2, ..., Pu). The analogy with standard nota-
tion is obvious, but to avoid crowding symbols above the arrow,
we shall omit the asterisk, except where doing so might lead to
confusion, and write & = .

Function f is determined by the interdependence, or lack of it,
between the various steps of the derivation. A probabilistic gram-
mar is called UNRESTRICTED if the steps of a derivation in it are
mutually independent; in this case p=p1-pz- ... * pu. AS 10O
considerable literature exists on the subject of restricted probabil-
istic grammars, we shall limit our discussion to unresiricted
probabilistic grammars. In applications of the theory, however, it
will be necessary to estimate the validity of the presupposition
that the productions are mutually independent.

A sENTENCE generated by a probabilistic grammar is a finite
string s of terminal elements, where $ 2 sand p > 0.
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A probabilistic grammar @ is AMBIGUOUS if at Ieast one sentence
can be derived in it in more than one way. A sentence is k-times
ambiguous if there are k derivations § 2 5, § = %S 2,

A PROBABILISTIC LANGUAGE L, generated by a probabilistic gram-
mar G, is the set of pairs (s, p(s)), where: (1} s is a senfence generated

k

by G, and (2) p(s) = 3. pfs) where k is the number of different
=1

ways in which s can be derived from 5. We call p(s) the PROBABILITY
of s in L. A probabilistic langnage can also be defined, without
reference to a grammar, as a subset of V'3 for which a probability
distribution has been defined (¥ is any finite vocabulary).

Two probabilistic grammars Gh and G are EQUIVALENT if they
generate the same probabilistic language L, i.e. the same set of
pairs (s, p(s)). Notice that equivalence here requires also that the
probabilities of the sentences be the same.

A probabilistic language L = {(5, p(s))} is NorMarizED if

3" p(s) = 1. This means that the language has a total probability
sel
of 1. We shall see later thai a normalized probabilistic grammar

need not generate a normalized probabilistic language,

3.2. CLASSIFICATION

Probabilistic grammars may be classified as follows in a way
completely analogous to thag used in Chapter 2,

Type-0 probabilistic grammars are all probabilistic grammars
which satisfythe definition given above. T'ype-1 0r CONTEXT-SENSITIVE
probabilistic grammars are those probabilistic grammars in which,
for all productions o; & B, it is true that |x] < |8, Type-2 or
CONTEXT-FREE probabilistic grammars are those probabilistic gram-
mars in which, for all productions «; & Bj, it is true that «; =
A;e V. Type-3 or REGULAR probabilistic grammars are type-2
probabilistic grammars whose productions are exclusively of the
forms A 2 gB and 4 5 a.

Ft iz obvious that this classification is completely independent
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of the probabilistic aspect of the grammars. This is also true of
the classification of probabilistic LANGUAGES generated by probabil-
istic grammars. Thus we have type-0 probabilistic languages,
type-1 or context-sensitive probabilistic languages, type-2 or
contexi-free probabilistic languages, and type-3 or regular proba-
bilistic languages.

In the present chapter only regular and context-free probabilistic
gramimars will be treated, as no results on the other two types are
yet available.

3.3. REGULAR FROBABILISTIC GRAMMARS

Three theorems will be treated in this paragraph. The first of them
is of direct practical interest. The second, on the other hand,
appears to be somewhat alarming from a practical point of view,
but the third, which has not as yet been proven, suggests that
things might not be as problematic as they seem,

THEOREM 3.1. Every normalized regular probabilistic grammar
generates a normalized regular probabilistic language.

In such a case, the probabilistic grammar is said to be CONSISTENT,
and the theorem is therefore called a CONSISTENCY-THEOREM.

The theorem is of practical interest in determining the frequen-
cies of sentences in a language. To do so one would wish to be
certain that the sum of the corresponding probabilisties is equal
to 1. The theorem states that this is guaranteed if the regular
grammar in question is normalized.

The proof of this theorem supposes some acquaintance with
matrix algebra. For readers who prefer to omit it we shall first
present an example which holds the essence of the proof without
requiring knowledge of matrix algebra. The general proof will be
given later.

Exampik 3.1. Let ¢ be a regular probabilistic grammar with the
following productions:
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.53 3. B3 b4
s B 48B3
S. A5 a

G is normalized because for every variable the total chance of
being rewritien is equal to 1. Only three sentences can be generated
by G': a, ab, aba. The derivations with their respective probabilities
are as follows:

P N @) =1
siapiar L pab)=4-2=1
s:aBd apd 2 aba ... plaba) = +-3-1=1

L(G) is evidently normalized, because ) p()=++3++L=1.
€ 1(G)
On the basis of this example we shall now show that there is a

simple method for determining the chance that a regular probabil-
istic grammar will generate sentences up to a cerfain length. To
do so we present the probabilities of the productions in & in matrix
form 1 as follows:

S 4 B W
s|o o
410 o —c
Blo + o 2
V0 0 0 1

Let us examine the first row (row-element 5), It shows the chances
for the respective column-elements to appear in direct or “one-

1 A matrix is a rectangular grid with one or more rows 2od one or more
columps. Each row is deroted by 2 ROW-ELEMENT Xy, and each column by a
COLUMN-ELEMENT yt. At the intersection of row 7 and column j is the MATRIX-

ELEMENT 4y7.
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step” derivations from S. There are only two productions for

rewriting S, § % aB and § 5 4. The matrix-element under B in
row S has the value 1 becanse of the first of these productions,
and the matrix-ciement under ¥y in the same row has the vajue 4
because of the second production. Column Fr thus serves for all
preductions in which a variable is rewritten as a terminal element,
regardiess of which terminal element it is. Row 4 shows how the
variable A can be rewritten in one step, and with what probability,
thus 4 can be rewritten only as a terminal element, with probability
1. Row B shows to which elements the variable B can be rewritten,
and with what probability, thus it can be rewritten as A with
probability 1 and as a terminal element with probability . The
fourth row, row Vr, is added to the matrix for further calculations;
it is composed of zeros, except the rightmost element which has
the value 1.

This matrix, which we shall call matrix C, has a pleasant property
which may be explained as follows. We know that by definition
sentences are derived from S. If we wish to know the chance for
a sentence with length 1, we look at row S under Vr, and find the
value 3. What then is the chance for a sentence of length 1 or 22
Such sentences are derived by going from 5 to Vr by two steps
at most, The variables S, 4, or B may be present in the first
derived string. Consequently there are four possibilities of arriving
at a sentence with a length of 2:

(1) From § a string is derived in which S is present, then S is
replaced by a terminal element. One can immediately see in the
matiix that these two steps have respeciive probabilities of 0
and 1. The total chance of such a derivation is thus 0- = 0.

{2) From S the variable A is first derived, then a terminal element
is derived from A. The chance for thisis0-1 = 0,

(3) From & a string Is derived with the variable B, then a terminal

element is derived from B. The chance for thisis 3+ 2 = 1,

{4) A terminal element is directly derived from S. The chance for
this is 2. The total chance for a sentence with length 1 or 2 is the
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sum of these four probabilities, 0 + 0 + 3 + § = £. This is pre-
cisely the chance for the sentence a (1) plus the chance for the
senitenice ab (1), the only two sentences of the grammar in this
category.

This operation can also be carried out systematically by means
of MATRIX-MULTIPLICATION. The four steps which we have just
performed correspond to the multiplication in pairs of the elements
in row S with the elements in column Py, followed by the addition
of the four producis: (0-H+ V- D+ G - H+ G 1) =3 We
say then that the row-vector S'is multiplied by the column-vector Vir.
Let us make a new matrix C?, and put the result £ at the inter-
section of row § and column Va. The remaining mairix-elements
of % are obtained in a similar way, that is the multiplication of
a given row-vector in C with a given column-vecior in C yields
the matrix-element in C? for the intersection of the row and
column in question. For example, the matrix-element in C2 for
the intersection of row S and column A4 is 1. This is obtained
by multiplying the row-vector § in C by the column-vector A:
O+ 00+ & 1+ (4-0) = L The value 3 means that
there is one chance out of six of deriving a string with 4 from §
in o more than two steps. Matrix C2is called the square of matrix C.

S A B ¥
slo L o0 £
A10 0 0 1t =c?
B{o 0 o 1
V10 0 0 1

By multiplying C by C2 (multiplying the row-vectors in C by the
column-vectors in C2) we obtain matrix C3:

§ A B ¥

e
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In row S under Vir we find the value 1, This means that the chance
of obiaining a senience the length of which is three or smaller is
equal to 1. The grammar, as we have observed, generates no longer
sentences,

In this example we see that the critical matrix-element in row §
under ¥y increases with the power of the matrix from % to 3 to 1.
The proof of Theorem 3.1 consists of showing that this is a
generally valid theorem for matrices such as matrix C. By increasing
the power of the matrix, i.e. the sentence length, the critical
element approaches the value 1. The sum of the chances for all
sentences, i.e. for the sentences of all lengths, is thus equal to 1,
and (@) is normalized.

ProoF. Let G be a normalized regular probabilistic grammar. We
suppose that ¢ has no redundant variables, i.e, for each 4 e Vy
there is at least one production 4 2 @, a € Vo, for which p > 0.
This supposition implies no loss of generality {cf. Huang and Fu
1971). Let us define a matrix C = [eg], 7 =1,2, ..., n + 1, as
follows:

¢; = 3, MA,—ad) fori, j<n, and where p is the pro-

aevr duction probability of A; — ad;.
Gr= 3 pdi»a)  fori<nj=n+1

ae¥Fr
ey=0 for i = n+1, j<n

l‘:iw-l-l,m+l =1

C is a stochastic matrix1 because for each row the sum of the
elements is equal to 1, and G is normalized. The right hand column-
vector in matrix C¥ shows the probability that a string of & or
fewer elements will be derived from the variable 4;. If 4; = S,
then ¢ «+1 18 the probability that the grammar generates a sentence
of k or fewer elements. We are interested in the value of ¢ .,
when k& — o0, ie. the sum of the probabilities of all sentences

¥ A STOCHASTIC MATRIX iS a square mairix, the malrix-elements of which
are not negative, and the sums of the rows of which are equal to 1 (cf. Feller
19683).
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generated by the grammar, We have supposed that it is true of
every variable A that 3. p(4 — a) > 0, that is, that there are no

aeFqr

redundant variables. C may therefore be written as C = [OL?]’
{
where all the efements of column-vector B have a value > 0. Then

4> AB+ B . A¥(A! +A“""---A°)B]
T ......_E. .......... = -
C: = [ f ],andmgeneral,c" [0 | i

k1
= [;41}%] But for each of the row-vectors in A, the sum of the

row-clements is smaller than 1, and consequently lim 4% = 0.

K=oz

But C" is a stochastic matrix because C is a stochastic mairix (this

theorem is treated in Feller 1968), and thus for every row in C*

the sum of the row elements is also equal to 1. The limit of each of

the row-vectors in C*is thus [0 0 ... 0 1], and thus lim ¢, ,+; = 1
k= om

is what we set out o prove.

A normalized regular grammar generaies a normalized regular
language. But let us examine the situation from the other side.
Let £ be a regular language for which a probability distribution
has been defined, There is thus a value p{s) for every s in L. Let us
suppose that L is normalized, i.e. that Y p(s) = 1. Is there a

ssl

regular probabilistic grammar which generates precisely the pairs
(s, p(s)? This is known as the PROBLEM OF REPRESENTATION. We
have the following theorem.

THECREM 3.2, There is a regular language L, and a probability
distribution for the sentences in Lwith the property Y. p{s) = 1,
for which no regular probabilistic grammar exisis. <%

There are thus normalized regular probabilistic languages for
which no normalized regular probabilistic grammar exists. The
practical implication seems to be that not every sample {corpus)
of sentences of a regular language can be described by a regular
probabilistic grammar. However, the proof of this theorem, for
which reference is made tc Ellis (1969), is based on an argument
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which is compietely without practical implications. It is shown,
in effect, that one can assign a normalized probability distribution
to a regular language such that for some sentences s, p(s) cannot
be the product of any production probabilities whatsoever. The
argument is based on the consideration that there are real numbers
which are not rational. It supposes that some sentences of L have
nonrational probabilities, and shows that in certain circumstances
it is impossible to represent those probabilities as the product of
production probabilities.

In every empirical sitwation, however, we have to do with
samples of the sentences of a language L, and can therefore write
the estimates of p(s) as fractions. On the basis of this considera-
tion, Suppes (1970) suggests the following general representation
theorem for probabilistic languages; the theorem has not yet been
proven,

TororeM 3.3. If L is a type-i langvrage, and a normalized pro-
bability distribution p(s) has been defined for the sentences of L,
then there is a type-i normalized probabilistic grammar which
generates a probability distribution p(s) for the sentences of L,
and for every finite sample § of L the null-hypothesis that § is
drawn from (L, p(s)) cannot be rejected.

In other words, we can find a probabilistic grammar for every
sample {corpus) of sentences, according to which the original
probability distribution can be approached so closely that it is
impossible to decide (on the basis of a statistical test) if we are
dealing with L(p") or with L{p).

3.4, CONTEXT-FREE PROBABILISTIC GRAMMARS

Two normal-forms for context-free grammars were introduced in
chapter 2, and it was shown that every context-free grammar is
equivalent to a grammar in the Chomsky normal-form and to a
grammar in the Greibach normal-form. In the present paragraph



PROBABILISTIC GRAMMARS 45

we shall show that these equivalences are also valid for context-
free probabilistic grammars, Afterwards we shall discuss the
consistency-problem for context-free probabilistic grammars.

3.4.1. Normal-Forms

Normal-forms pose an additional problem for contexi-free
probabilistic grammars, for not only must the normal-form
grammar be equivalent to the original one with respect to the
sentences generated, but it must also be equivalent to the original
grammar with respect to the probability of the sentences generated.
This can be done only by giving the production probabilities in
the normal-form grammar a certain relation to those of the
original grammar. It is not certain in advance that this can always
be done. For the Chomsky normal-form we shall state and derive
the relations. The Greibach normal-form will only be mentioned.

THEGREM 3.4. (Chomsky normal-form). Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-
free grammar, the productions of which are exclusively of the
forms 4 5> BC and 4 5 q.

Proor. The proof is carried out in three steps. We first construct
a grammar G’ equivalent to G, and in which no productions of
the form A 5 B occur. Next we compose a granmar G equivalent
to &, and in which the productions are exclusively of the forms
A5 aand 45 BB, ... B, (n =2). Finally we compose G, in
the normal-form, equivalent to G*, and consequently also to G.

(i} Let there be such productions in G of the form 4 5 B that
derivaiions of the form A% B, £ B, ... 2 B 22 o, where
o ¢ Vy. We can replace every derivation of this kind by adding

a production to P’ in the form 4 5 «, where
Dp=p1-p* .. Pp

This is only possible where there are no “loops” in such a deriva-
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tion chain. For these cases we do the following. We speak of a
loop when productions of the following form occur in P1:

43 B
Py .
A- i=1,.,n
B® A
BY B, ji=t..m

These productions can be replaced by the following productions
in P":

438 J=leum
B3 a i=1..n
450 i=1..,n
B3, j=l.m
where,
@r, =L, P __ 4P 4;

> = y 8 = y Wy = ———
1=pa; ' 1-pg, ' 1-—pa, ’ 1-pa,

To show this, let us examine in detail the productions A 4 B;in
&'; the derivation for the other three types follows the same
pattern. f§; can be derived in & in an infinite number of ways when
there is a loop of the form A %3 B and B 5 4, thus:

AZBL g,
42BE48BILS,
AZBBZABBR AR BH, et

The total probability that f; be derived from A is thus

1 Notaiion: In the following probabilities p always corresponds to produc-

tions where A occurs fo the left of the arrow, and g corresponds to productions
where B occurs to the left of the arrow.
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Pol; + Pl@oP)e; + PAGPY 3 + .. =

d Pod i
"o [} )
Pol; ug‘,ﬂ (@) = 7,

By the same procedurs we can deal with #, 5;, and uy.

By climinating all loops in this way, we obtain grammar G’,
equivalent to G, and in which there are no productions of the
form 45 B.

(ii) Grammar G" will contain all the productions of G' except
those of the form A 5 B, where # consists of terminal elements
and possibly also variables (|f} = 2). All these productions are
rewritten as productions which contain only variables; there will
also be a set of terminal productions. If b; is a terminal element
in the string 5, we introduce a new variable B; in G", and a new
terminal production B; > b,. In this way all the productions of
the form 4 5 g are replaced by productions of the form A kA BB,
... B,. It is clear that with this set of productions 4 = §, in G",
and in general that G” is equivalent to &'

@iy At this point all productions in G” which are not of the form
AL gor A5 BC must be reduced to the form A > BC. The only
productions in question here are those of the form A 4 BB, .. B,
{n > 2). We repiace each of these productions by a set of new
productions as follows:

A5 By
Dy 5 B,D,

Dy_, > B,..B,

where Dy isanewvariable i = 1, ... 0 — 2).

When G, contains these new productions and these new variables
as well as the productions of G* of the form A — § with |§] < 2,
then G, is obviously equivalent to G and therefore also to G, and
moreover Gy is of the Chomsky normal-form,
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This proof also shows what the relations must be between the
production probabilities of the grammar in the Chomsky normal-
form and those of the original grammar. They are found in the
proof under (1) and (2).

Examrpre 3.2. Let G = (Vu, Vi, P, S) be a contexi-free probabil-
istic grammar where ¥y = {5, 4, B}, ¥r = {a,b}, and P consists
of the following productions;

1.5 25 48 5. A2 a4 (pa=0.1)
2. 8 22 4Bb 6. 8254 (g, =04

3.425 B (p,=05 7.B25Bb (4 =02
442 (=04 8 B2p (g =04

Grammar G is clearly normalized. To find an equivalent grammar
in Chomsky normal-form, we raust first construct a grammar G',
equivalent to G, and in which the loop 4 2% B, B 2% 4 no
longer ocenrs. To do so, we replace productions 3 to 8 with the
following eight productions (cf. Proof (i)):

45 Bb A3 a4
A5 AB3q
B3 a4 B Bb
B3a B35

In order to calculate the values of r, 5, ¢, and u, we use the following
formulas:

_ P4y _ 053x02 01
S T pas T 1-05x04 08 ~ 0%
P42 _05x04
T t-pg, 08

= (.03

= 0.25

rz

q.pz _ 04 x01
1~p4q, 08
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4p1  _ 04 x04

%= T—pg 08 - 02
L= ";ﬂqa -_-3:;—=0.125

’Z‘T?p;?,,_q:=%=°'5
m=ﬁ;-—%§m°—?$

uz-—ﬁq—;a=%g—*05

I we add the first and second productions of G to G', grammar G’
is equivalent to G.

Grammar G is obiained by replacing the productions in ¢" with
productions exclusively of the forms A 5 a and 4 5 B, where
every § is made up oaly of variables. This yields the following
productions in G*:

s-25% 4.8 AYE BB, 4,54 A%
A S a B,5b B2, B %25 BB,
S22 4B, A5 AEH 44 By Sb
B Lb B¥S 4,4 A La B 245 p

Finally, grammar G, in Chomsky normal-form can be obtained
by replacing the production § =2 ABB, with § > AC and
c 5 BB,

The grammar in Chomsky normal-form will then contain the
seventeen following productions:

1.5 254,58 6425 p 1022 B, 14. B, 55
28523540 1.4, 5%a 1.B2X5 4,4 158,58
3, A% BB, 8.4,5¢ 12.B25bp 16 B,5b
4 A5 4,4 9.4, 50 13.B25 4 17. ¢ BB,

5. 4% 4



50 PROBABILISTIC GRAMMARS

This grammar is clearly normalized. But one cannot immediately
see that a sentence generated by G has the same probability as a
sentence generated by Gy, This is because every sentence generated
by G has an infinity of possible leftmost derivations as a result
of the loop. This emphasizes the advantage of a grammar in the
Chomsky normal-form, since such a grammar has only a finite
number of leftmost derivations for each sentence.

THeOREM 3.5. (Greibach normal-form) Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-
free probabilistic grammar 67, in which all productions are of the
form 4 5 ax, where o € Vy,

For proof of this theorem, as well as for the derivation of the
production probabilities, we refer the reader to Huang and Fu
(1971).

3.4.2. Consistency Conditions for Contexi-free Probabilistic Gram-
mars

The theorems on the normal-forms tell us something of equi-
valence for normalized probabilistic grammars. But it is of inferest
to recall the definition: iwo normalized grammars may well
generate the same probabilistic language, but that need not mean
that the langunage is also normalized. The following theorem shows
that one may not take it for granted that a normalized contexi-free
grammar generates a normalized langnage. Context-free probabil-
istic grammars are not necessarily consistent.

THEOREM 3.6. (Inconsistency theorem) There are normalized con-
text-free probabilistic grammars which do not generate normalized
probabilistic langnages.

Proor. For proof of this theorem it is sufficient to show an example
of such a grammar, Let G = ({S}, {a}, P, §) be a grammar with
the following productions in P:

1. s3ss 2. 834
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This gramamar is normalized (and moreover in Chomsky normal-
form); it generates the language L = {a"}, where n > 1. The
respective derivations of sentences ¢ and aa are as follows:

sta pla) = 1j3
s2ssdasdae He?) = 227
For the sentence aaa, there are two leftmost derivations possible:

SASSiSSS;-aSS-iaaS--*:-aaa
SéSSéaSiaSSé-aaS—iaaa

The reader will notice here that these derivations correspond to

two different tree diagrams; G is therefore ambiguous. For p(aa)

wefind -3 35 D+G 333 D=2-@ @ =35

In general we can state that p(a") =n-BE D, Where
@)

n>1. After some calculation it appears that ) p(a™) = 3, instead
=1

of the 1 required for normalization. G is therefore inconsistent.

{t is possible, however, to pose conditions under which a normal-
ized context-free probabilistic grammar will be consistent. For the
following discussion of such conditions, some acquaintance with
matrix algebra will again be required. We would advise readers
who wish to omit the remainder of this paragraph that in any case
every nonambiguous normalized context-free probabilistic gram-
mar is consistent.

The conditions of consistency for a contexi-free grammar can
best be discussed on the basis of the »Xn matrix A ={a;]. Before
defining the elements ay;, we must first indicate what they are to
represent, The value ay; must be the total chance that the variable
A generates at least one A4; in a derivation. Take the folowing

productions for 4; and the corresponding probabilities:
A; = o p(Ai - 0(1)
As >0 ieh probabilities p(“" %)

A '—b o p(Ac -t

¥
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and suppose that in the /* production ds — az, the element A;
appears in the derivation myj; times. The production will thus be
as follows:

Af i ﬁlAfﬁzAf b ﬁmUhAfﬁm”h‘i'l’
where [B)| 20 for I =1, ..., myu+1

We define agp as follows: agn = myn - p(4 — a3). The defini-
P
tion of a;; is then: a;; = 3 a4, With 1, = 1,2, .., N, where N
=

is the number of variables in Fiy.
In order to construct a consistent context-free probabilistic
grammar, we must see to it that lim A® = 0. This means that

Foaad -]

finally every variable, and consequently also 4y = S, is rewritten
as a terminal element. From this point of view, matrix 4 here
fulfills precisely the same function as matrix C in the proof of
Theorem 3.1. It is established (cf. Booth 1969, for example) that
the limit is equal to the null-matrix 0, when the eigenvalue of 4,
with the highest absolute value Amex, is smaller than 1. If Amax = 1,
the grammar is inconsistent; Amax = 1 produces various special
problems which we will leave out of our discussion.

Let us again consider grammar & of Theorem 3.6., with pro-
ductions § —» S§5and § o a. Let p(8 - S8) = p,and p(S ~ a) =
1 — p. Under what conditions will G be consistent? In this case
matrix 4 has one cell: A4 = [2p], because § occurs twice to the
right of the arrow in the production § — 85 with probability p.
The only eigenvalue of 4 is then 2p, and the grammar is conse-
quently consistent when 2p < 1 or p < 4. It is inconsistent if p>%
(as was the case in the original example where p = §). In this
case the grammar is also consistent when p = 1,
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FINITE AUTOMATA

In the present chapter we shall regard that which generative
systems give as outpnt, as the input of accepling systems. By
definition, grammars are finite systems of rules by which poten-
tially infinite sets of sentences can be generaied. In this and the
following chapters we shall show that for every language-fype a
mechanism can be consiructed which is able to accept precisely
the sentences of a language. In other words, given a language L
of type-i, an automaton can be devised which can decide, after
a finite number of operations, for the sentences of L and for no
other string, that 4 sentence belongs to L. In generating a sentence,
a grammar ascribes a structural description to it in passing; in a
similar way, when an equivalent antomaton accepts a sentence,
an equivalent structural description unfolds.

It would, however, be incorrect to conclude from this symmetry
that & mechanism finife in size can accept anything which is
generated by a finite grammar, Such a mechagism can indeed be
of finite description, but in most cases it wiil have to contain an
infinite number of parts. In fact, only one of the language types
which we have treated — the class of regular languages — is
recognizable through finite means.

In this chapter we shall present a survey of the theory of finite
automata, and we shall show (1) that there is a finite recognition-
automaton for every regular language, and (2) that for every set
of strings which is accepied by a given finite automaton, a regular
grammar can be found which generates precisely the same strings,
Some special types of finite automata, such as nondeterministic and
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k-limited automata, will also be briefly discussed. In the final
paragraph we shall mention some of the properties of probabilistic
finite antomata.

4.1, DEFINITIONS AND CONCEPTS

A FINITE AUTOMATON, FA, is a system (S, 1, 3, s, F) in which

(1) S is a finite nonempty set of STATES. At any given moment
the automaton must ke in one of these states. Individual states
are generaily denoted by the letters s or 4, with subscripts when
needed.

(2) I is a finite nonempty (INPUT) VOCABULARY. {is elements
(“words™) are represented by letters from the beginning of the
Latin alphabet. I" is the set of strings, finite in length, composed
of the elements of Z, including the null-string A. Elements of I may
be represented by Ietters from the end of the Latin alphabet.

(3) & is a (STATE) TRANSITION FUNCTION which indicates how the
automaton changes states under the influence of an input word.
The notation is as follows: d(s, @) = ¢ means that the automaton
in state s changes to state f at the insertion of word 4, where s and
t are elements of §. The transformation function is defined for
every possible pair of state and input-element; for every s € § and
every a € I, (s, 4) is either a state in S, or @, where ¢ means that
the antomaton blocks and no further step is possible. The transi-
tion funciion is also said to MAP the cartesian product § X [ in
SV @. Becanse S x ['is finite, the transition function consists of
a finite set of rules called TRANSITION RULES,

(4) s, is a particular clement of S, called the INITIAL STATE. It is
the state of the automaton when the input process begins.

(5) F is a nonempty set of FINAL STATES in §.

A finite automaton ¥4 = (S, 1, 4, 5o, F) is said to ACCEPT a string
x e I', if FA, first operating in the initial state s,, passes through
a sequence of states, the last of which is a final state in F, under
the influence of the successive elements of x.

Ordinarily the -notation is not limited to the input of individual
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elements of I, but is also used for the input of strings from I°.
If x = mas ... ag, and FA contains the following transition rules:
(51, @) = 52, 5(52, @3) = 53, ..., H(Sn, n) = Suy1, Where 5y = s
and sp,1 = 1, we may write 5(s, x) = 2. Thus (s, xa) = 5((s, ¥), a).
By convention d(s, 4) = 5. Expanded in this way, the transition
function maps § X I" in §'V ¢. We may also say that the auto-
maton ACCEPTS x € I" if 8(sp, ¥} € F,

The LANGUAGE T accepted by the finite automaton FA is
{x|8(se, %) € F}, the set of strings accepied by the automaton, Such
sirings are also cailed SENTENCES.

Two finite automata are EQUIVALENT if they accept the same
langeage,

Finite automata can be pictured as in Figure 4.1. They consist
of a2 CONTROL-UNIT and a READING HEAD along whick an mwpuT
TAPE tuns from right to left. A string of input symbols appears
on the tape (in the figure x == @0z ... a5). The control-unit can be
in only one of a finite number of states at a time, When the reading

>

Initial Phase l ‘ -4fmimum——  Reading head

In inditial
state ap

- ———  Control-unit

X
e

~—~

N

laleale] - Jom[s ]

l I Final Phase

In final
state £F

Fig. 41, The Accepting of a String x =may ... ap by a Finite Automaton.
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head begins to read the first symbol, the control-unit is in the initial
state 5,. When the first element (a3 in the figure) is read, the state
of the control-unit can change (according to the transition rule
concerned). The tape then moves one space to the left. The next
input symbol (22 in the figure) is read in the new state, and a
second change of state may take place, according to the respective
transition rule. The tape again moves one space to the left. This
process continues until the control-unit arrives at a final state in F.
The string of symbols read up to that point is then said to have
been accepted by the automaton. Figure 4.1. shows the initial and
final phases.

It is also possible visually to represent what occurs in the control-
unit during reading; this is done by means of a TRANSITION-
DIAGRAM. We shall illusirate this with a few examples,

ExamrLE 4.1, Let FA = (S, I, &, 35, F) be a finite automaton with
S = {50, 51}, I = {a, b}, F = {s}, and where § contains the
following transition rules:

s, ) = 51 e, B) = ¢
6(-5'1’ b_) =5 6(31, ﬁ) =

The transition-diagram for this antomaton is given in Figure 4.2.

Fig. 4.2, Transition-Diagram for Finite Automaton F4 (Example 4.1,).
initial state is 5o
final state (circled twice) is 51

Such a diagram should be read in the following terms. Every state
is shown by means of a circle in which the name of the state is
given. For every nonblocking transition rule d(s, a) = ¢, there is
an arrow in the diagram going from the circle labeled s to the circle
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labeled ¢; the input symbol a is written near the arrow. In Figure
4.2, it is clear that the automaton in question has two states, that
it passes from state s, to state 51 when & is read, and that it retums
from state s; to state s, when b is read. String a is obviously
accepted by this antomaton, because beginning in the initial state
5q, it passes to the (only) final state s; when a is read. Another way
of coming to the final state sy is by recading the string abg: the
automaton passes successively from 5, to 51, then back to s, and
again to 51; because 5, is an initial state and s is a final state, the
string abg, by definition, is accepted. This automaton accepts all
strings a, aba, ababa, ... The language is T = {a(ba)'}.

ExaMpLE 4.2, Let FA = (S, I, &, 55, F) be a finite automaton with
S = {so, 51, 52}, I =1{a,b,c,d, e, f}, F={s), and with the
following transition rules in &:

50, @) = 51 (52, €) = 5

5(s1, 8) = 51 sz, f) = %

(51, €) = 82 d {(—, —) = ¢ for all other pairs
os1, &) = 52

The transition-diagram for this automaton is given in Figure 4.3.

Fig, 4.3. Transition-Diagram for Finite Antomaton FA (Example 4.2.).

Here 5, is both an initial and a final state. One can easily see from
the diagram that the automaton will accept all strings which bring
it from the initial state s, back to the final state 5,; these are such
strings as adf, ace, ade, abdyf, abbee, etc. Fach of these strings is
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composed of first an a, then a siring of O or more b’s, then either
adorac{dv c), and finally either an e or an f (¢ v f), thus
strings of the form ab” (e v d) (¢ v f). Asin the preceding example,
however, after returning to the final state s,, one can make stifl
another turn in the antomaton, returning once again to s, and
continue doing so. The language accepted by this antomaton is
T = {(ab’(c v d) (e v f))}. The machine also accepts A, because
by definition 3 {4, 1) = s, bringing the automaton from the initial
io the finaf state.

Beside the fact that initial and final states are identical, this
automaton has the peculiarity of allowing LooPs, by which a siate
&1 can be transformed into itself again. Moreover, there are two
pairs of EQUIVALENT INITIAL SYMBOLS, d and ¢, and ¢ and f, which
under all circumstances have the same effect on the operation of
the automaton.

Instead of a transition-diagram, one can also use a TRANSITION-
TABLE to show the structure of an automaton. A traosition-table
is 2 matrix in which the row-elements represent the states of an
automaton, and the colemn-elements represent the possible input
symbols. Every matriz-element shows a state (or ¢) which is
reached from a given state (row-element) and a given input symbol
(column-element). Ao example of such a matrix is the following
transition-table for finite automaton FA4 of Example 4.2,

input elements

abcdef
So | 19 @ ¢ ¢ @
51 P 53 82852 0 ¢
e | 9@ ¢ P 5SS

Ordinarily the ¢ is omitted in such a matrix. A transition-table
contains precisely the same information as a transition-diagram,

Some finite automata are K-LIMITED. A k-limited automaton is
a finite automaton the state of which is determined at every
moment by the last & (or fewer) accepted input symbols. The
automaton. of Example 4.2, is 1-limited. As is clear from the
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transition-diagram (Figore 4.3), the automaton, after having
accepted ¢, can be only in state 53 ; after accepting b, only in state s1;
after accepting ¢, only in state so; after accepting 4, only in state s52;
after accepting e, only in state s,; and after accepting f, only in
state 5,. Likewise in each column of the transition-table, only one
state is mentioned.

A 2-limited antomaton is shown in Figure 4.4., both in dia-
grammatic and in tabular form. It is clear that immediately afier
aceepting an g, the machine can be in one of two states, either 51
or sz. The automaton is therefore not I-limited, but 2-limited, for
after accepting aa, it is in state sq; after accepting ab it is in s,
and after ba, in s1. It can never accept bb,

@ b
30 31
81 82
8o an

Fig. 4.4. Transition-Diagram and Transition-Table for a 2-limited Automaton.

Figure 4.5. shows that not all finite automata are k-limited; it
represents an antomaton which is k-limited for no finite £. Even
when this automaton has accepted an arbitrarily long string of b’s,
we do not know if it is in state 5, or in state 5.

Fig. 4.5. Transition-Diagram and Transition-Table for an Automaton which
is k-limited for no Finiie £.

If s, is the initial state and s, the final state, then the langunage
which the antomaton accepis is T = {§ab"}. The k-limited auto-

e

o
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maton is of some interest in dealing with Markov processes (cf.
Volume Ii, 6.1., and Volume IH, 3.2.).

4.2. NONDETERMINISYIC FINITE AUTOMATA

The finite automaton defined in the preceding paragraph has the
property that for every state and input symbol, the state which
follows (or ¢) is unambiguously determined. Such an automaton
is therefore called a DETERMINISTIC auntomaton, But, for two
reasons, it remains necessary to define the nondeterministic variant
of finite automata here. The first reason is that such a definition
will allow us more easily to establish the relationship between
finite automata and regular grammars. The second reason is that
the probabilistic automaton (cf. paragraph 4.4.) is in turn a
generalization of the finite automaton.

A NONDETERMINISTIC FINITE AUTOMATON NF4 is a system
{S, I, 8, 55, F) which is in every way equal to a deterministic finite
automaton, except for the transition rules é. The iransition rules
of a nondeterministic finite automaton have the following form:
s, 8) = {t1, to, ..., 1z} = D, where 0 <k < co; 5, € S, and
D < §. In other words, for every pair of state and input symbols,
there is a finite set of states at which the automaton can arrive,
¢ is said to be a mapping of § < [ in the subsat of S (where ¢ is
the empty subset). A deterministic finite automaton is actually a
particular case of nondeterministic finite automata: it covers those
cases where for all transition rules A = lork =0,

When can one say that x € I” is accepted by a nondeterministic
finite automaton ? Suppose that x = ay ... a5, and that the finite
automaton FA4 contains the following transition rules: §(sq, a1} =
Dy, s1€ Di; s, a2) = D, s2€ Ds; o..; Ssn_1,85) = Dy,
3n € Dy and 5, € F, then x is said to be accepted by the auto-
maton, Thus, if there is some succession of states aliowed by the
transition rules, according to which x brings the automaton from
5, to a final state, the nondeterministic finite automaton is said to
accept x.
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The operation of a nondeterministic finite automaton is alsa
casy to represent by way of a transition diagram, as becomes
apparent in the following example.

EXAMPLE 4.3, Let NF4 = (S5, I, 5, 55, F) be a nondcterministic
finite automaton where 5 = {50 55, 52}, £ - la, b}, F  {szl,
and J contains the following transition rules:

J(Soa ﬂ) = {5@, 51}

st a) = {s2}

851, b) = {51, 52}

& (—, —) = for all other pairs.

Figure 4.6. shows the transition-diagram for this antematon.
Among the strings which can bring the automaten from the initial
state s, to the final state 52 are the following: aa, ab, naa, aah,
aba, abb, and so forth, In general, the language accepled by this
automaton is 7 = {a'ab'(a v 8)}.

Fig. 4.6. Transition-Diagram for the Nondetermipistc Frnite Automataon
NFA {Example 4.3.). The final state sg is circled (wice,

The following important thearem is valid for nondetermimsin
finite automata,

Tweorem 4.1. For every nondeterministic finite automaton there
exists an equivalent delerministic finite automaton.

Fhe proof of this theorem. for which we refer the reader 10 Rabin
and Scott (1959), wilf be briefly discussed later. We shall first
itlusitate it by returning to Example 4.3. We can construct a fiaite
automaton FA equivalent to the nondeterministic finite automaton
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NFA of that example in the following way, NFA had three states,
ie. § = {5, 51, 52}; the corresponding F4 will have seven states,
namely, [so], (s, [s2], [$6, 51]. [Ses 521, [51, s2], and [se, 51, 52). These
states are thus called after all possible nonempty subsets of S. We
maintain the input vocabulary, and in order to establish the new
set of transition rules we proceed as follows. Let us begin with
&' ([50], @). In NFA 5(55, @) = {55, 51}; in FA let §'([5.], @) = [5, 51].
Notice that this laiter is one state and not two. Further let
{51, &) = [52) because &(s1, a) = {s2}. and & ({s2), @) = p becanse
o2, @) = . For &(Ise, 511, @) we proceed as follows. In NFA
(50, ) = {80, 51} and I(s1, @) = {s2}. The union of (s, 4) and
&(81, a) is thus {So, 51, 82}, and in F4 we let &' (s, 511, @) = [, 51, 52].
Again the [atter is a single state. Similarly we construct ' ([so, sol, @)
= {55, 51), etc. This procedure leads to the establishment of the
following list of transition rules:

'([sd), @) = [0, 1] &' ([ss, 52), @) = [84, $1]
8 ([s1], @) = [s2] &'([s1, 52}, @) = [s2]
5’([31]’ b) = [sls Sz] 5’([31’ Sﬂ]; b) e [Sl, 52]

850, 53], @) = [55,51,88) ({50, 51, 53], @) = [0, 51, 52}
5’(["'0’ Sl], b) = {Sb 33] J'([SO: 51, .5'2], b) = [313 32]
For all other &' (—, —), & (—, —) = ¢.

)

Fig. 4.7. Deterministic Finite Automaton Equivaleat to the Nondeterministic
Finite Axfomaton in Figure 4.6.
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The set of final states F' in F4 is defined as consisting of those
states in which the Iabel of a final state of NFA occurs. The only
final state in NFA is sa, and therefore F' = {[sq], {50, se], [51, 2],
[0, 51, 521}, Finally we take {so] as the initial state in FA, and we
affirm that FA is equivalent to NFA4.

The {ransition-diagram for FA is given in Figure 4.7. The final
states in the diagram are circled twice. The reader should notice
that states [s1] and [so, 52} do not appear in the figure; this is
because neither of them serves as the output of any transition rule.
They are superfluous and consequently omitted. The diagram shows
that FA accepts precisely the language {d’ad'(a v )}

PROOF OF THEOREM 4.1. (résumé). The proof follows ihe consiruc-
tion which we have just described. The states of F4 correspond
to the nonempty subsets of § in NFA. The transition rules are
constructed as we have shown, and the set of final states F’ in F4
consists of those states which have one or more clements of Fin
their labels. By induction on the length of the string of input
symbols it can be shown ithat FA is equivalent to NFA,

Because, inversely, deterministic finite automata are special cases
of nondeterministic finite automata, we can conclude that the class
of finite autornata is equivalent to the class of nondeterministic
finite automata; they accept the same clags of langnages.

4.3. FINITE AUTOMATA AND REGULAR GRAMMARS

In this paragraph we shall give proof of the equivalence of finite
antomata and regular grammars. The langnages accepted by finite
antomata are exactly the same as those generated by regular
grammars, and vice versa.

THECREM 4.2. For every finite automaton FA there exists a regular
grammar G soch that T(FA) = L(G).

PrOCF. Let FA = (S, 1, 3, 5, F) be a finite automaton. We must
construct a regular grammar & = (Vy, Vr, P, S) such that




64 FINITE AUTOMATA

i Vw=S
G) Ve=1I
{iit) § = 5

(i) A->aBisinPasd(4,a) = B
A—>sagisin Pas 5(A,a) = C,where Ce F
(notice that B and C are used here as labels for states)

We shall now show that  is equivalent to FA. For this, two condi-
tions must be fulfilled: (1} If x € T(FA), then x € L((), and (2) if
x € L{G), then x € T(FA).

(1} x € T(FA4). If this is so, then by definition d(s,, x) in F. We
write x as @18z ... Gz. We presuppose that 1 ¢ T(FA), and that
therefore n > 0, In that case &(so, X} = 8(3(s0, Mt ... @n.1), tn)
(cf. paragraph 4.1. (5)}), and continuing in the same way &(sq, ) =
(... (S0, @1), @2}, ...), ar). Because §(sq, x) in F, there is a sequence
of states 5, $1, ..., 85 (8: € §; 5; and s5; are not necessarily different)
such that d&(se, @1) = 51, 6(51, @2) = H(se, M), 42} = S2,  -ony
I(Sn_1, ) = 5u, where s, € F. But then there are also productions
8§ = §; > at51, $1 —> 4252, ..., Sp.1 —+ @ it P, on the basis of the
construction of G. It is then clear that S = a,a; ... a, = x.

(2) x € I{G). By definition S = x. Let x be written as ¢,a, ... a,.
Then there are productions § = 5, — @181, §1 = @252, ..., Sp_z —
dn_15x_1 and sp_1 — @y in P for certain 5 in . But that means that
FA contains the following transition rules: 8(s,, a1} = 51, d(s1, az)
=2 89, .u., O(Sp_s, dp_1) = Snu_1, H(Su_1, @) = Sn With 5, in F (this
follows from the definition of G). It is evident that with these
transition rules FA4 accepts the string mas ... ap = x.

It follows from (1) and (2) that FA and G are equivalent for
sentences of length = 0. If F4 also accepts A, the theorem holds
only if we maintain the convention of paragraph 2.1., i.e. that by
definition G also generates A.

ExampLE 4.4, Let us construct a grammar equivalent to the finite
automaton FA in Example 4.1, We recall that FA = (S, /, 8, 5%, F),
where S = {54, 51}, I = {a, b}, F = {51}, and with the following
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transition rules: 8(sy, 4} = 51 and 8(s1, &) = s, (for all other pairs
d{— =)= o) ’

The constroction: as shown in the proof is as follows: G =
(Vw, Vo, P, S), with Vo = {sp = S, 1}, Vr = {a, b}, and P =
{55 = asy, 5o > a, 51 — bsy}. Notice that on the basis of (iv), the
transition rule d(se, @) = 51 leads to two productions in G: 5, — as1
and s, — 4.

THEOREM 4.3. For every regular grammar G there exists a finite
automaton F4 such that T(FA) = L(G).

ProoF. We shall prove that a nondeterministic finite automaton
NFA can be found so that T(NFA) = L(G). The theorem is then
valid because for every nondeterministic finite antomaton NFA
there exists an equivalent finite automaton F4 (Theorem 4.1.).

Lei G = (Vy, Vr, P, §) be a regular prammar. We construct
NFA = (8, I, 4, 5, F) as follows:

@ S=vyv X

(i) I="p

(i} (A4, @) contains X (inter alia)if A - ain P
(A, a) contains every B for which 4 —» aBin P
#{X,a) = p foreveryain Vi

(iv) 5= 8§

W) F={X},if A¢ L(G); F= {X, S}, il A ¢ L(G)

Once again the proof of equivalence takes place in two steps.
First it must be shown that if x € L(G), where x = auaz ... &,
then x & T(NFA). Afterward the inverse must be shown.

(1) x € L(G). If x € L(G) and |x| > 0, then there is a derivation
S=ad; = ... >y ... Ga_14p1 > @az ... ap for some se-
quence Ai, ..., Ay_t of variables in V. P thus contains the pro-
ductions § — mA;, A1 ~ azdsz, ... An_i — an. It appears, then,
from the construction of NFA that 43 € &8, a1), 42 € 6(A1. as), ...
X e d(Ay 1, ag). But if the transition rules are valid, x = 14z ... Gn
is in T(NFA4). H i e L(G), then S € F (see (v)), and because ¢ (S, 1)
contains § by definition, 1 € T(NFA).
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(2) x € T(NFA). If |x|] > 0 and x is accepted by NFA, then there
are states §, 41, ..., Az_1, X, where 4, € 8(S, &), 4z € 8(41, a2),
vees X € 8(An_1, as). But from the construction of NFA it appears
that P must also have productions S — a1y, ..., 4g.1 =+ an. It
follows from this that S = a,a, ... a, = x. If 1 € T(NFA4), then
SefF. But §SeF only if AeL(G) (see (V).

The equivalence of G and NFA follows from arguments (1) and
(2}. It follows from Theorem 4.1. that there must also exist an Fd4
equivalent io G.

ExaMPLE 4.5, Let us construct a nondeterministic finite auto-
matont NFA which accepts the language generated by regular
grammar & in Example 2.1. We recall that G = (Vw, ¥V, B, 5)
where Vy = {8, B}, Vpr = {a, b}, and P = {§ - aB, B~ bS,
B — b}, and that L(G) = {(ab)'}. We shall now construct NF4 =
(S, I, 3, 5s, F) according to the procedure given in the proof. Thus
S= {58 X}, I= {a,b}, & contzins the following transition
rules: &(S, a) = {B}, B, by = {X, 8§}, 8 (—, —) = pforall other
pairs; finally, F= {X, §). The transition-diagram for antomaton
NFA is given in Figure 4.8,

O o——0

Fig. 4.8. Transition-Diagram for Nondeterminisiic Finite Automaton NFA
which accepts langnage { (ab)*}.

Together Theorems 4.2. and 4.3. show the equivalence of finite
automata and regular grammars. We can employ this equivalence
in order to prove certain theorems concerning regular grammars
by means of theorems concerning finite automata, and vice-versa.
Theorem 2.5. is 2 good example of this.

TarorEM 2.5, The product of two regular languages is regular,
Proor. Let L; and Lz be regular languages; let Lz consist of the
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strings xy where x € Ly and y € Ls. There is a regular grammar
for L., and therefore we know, on the basis of the equivalency
theorem, that there is alse a finite automaton which accepts L.
We shall call this finite automaton FA; == (S, I1, d1, 5, F1). Like-
wise there is a finite antomaton FAs = (T, I, 8s, fo, F2) which
precisely accepts L. Fr and Fz can always be chosen such that they
have no states in common. We must now construct a nondeter-
ministic finite automaton NFA = (U, Is, ds, uo, Fs), which, in 2
way, connects F4; and FAz “in series”. We define NFA as follows:

D U=8SuT

) b=hLvul

(iii) dalu, @) = {01(s, @)} for every s in § — Fy. In this way NF4
can begin with a given input as if it were FA4;.

da(u, @) == {81(s, @), olts, @)} for every 5 in Fi. If NFA
arrives at a final state of #41, it can freely (nondeterministic-
ally) either continue to another state of F4; (if this is also
possible for FAdy) or pass on to FAe This latter is possible
only when NFA has already reached a final state of Fi (the
transition rule is applicable only if 5 is in F1) and when 4
can be the first symbol of a senience of Lg (notice that the
initial state of FAj is £).

8s(u, @) = {d2(¢, @)} for every ¢ in T. This guarantees that
once NFA has “transferred” to FAs it will continue to
operate as Fda,

(iv) to = 5o

(v) F3 = Fz if 1 ¢ L. This guarantees that NF4 accepts the
input when the end of a sentence of L is reached.

F3 = F; U Fp if 4 € L. If Fdy accepts the nuil-string, it accepts
all sentences x1 = x, i.e. the sentences of I;. The automaton
must be able to accept in each of the final states of Fi.

The construction of NFA guarantees that it will accept precisely
the sentences xy € Lz. But, on the basis of Theorem 4.1., there is
also a deterministic finite automaton F4 which does the same.
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1t follows from Theorem 4.2. that there is a regular grammar for
I3, and that Lz is consequently regular.

The reader may now himself prove the lemma which was used
at the proof of Theorem 2.8., with the help of finite automata.l

4.4, PROBABILISTIC FINITE AUTOMATA

We shall mention probabilistic antomata only in the present
paragraph. It is only on the subject of probabilistic finite automata
that literature of any considerable size is available.

The probabilistic finite antomaton (PF4) is a generglization of
the nondeterministic finite automaton; a probability is assigned
to every possible transition. Before presenting a formal definition
of probabilistic finite automata, we shall discuss the manner, step
by step, in which the generalization is made.

If it is frue for a nondeterministic finite automaton NFA that
(s, ) = {51, 52, ..., Sa}, we can define py(s, @) for a2 probabilistic
finite automaton PFA as the chance that the antomaton will pass
from state s to state s;, given the input symbol 2. We shall suppose
that every probabilistic finite automaton is normalized, i.e.

n
Y. pds. @) = 1. In other words, the total chance for a state transi-
i=1

tion under the influence of a given input is 1. We shall return to
the merits of this convention at the end of this paragraph. There
is no reason why the chance for transition to a particular state
could not be zero. In general we shall suppose that 1 2= py(s, @) = 0.
Because transitions which cannot take place in a nondeterministic
finite automaton can in a probabilistic finite automaton be con-
sidered as transitions where p = 0, we may give a more general
definition of the transition function é in a probabilistic finite auto-
maton. I such an automaton PFA has » states, then (s, @) can
1 To do so one should construct a nondeterministic finite automaton NFA
which normaily operates as F4, {which accepts L3) except with transitions
d(s, ay where a is the critical terminal element, Tn such cases Fds (which
accepts Lg) should be made to “take over™ until a state in Fa is reached. This

should then act as &(s, g), in order for NFA to be able to go on functioning
as FAy.
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unambiguously be regarded as a row (vecior) (p1, p2, ..., Pa),
where p; = pi(s, g). For impossible transitions p; = 0; for all other
transitions p; is the transition probability. Thus for every pair
{5, &) where s € S and ¢ € 1, § is a vector of # numbers, If, for an
element @, we wish to represent all the vectors, we can show them
in matrix form as follows:

51 52 T 7 e S

8s,a8) | Pu Pz ... Py .. Pig
8se,0) | Pur Pez ... Py .. Pgy
Sse,a) | Pn P ... Py ... Pu
S(Sﬂ’ a) Pay Py .. Pﬂj oo Pan

For the sake of brevity we shall call this entire matrix M(#), the
TRANSITION-MATRIX for element a. Matrix-element pyy in M{ae) means
that if the antomaton is in state s; and reads the input symbol a,
there is a chance of p;; that a transition to state 5; will take place,
Normalization guarantees that the sum of the elements in a row
in this matrix is equal to 1. The matrix is square {# X n), and is
thus a stochastic matrix.

To include all the transition rules in PFA we would have to
compose similar matrices for each of the input elements. If
I = {a1, as, ..., am}, we define M as the set of transition-matrices
for the elements of I. Thus M = {M{m), M{as), ..., M{ay)}.

Finally, we wish to open the possibility that the initial state of
PFA is also random. For each of the # states we must define an
INITIAL PROBABILITY p(s), which represents the chance that at the
first input the automaton is in state 5. Since we wish PFA with

certainty to be initially in one of the n states, we let Y. p(s) = 1.
=1

One can now no Jonger speak of an initial state, but rather of an
INITIAL DISTRIBUTION; this simply means the string of initial pro-
babilities (p(s1), p(se), ..., plss)). This vector is denoted by s,.
At this point we can define a probabilistic finite automaton.
A PROBABILISTIC FINITE AUTOMATON Is a systemt PFA = (5, [,
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M, s, F), in which S is a finite set of states, [ is a finite input
vocabulary, M is the set of transition-matrices, s, is the initial
distribution and F < § is the set of final states.

EXAMPLE 4.6. Take the probabilistic finite automaton PF4 =
. 01
({15, {as B}, (M@, MO, (1,0), {529 with M(a) = [0 1]

2 b
and M(b) = [? g] PF 4 has two states and the chance of starting
3%

in 51 is 1 (becanse s, = (1,0)). From transition-matrix M(a) we
learn that when the automaion is in state sy and reads the input
symbol «, it has a chance of 1 to change to state sz; if in state 52
input of g leads with probability 1 to transition to s, ie. PFA
remains in sz. Transition-matrix M{b) shows what happens when
the input is the symbol b. Once again all this is better shown by
a transition-diagram. In a transition-diagram for a probabilistic
finite automaton, the various arrows are labelied not only with the
respective input clements, but aiso with the corresponding transi-
tion probabilities. Figure 4.9. gives the diagram for the automaton
in this example. Arrows for transitions the probabilities of which
are equal to 0 have been omitted.

b (3 a (1) b {9

Fig. 4.9. Transition-Diagram for a Probabilistic Finite Automaton
(Example 4.6.).

The diagram shows that starting in state s; the automaton has a
chance of 1 to pass to final state s2 when the input symbol a is

read; this chance becomes 4 when the input symbol is &. What
will be the chance for the transition if the input is the string gd?
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The element a brings the avtomaton, with a probability of 1, to
state sg; the element b will maintain the antomaton in state so
with a probability of . If the transitions are independent of each
other (which is our presupposition here), the string ab brings the
awtomaton to state 5, with a probability of 1-% = 2. What then
will be the chance that the string gb will bring the automaton back
to state 5,7 Obviously this will be 1 - £ = }. Likewise the string ab
will take the automaton from state sz back to state sz with the
probability 1% = £, and from state s, back to state s; with
probability 1- 4 = 1. In this way we have in fact found a transi-
tion-matrix for the string ab:

man = [§ 3]

3 T

It is also quite easy to see that M(gb) is the matrix product of
M{a) and M(D):

0 1] [F 4] _[EE
Ma=1o 1) "3 21~ 12 3f

In general we can define the TRANSITION-MATRIX M(x) FOR A
STRING X = 14z ... dy a8 the product M(x) = M(a1) - M{as) - ...~
M{a,). In such a matrix one can read, for all pairs s, s, the
probability that the eniry of an input x will cause the probabilistic
finite automaion to change from state s; o state sy,

For the interested reader we can likewise easily indicate, in matrix
notation, the chance that a final staie be reached at all with a
given string, given vector so, the string of initial probabilities. For
this purpose, we define a FINAL VECTOR s as a string of » numbers,
analogous to S, corresponding to the » states in S and in the same
order. For every state, the corresponding number is 1 if the state
is a final state, and 0 when this is not the case, Thus sy = (g1, go,
.oy gny Where qu = 1 if 5y € F, and ¢4 = 0 if sy ¢ F, The final vector
in Example 4.6. is thus (0, 1), for only sz is a final state, The chance
that x will bring the automaton to a final siate is given in matrix
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notation as s,M(x) s}.' Thus the chance that the string ab will bring
the automaton of Example 4.6. to a final state is equal to

R HHEHECE R HEE

With these means at our disposition, we are able io define the
language which is accepied by a probabilistic finite automaton.
We should like to define that language as the set of strings by
which the automaton reaches a final siate with a certain minimum
probability. What that minimum probability precisely is remains
quite arbitrary. We can call it the CUT-POINT PROBABILITY, #.

The #-STOCHASTIC LANGUAGE T(PFA4, n) is the set of strings
which bring the probabilistic finite automaton PFA to a final state
with a probability > # Formally stated, T(PFA, n) =
{x[s.MG9s; > 1.

If # = 0, the situation is simple; every sentence by which a final
state can be reached belongs to T. But stricter conditions can be
posed. The opposite extreme is # = 1. However, the chance is
never greater than 1 that a sentence will bring the automaton to
a final state, and thus T(PFA, 1) is empty for every PFA.

THEOREM 4.4. A regular language is #-stochastic for 0 <{ i <7 1.

Proor. Let L be a regular language, and FA, a finite automaton,
where T(FA) = L. We begin to construct probabilistic finite auto-
maton PF4 by borrowing I and F from FA. The set of states S’
in PFA will be S U 54, where 5¢ is a “dummy” state. A transiiion-
matrix is composed for every a € I in PFA as follows: py; = 1 if
3(s1, @) = 535 pyy =0 if 8(s, a) # 53, for every pair s, 55 in S We
let pip = 1 if d(si, @) = @, and pzy = O in all other cases, for 5; € 5.
Finally, we let Pop = 1, and pgs = O for every s; € §. In this way
every matrix M(a) is stochastic, and for every sentence x in T{FA}

1 s is the TrRansposiTION of the row-vector, i.e. the row-vector is set up
vertically like a column, with the leftmost element at the top, Notice that the
definition of a transition-matrix for x supposes the stochastic independance of
the transitions.
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there is a probability of 1 that x will be accepied by PFA, while
a final state will be reached with no other string. Because for
every sentence s in L, the probability p(s) == 1 in T(PFA), it is
true for every O <\ # << 1 that T(PFA, n) = L.

The inverse of Theorem 4.4, does not hold, but the following
theorem is valid.

THEOREM 4.5. Every O-stochastic language is regular,

Proor. Let PF4 = (S, I, M, 55, F) be the probabilistic finite auto-
maten which accepts the O-stochastic language 7. We must first
construct a nondeterministic finite antomaton NFA() for a state s
with initial probability in PFA: p(s)) > 0. We make NFA()) such
that it accepts every sentence which bring PF4 from siate s; to a
final state, with probability > 0. For this purpose we let the initial
state of NFA() be 5, F be the set of final states in NFA()), and 5;
in d(sy, ax) if the element ps; is greater than 0 in the transition-
matrix M{az). The language T; accepted by NFA(Q) is regular
(Theorems 4.1. and 4.2.).

If we construct a NFA() for every s in S for which p{s} > 0,
it follows that every sentence which is accepted by PFA, with
probability greater than O, will also be accepted by at keast one of
the NFA4, and that every sentence accepted by one of the NFA
will also be accepted by PFA with probability greater than 0. We
conclude that the union of all the languages 7; is also regular
(Theorem 2.5.).

We close this paragraph with a remark on normalization as
vsed with probabilistic finite automata. The basis for normaliza-

tion ¥ p;(s, @) = 1is the input symbol: each input symbol leads
i=1

to a transition with a probability of 1. The consequence of this
normalization is that it is not generally valid that the semtence
probabilities in a stochastic language add up to 1. In the degenerate
case, for example, where the matrix contains only 1’s and 0%, every
sentence of the language has a probability of 1, while the language
can indeed contain more than one sentence. There is therefore no
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simple relationship between probabilistic finite automata and
regular probabilistic grammars which are normalized on the basis
of a nonterminal element. As we have seen, in that case a normal-
ized probabilistic langnage is generated. Probabilistic finite auto-
mata can, of course, also be normalized on another basis, namely
the siate. In that case the total chance for transition from a given
state, taken over all inpuis, is equal to 1, thus 3 3 pfs, a)) = L.
T

It then becomes possible to show equivalences to probabilistic
grammars.



5

PUSH-DOWN AUTOMATA

In the preceding chapter we showed that regular languages can be
accepted by finite automata. For langnages of a higher order we
shall have to refer to systems which are, in some way, infinite in
size. To clarify the notion, let us consider a digital computer,

A digital computer is a finite automaton because it has a finite
number of parts — for instance, » (including storage) — each of
which can be in a finite number of states — let us say & at most.
The machine will therefore have no more than A® states, a finite
number. Consequently a computer can accept, in principle, only
regular languages; it cannot accept context-free or higher order
languages.

One may wonder if there is any practical interest in studying auto-
mata which can accept higher order languages, since, in principle,
they can never be built. However, the theoretical infiniteness of
such antomata is of liitle consequence in practice. The value of »
for a sizable computer can easily reach 108, and if k is equal to 2,
& is an astronomically high number. For practical purposes, then,
a computer is of unlimited size. It can, within limits which in
practice are never reached, accept higher order languages. Most
computer langnages, such as ALGOL, are in fact context-free or
higher order langunages.

In this chapter we will discuss one simple infinite automaton,
the PUSH-DOWN AUTOMATON. This automaton is infinite because
its store, the PUSH-DOWN STORE, is of unlimited capacity. In all
other respects it is a finite antomaton. We shall show that push-
down auntomata are equivalent to context-free grammars,
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3.1. DEFINITIONS AND CONCEPTS

A push-down automaion is a finiie automaton to which an un-
limited push-down store has been added. A push-down store is
somewhat comparable to a narrow knapsack. Imagine that a hiker
has placed his matches at the very bottom of his knapsack, then
put in his jacket and other articles of clothing, and finally a can
of soup, a can opener, and cooking utensils. When the hiker
becomes hungry and reaches a brook, he may wish to eat the soup.
He removes the cooking utensils, can opener, and the can of soup;
this poses no problems, as the last articles placed in the sack are
the first to come out. Also, he can add water from the brook.
But if he wishes to light a fire to warm the soup, he muost frst
remove the clothing and jacket before he is able to reach the
maiches: the first things placed in the sack are the last to come out.

We can make an analogy between the hiker and a push-down
automaton: the knapsack can be compared to the push-down store
{with the matches as the start element), the water and firewood to
inputs, and warmth and satisfaction for hunger to state transitions.

The formal definition of a push-down automaton is as follows.
A PUSH-DOWN AUTCMATON PDA is a system (S, I, I', 3, 5o, o) where:

(1) §is a finite nonempty set of sraTEs, with 5, €.5 as INITIAL
STATE.

(2) Iis a finite (INPUT) VOCABULARY.

(3) I' is a finite PUSH-DOWN VOCABULARY, with 3, £ I” as push-
down START $YMBOL, the only element in the store when input
begins. Other push-down symbols are 1, ¥z, .... The set of finite
strings of push-down symbols is ™. Elements of I"* are represented
by lower case letters from the end of the Greek alphabet, such as
X1, ¥, w. The topmost symbol which at a given moment is found
in the push-down store is called the Top sympoL.

(4} & is the set of TRANSITION RULES. Each rule indicates what
will oconr when, at a given state, with a given top symbol, a given
input symbol (possibly also 1} is introduced, ie. it shows what
the following state will be and by what the top symbol will be
replaced. The top symbol may be replaced by (a) an element of I';
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(b} itself — a special case of (a}, the content of the store remains
unchanged; (c) an element of I, thus, a STRING of symbols replaces
the top symbol; or (d) the null-string A — a special case of (c),
this amounts to simply removing the top symbol. The notation
for these cases is as follows:

(2} d(s1, a, yx) == (3, y1), where 5; and s4 are staies in §, @ is an
input symbol in I, and yx and »; are pash-down symbolsin T,

(b) d(ss, a, ye} = (85, 7%)

(c) 8(sy, @, yr) = (51, %), where y is a string in I'", If y = yyx
for some y in I, and thus J(sy, @, P2) = (53, wye), then w is
added to the siore. Notice that the last added element is
noted at the left.

(d) 3(sy, @ y&) = (51, A). Because 1 is the null-string, this simply
means that the top symbol yg is removed.

It can also occur that & (s¢, &, y&) = g; the automaton is then said
to BLOCK.

The function & maps the cartesian product S x (F U ) X Iin
Sx Mue.

A CONFIGURATION in a push-down automaton is a combination
of state and store content, A transition rule in J can bring the
automaton from one configuration to another. If there is a rule
8(si, @, y&} = (34, ), then the introduction of the input element g
can change the configuration from (si, 1) to (53, zw). The nota-
tion for this is:

a: (s1, yxeo) b {sy, xeo).

This change is called a TRANSITION in the automaton. Unless other-
wise stated, we shall suppose thai 3(s, 4, ) = (s, ¥} for every s
in § and for every y in I"; in other words, the input of 1 changes
neither state nor store content. Thus:

A (5,00 F (5, w) for every s € S and every w e I,

In specially mentioned cases where it is permitted that (s, 1, ¥) #
(s, ¥) (ie. where the automaton can make a real change of state
without input), we must allow that d(s, ¢, ) = p for every @ in 1,
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for otherwise the antomaton could make varions different transi-
tions when the input & is introduced. The INITIAL CONFIGURATION
of a push-down automaton is by definition {se, Yo}

. Wewrite X = a1 83 ... dn: (5, @) ¥ (', "), if & allows transitions
ag: (s1,00) F (5131, 0431), where § = 1, 2, ..., », such that 51 = s,
W] = ©, fpa = &, and we1 = . String x makes the antomaton
change from configuration (s, @) to configuration (', @").

A string x is ACCEPTED by a PDA if at the end of the processing
of x the push-down store is empty. Formaily, siring x is accepted
by PDA if x: (s,, 3,} F (5, 2). Note that this definition is not based
on the attainment of a final state, as was the case with finite
automata. There exists a description of push-down automata
which does refer to the attainment of a final state; it is completely
equivalent to the description used here, and we shall not bring it
into the discussion.

The LANGUAGE T(FDA) accepted by a push-down automaton is
the set of strings which are accepted by that automaton, T(PD4) =
{xfx: (5o 72) F (5 D).

Figure 5.1 shows how a push-down automaton accepts a

string.

ExamprE 5.1. In order to demonstrate the operation of the push-
down automaton, we take a PDA which only uses its store, and
never changes states. The autoraton accepts strings of a’s, b’s,
and ¢’s, with as many a’s as b’s, and one ¢ at the end of the string:
e.z. ¢, abe, aabbc, haabe, etc.

PDA = (S, I, I, 8, 5o Vo), With § = {8}, I= {a, b, c},
I = {#s, a 75}, and where & consists of the following transition
rules:

1. XSo, @, o) == (S0, YaTo} 5. O(Sey B, 78} = (S0, Yoy}

2- 5(30, a, ?ﬁ) = (503 '}’a?&) 6' J(So, b> }’G) = (-5'09 A)

3. 3o, @, Y8) = (S0, 4) 7. (50, €, Yo) = {50, 1)

4. 8(s0, b, 70) = (30, Yoo} ~ Forall other (s, ¢, 1), 9(s, ¢, y) = 9.
By convention & (s, 4, ) = (s, ) for all 5, y.

We shall now show how the automaton accepts the string
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aabbbbaac. The following list gives the successive transitions and
the rules applied.

@2 (o, Yo) t (505 Ya¥a) (rule 1)
" a: (So, YaYo) F (Sos Ya¥a¥o) (rule 2)
b: (8o, VaYaYo} + (So: Ya¥o) (rule 6)
b (5o, y¥a) F (50, Yo) {rule 6)
b: (S0, y0) t (So» Yo¥0) {rule 4)
b: (5o, yoya) & (5o, YoYBY0) (rule 5)
a: (So, Yoy¥0) & (5o, Y70) (rule 3)
a: (%o, Yo¥e) b (S0, 7o) (tule 3}
e (S0, v0) F (50, A} (rule 7)

Thus aabbbbaac: (5,, ¥,) F (5,5 4.

EXAMPLE 5.2 Let PDA = (S, I, T, 3, 5, 7o) be a push-down auto-
maton where § = {5, 51}, I = {4, b, ¢}, ' = {0, ¥5 Y2}, with
the following transition rules:

L. (s, 4, Yo) = (S05 YaYo) 7. 8(so, €, 1) = (%0, 4)
2. (5o, 4, Ya) = (So» Va¥a) 8. 9%, ¢, Yu) = (51, Ya)
3. (30, 4, P8) = (S0, Ya¥t) 9. (50, €, ¥5) = (51, Y)
4. 8(50, b, 0) = (S0, ToY0) 10. é(s1, @, ya) = (51, &)
5. &(s0, b, 70) = (So, YY0) 11, &(s1, b, y8} = (51, 4)
6. (5o, b, Ya) = (o, Yv7a) 12. &(s1, 4, y0) = (51, &)

(s, 2, ¥) = (s, ) for every other 5, y and in all other cases
o5, —, P =p.

This push-down automaton accepts all symmetric sentences, where
¢ may occur only in the middle of the sentence. If w is a string
of &’s and b’s, and w is the “mirror image” of w, then the language
accepted by PDA is {wewR}. In essence, the PDA places a 3, into
the store for every incoming a, and a y for every incoming & until
a ¢ is introduced. From that point the state changes from s, to s,
and the process is reversed: for every incoming 4 it removes the
top symbol if it is 7., and for every incoming b it removes the top
symbol if it is y». This continues until p, is the top symbol, and by
rule 12 the automaton removes y, without further input.
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The sequence of transitions for string aabbcbbaa is as follows:

(Soy 7o) ¥ {So, 7aP0) b (S0, PbYayo) b (Ses Yo¥u¥a¥o} & {51, YoyaYuto) F
(51, Yovarel b (51, yva¥a} F (51, ¥0) F (51, A).

It is obvious that push-down auvtomata can do more than finite
automata. The languages which are accepted by the automata in
the last two examples are both context-free languages, and there
is no finite automaton which can accept them. But push-down
automata cannot accept all contexi-free languages; the languages
which they accept are called DETERMINISTIC LANGUAGES, A class
of grammars is known which gemerates precisely these deter-
ministic languages, namely the class of LR(k)-GRaMMARS. These
are equivalent to push-down automata. We shall not discuss
LR(k)-grammars here. The interested reader may consult Knuth
(1965).

However, there is equivalence between context-free languages
and nondeterministic push-down automata,

5.2, NONDETERMINISTIC PUSH-DOWN AUTOMATA
AND CONTEXT-FREE LANGUAGES

A nondeterministic push-down automaton NPDA difiers from a
PDA ovly in that each of its tramsiiion rules is of the following
form:

5(5) a, }') = {(519 ?1}) (52'; }'2): aney (Sn, ?ﬂ)}

This means thai in each configuraiion the automaton is not limited
to a single possible transition, but can make a “choice” among the
elements of a set of transitions.! The construction of a nondeter-
ministic push-down automaton is completely analogous to that of
a nondeterministic finite antomaton, and the same is true of the
definition of accepting. A NPDA ACCEPTS a string x, if, when x is
1 At this point we drop the condition that if 8(s, 4, ) 5* ¢, thend(s,a, ) = ¢
for every a in 1, This condition was necessary in order to exclude the possibility

of a nondeterministic fransition when an input ¢ is introduced into the auato-
maton.
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introduced as input, there is at Ieast one possible sequence of
transitions for which x: (s,, v,) ¥ (5, 4).

ExAMPLE 5.3. Let us construct a simple NPDA which will accept
the language {a"b® |n = 1}, Let NPDA = ({5}, {a, 8}, {30 P
5}, O, 30, Vo), With the following transition rules in J:

1. 5(50, II, ?o) = {(SD, ?a}’b)s (SOs ?ﬂ;?ﬂ?b)}
2. (S, &, Ya) = {(ses )}
3. (5o, b, y8) = {(50v A}

By convention, d(s, 4, ) = (s, y) for every s and y, and &(s, —,
¥} = ¢ for all other 4.

Only rule 1 is nondeterministic. To show how NPD4 operates,
we give the successive transitions in the accepting of the siring
agabbb:

Az (S0, Yo} F (80, YaYayb) (rule 1)
a: (So, 7a¥o¥s) © (Sos VoY1) (rule 2)
A (So, Yoyn) ¥ (So, YaYoPaye) {rule 1)
a: (So, YaYoyoys) V' (5o, Yo¥ry0) (rule 2)
At (S0, Yoyoye) b (o, ayayeys)  (vuie 1)
a: (S, Ya¥o7e¥e) T (S0 yoyoye) (rule 2}
b: (0, yoyvyn) b (50, Yo¥2) (rule 3)
b: (5e, yoye) b (30, y2) (rule 3)
b: (5o, vy F (50, 1) (rule 3)

Thus aaabbb = iaiaiabbb: (s, v,) F (s, 2).

This exampie also shows how a push-down auiomaton can make
spontaneous transitions {when the input is ), and how the initial
symbol 7, can be removed from the store before the store is empty.

Theorems 5.1 and 5.2 together show the equivalence of non-
deterministic push-down automata and context-free grammars.

TreoreM 5.1. For every contexi-free langnage L, there is a non-
deterministic push-down automaton which accepts L and only L.

ProoF. In fact we shall prove a somewhat stronger theorem,
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namely, that there is a mondeterministic push-down automaton
with only one state which can accept the context-free language L.

Let L be a context-free language, and G = (Vy, V1, P, ), a
grammar in Greibach normal-form which penerates language I
(according to Theorem 2.7., such a grammar exists). The produc-
tions in G are thus exclusively of the form A — ga, where x is a
string of 0 or more variables. We construct a nondeterministic
push-down automaton NPDA = (S, I, I, &, s, vo) as follows:
S = {50}, I = Vi (with elements @), ' = Vy U Vo = V (with
elements a; in Vp and elements Ay, § in Py}, yo = & The input
vocabulary of NPDA is the terminal vocabulary of &; the push-
down symbols of NPDA are the elements of V in G, and the
push-down start symbol of NPDA is the start symbol § of G.
Let NPDA have the following transition rules:

1. d(se, 4, A) contains (s,, ax) for every production A — g0 in P
{where o can have length 0).
2. (s, @, a) = {(30, A}} for every a in V.

The push-down automaton will in general be nondeterministic,
for if A can be rewritten in more than one way in ¢ (e.g. A > a
and 4 — §), then 3(s,, 1, A) likewise has more than one possible
transition ((s,, &) and (s, §) in the present example).

We must show that T(NPDA)} = L{G). We shall first show that

if x € L(G), then x € L(NPDA); afterwards we shall show the
iaverse.
() If x = a,a, ... a, in L{G), then S = x with the following left-
most derivation: § = @11 = @igetz = ... = Gz ... Gp_1dy_y =
@142 ... y. This derivation is performed by rewriting the leftmost
variable of o at each step. If we wish explicitly to show this variable
in the derivation, we can write § = @rdifh = aaedafe > ... >
aiag ... du_tAn_1 = a4z ... o, Where fy represents the string of
remaining variables. The following shows how NPDA precisely
simulates this lefimost derivation for x = agiaz ... au?

At (50, ) F (50, mA1S1) (rnle 1)
ai’ (So, ardaf) + (50, A1ff1) (rule 2)



84 PUSH-DOWN AUTOMATA

Ai (so, A2f1) b (50, G2A2S2) (rule 1)
as: (s, aedafa) b (se Asfe) (rule 2)

* Ano’ (Sos Gn_1An_1} b (Se, An_1) (ruie 2)

Az (3o, An_v) F (85, ap) (rule I)

an: (So, an) F (50, ) (rule 2)
Thus x € T(NPDA),
() X x = bibs ... by is accepted by NPDA, then b el The
transitions in NPD4 in accepting x take place when the inpui b
is introduced, or “spontaneously” when the input is 1. We can
therefore write x = a142 ... @y, where g; = A, or @y = by, while
maintaining the order and in such a way that exactly one transition
of NPDA goes together with each a; in the acceptance of x. Thus
we have the following steps for accepiing x:

ai: (5o, 8) F (S0, 001}
as: (So, 1) F (S0, w2)

an: (5o 1) + (S0, A)

With regard to rule 2, it follows direcily that w,_., = a,, and
tritely w,_, = @, in gramamar G, We shall now take as an inductive
hypothesis that @; = a;,; ... 4, in G, and show that w;_, = a;
... &, It then follows by induction (going back to n—1, for which
the theorem is valid) that @, =~ § = a, ... d,

We thus suppose that &; = @;+; ... 4, We know that a;:
{5,> -1} F (5,5 @)- There are two possibilities: a, € V7 or a; = 4,
Let us first suppose that @; € Vy. In that case the transition a,:
(s,, 0% 1) I {5,, w7} can only have taken place by means of rule 2,
and consequently o3;,_; = age, Bnt because ;= a;,; ... a,
(induction hypothesis), it is true that w;_, = am; = Gy 1 ver Gpy
that which we had to prove,

Now let us suppose that a; = A. In this case the transition
a; = A: (s,, 0;-1) F (5,, @) can only have taken place by means
of rule 1, and consequently o, ; = Aw;_; and o, = aaw;_,.
Because A — au is by definition a production in G, it is true that
Aw}_, = axw]_,, or otherwise formulated w;.; = w, According
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to the induction hypothesis, however, @ = ;44 ... 4, and con-
sequently we have the following derivation: @;_, = a;,4 ... &, =
Ay oo @y = G144 ... 4, Which is what we had to prove. We
conclude, then, that w, = S = x,

To illustrate Theorem 5.1., we offer the following example,

ExaMpie 5.4. Take context-free language L = {atcb?}, n = 0.
A simple grammar for L is G = ({S, B}, {a, b, ¢}, {5 -+ aSB,
B > b, § — ¢}, §), which is in Greibach normal-form, According
to the procedure given in the proof of Theorem 5.1., we construct
the following push-down automaton which accepis language L:
NPDA = (S, 1, I, 8, Ss, Vo), With S = {55}, I == Vir = {a, b, ¢},
I'=v=i{ab,e S B}, yo = S, and with the following transi-
tion rules in é:

. 8(%0, A, S) = {(s4, aSB), {55, ¢)}
. 8(so, 4, B) = {(50, b)}
. (80, @, 8) = {(s55, 1)}
4. 3(s0, b, B) = {(s0, 1)}
. (50, €, C) = {(Sas ‘1)}

The following list shows the various steps by which NPD4 accepis
the sentence aachb:

W b -

Lh

A (50, S} F {50, aSB) {ruie 1)
a: (s,, aSB) t (s, SB) (rule 3)
A (S0, SB)} } (50, aSBE) (rule 1}
a: {8, aSBB) (s, SBB) (rule 3}
A: (50, SBB) F (50, ¢BB) (rule 1)
¢: {5s, ¢BB) b (s, BB) (rule 5)
Al (So, BB) F {50, bB) (rule 2)
b: (50, BBY b (50, B) (rule 4)
A: (sg, B) b (50, B) (rule 2)
b (56, 0) F (50, A) (rule 4)

To complete the proof of equivalence between nondeterministic
push-down antomata and context-free grammars, we must prove
the following theorem.
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THEOREM 5.2. For every language T which is accepted by a non-
deterministic push~down automaton, there is 2 context-free gram-
mar G which generates precisely T.

Proor. Let T be the language accepted by NPDA = (S, I, T, 4,
So, Vo). We must construct a context-free grammar G = (Fy, Vr,
P, 8) as follows:

() Vx consists of compound elements [s;, y, 5], where s; and s;
are elements of S, and » is an element of I'. Fx also contains §,
which is not compound,

(if) Vp =1L

(iif) P contains the following productions:

1. § = [%s, o, 8] for every sin S,

2. {[S, P Snya] ~ als1, Y1, o) [s2, 2, s8] ... [S»s Vu, $0,41] fOr any
numbering of states in §} for every transition rule in & of
the form: &(s, @, ¥) contains (s, Y172 ... ¥a).

The second rule gives productions in G for every transition rule
in NPDA. These productions are in Greibach normal-form: to the
right of the arrow there is a terminal element followed by 0 or
more variables. The case of 0 variables occurs when 19z ... yn = 4,
thus in transition rules in which &(s, a, y) includes (s1, 1); this gives
the following productions in G: [s, y, 5] = aforall 5;in S.

Although the first production is not Greibach normal-form,
every leftmost derivation of G is as follows: S = & = aroy =
Mooy = ... = Qifta ... Ay, Where every o is a string of variables.
Each of these variables is composed of three elements. If we
examine the components y in these variables, we find that they
stand for every o; precisely in the order they take on in the push-
down store when aigz ... @ is iniroduced into the automaton.
Thus the grammar simulates the push-down automaton, Before
continuing the proof of the theorem, we present an example in
which this simulation is clearly to be seen.

EXaMPLE 5.5. Let NPDA = (S, I, I, &, $», ¥») be a nondeter-
ministic push-down automaton with § = {ss, m1}, I= {a, b},
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I' = {y,, 11}, and the transition rules given in Table 5.1. We must
construct a grammar G = (¥, Vr, P, S) according to the above
procedure: Vi consists of § and all triples [s, a v b, 5] For
convenience we use a separate upper case letter to denote each
of these compound variables:

A = {50, Vo, 5o}, B = [0, ¥a, 511, C = [30, P15 5ul, D = [85, 71, 51),
E= [Sl’ Yas SO]! F= [Sl, Yor Sl}, G = [313 ¥1s So}s H= [31’ 715 Sl]-

Further Vir = {g, b}; the productions are given in Table 5.1. in
both complete and abbreviated notation, grouped according to the
corresponding transition rules. The abbreviated notation clearly
shows that only the numbered productions lead to terminal strings,

TaBre 5.1. Transition Rules of NP.D4 and Comesponding Productions of
Equivalent Grammar & (Example 5.5.).

Abbreviated
Transition Rules NPDA Productions & Notation
1. 8§ = [sg, Y. S0l S 4
2. §—[5a, Yo, 51) S—+RB
@) dsa, @, 11) = {(s1,51)} {50, 1, S6) — a5, 71, %] C —raG
3. [so, 71, 81] = dls3, 71, 511 D—aH

(b) (g, b, Yo} = {(50 ¥170)} 186, Y0s50] = Blso,¥1,50] {80, 70,501 A — BCA
4, [50,70,56) ~> Bl5o,71,51] [51,¥0,50] A -» BDE

{%0s¥0s%1] = Bls0,71,%0] [0 70511 B — BCB

5. [so,¥0,51] = blsosy1,01] [s1,70,51] B — &DF

) &so, b, y1) = {(50, 1y} [s0,¥1,%) = B30, 72,%0] [S0s72,50) € — BCC
{%0,71,56] ~> Blso, 71,511 [5,71,%] € ~» DG

[5e,¥1,51] —> bl%5,71.5] [s0,p1,51] D — BCD

6. [so,71,51] = Blso .81 IsLnas8]l D — bDH

{d) d(sgy X, yo) = {{50, D} 7. {30 Yo, Sa] =+ 4 A1

(e) &s1, a, ?0) == {(‘90: }'0)} 8, [51, Yo, 50] ~> afs0, Yo, 5ol E -+ ad
9. [51, Yo, 1] = alss, Yo, 51] F—~aB

@) s b p) ={(s, A} 10 {51l >4 H-=>b
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In order to show how G simulates NPDA, we give first the
acceptance of the sentence bbgbba by NPDA, and then the genera-
tion of the saime sentence by G. Acceptance by NPDA:

b: (50, ¥0) b (Se, Y170} (rule b)

b (S0, P1¥0) F (Se» Y17170) {rule ©)

a: (%o 717190} & (51, 1iy1ye)  (rule a)

b: (51, yinye) F (51, y1y0) (rule )

&: (51, y1yo) b {51, 7o) {rule )

a: (51, yo) F (s, yo) (rule ¢)

A (8o, Yoy F (59, A) (rule d)

Derivation by G:

S=4 {production 1)
A = bDE (production 4}
bDE = bbDHE {production 6)
bbDHE = bbaHHE (produciion 3)
bbaHHE = bbabHE (production 10)
bbabHE = bbabbE (production 10)
bbabbE = bbabbaAd (production. 8)
bbabbaA = bbabba (production 7)

It should be noticed that the last step in this derivation is an
abbreviaiion although this is theoretically not permitted with a
context-free grammar. The abbreviation is a resalt of production. 7
in Table 5.1, but this production is actoally only a formalization
of the convention introduced in paragraph 2.1., that A can be
added to a context-free language.

We can now continue with the proof of Theorem 5.2. We must
show that T(NPDA) = L(G). The proof follows two steps: first
we must show that if x € T, then x is also generated by G; then
we must show the inverse of this statement,

() X x = a,a; ... a,is in T(NPDA), then S = x. To prove this
we must show by induction that for every » the following is true:
if x: (s;,7) ¥ (5,4 in n trapsitions, then [s;,y, s;] = x by the
productions of G, We first prove ihe theorem for » = |, then
show that it is also valid for n — 1 or fewer steps, and consequently
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that it holds for # steps; thence follows general validity. From that
point it is not difficult to show that if x is accepted by NPDA,
then it is also generated by G.

If n =1, then either x = g (where ael), or x = A. In both
cases x: (5, ) b (54, A), and therefore (s, x, ¥) must include
(55, 1), so that G (according to production 2) includes the pro-
duction [s, 7, si] = x. Ii follows directly that [s, y, 5 = x is a
derivation of G.

Let us now suppose that the theorem bolds for fewer than »
transition steps. Let us examine x = a4z ... am {n 2= 0), for which
x: (s, 1) F (s;, A) in precisely n transitions. The first step in this
process is as follows: a: (s, 1) F (51, 1192 ... ¥x)- The element a
here is either A, or the first element gy of x. After the first step, the
push-down store thus contains y1yz ... ¥&, and n — 1 transiticns
remain 0 be made before this string is completely removed from
the store. We know that this does finally occur, and that the
respective p;"s are successively removed. This, however, need not
proceed directly, and might, on the contrary, follow various
detours (y: might, for example, be replaced by a whole string of
new push-down symbols, which will be removed when latier ele-
ments of x are introduced into the input). Nevertheless it must
remain possible to articulate the string x = a3z ... @ in such a
way that it can be written as awiws ... wg wherea = lorae = ap
(dependent on the nature of the first siep), and where every
wy leads to the removal of y;, when the operation on the step began
in the proper state si. But if ; can be removed from the store
with w; as input, then it also holds that if y; should be the only
element in the push-down store while the automaton is in state sy,
wyt (8, 70 F (8;41, A), where s5;,, is precisely the state beginning
with which w;3 would empty the store if only yi,a were in it.
For every w this process of emptying takes fewer than » steps, and
there are productions in G such that [s;, s, 5,411 = w; (induction
hypothesis), It holds also that the string of variables [s1, y1, se]
[s2s v, 53] ... [sk, ¥k, k1] can be rewritten by means of the pro-
ductions in ( as the terminal string wywa ... wp, From a: (s, p) F
(s1, y172 ... 72), however, we know that (s3, v1yz ... yp) is an ele-



50 FUSH-DOWN AUTOMATA

ment of 3(s;, @, ), and therefore G (according to produciion 2)
includes the production [si, ¥, sk41] — als1, y1, s2] [52, s, 53] ...
[5%> 750 ¢+ 1 It therefore holds that [s;, v, s34, ] = aw,wy ... W, = X,
from which we see that the theorem also holds for » transitions,
By induction, the theorem is valid in general.

It is true of every x which is accepted by NPDA that x:

(5, 7o) F (s, ), and consequently, by the theorem as proven,
[50s 7os 51 = % in G. According to production 1, S — [s,, 7,, 5]
for every s in S: therefore § = x.
() If §= x, then x € T(NPDA). We shall first prove that
for every n > 0, if [s, 7, 551 = x in G in n transitions, then
x: (sp7) F (s;, H) in NPDA. Let n = 1. Then [s;, 7, 8] > x is
a production of &, and consequently, given the construction of G,
either x € ¥ or x = A Likewise é(s;, x, 7) includes (s, 4), from
which follows that the theorem holds for n = 1.

Let the theorem hold for derivations in G with fewer than » sieps
(induction hypothesis). Let {s, 7, {] = x = a4, ... a, be a deri-
vation which demands exactly n steps. This is possible, given the
form of production 2, if a leftmost derivation is as follows:
[s, 7, 11 = e[t [12] .- [td = awi[t2][2s] - [6] = ... = aw,w,
o Wi == Gyfz ... am = X. Here [#;] represents the triad [ss, y, 52,1,
and w; is a string of onme or more successive elements @ from x.
Every w; can be derived from [] by the productions of G, and in
general [1.] = w, in fewer than n steps. On the basis of the induc-
tion hypothesis, however, w;: (5, 7) F (5141, 4) for every i = 1,
..., k. But then it is also the case that wyw; ... w2 (51, 74¥2 oo T F
(525 72 oo P} F oo F (84415 4), and consequently also x: (s, 7) F
{t = S+ A). By induction, ithe theorem holds for every n > 0.

The derivation S = x can be written S = [s,, 7,, 5] = x. If x
is generated by G, then [5,, 7,, £} = X, so that, on the basis of the
theorem x: (5,, 4,) F (5, 4), which by definition means that
x € T(NPDA).

It follows from Theorems 5.1. and 5.2. that the class of languages
which are accepted by nondeterministic push-down automata is
precisely the same as the class of languages generated by context-
free grammars.
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LINEAR BOUNDED AUTOMATA

An automaton has been discovered which accepts precisely the
langunages of the context-sensitive class. Like the push-down auto-
maton, it is unlimited, but in an interesting way. In effect, it
disposes of as much storage capacity as the input string is long:
the store is small for a short string, large for a long string. It is
as if one had to calculate the sum of two numbers and were given
exactly the same amount of space on a blackboard for counting
as the two original numbers occupy. One would be allowed to
write and to erase as often as desired, but could use no more space
than that allowed.

The automaton in question is called IINEAR BOUNDED AUTO-
MATON, LBA4. In this chapter we shall show that lincar bounded
automata are equivalent to contexi-sensitive grammars. But the
proof of this equivalence is considerably more complicated than
those in the preceding chapters, and we will not be able to discuss
it fully within the scope of this book. Therefore we shall Limit
ourselves here to a global proof of the theorem that for every
context-sensitive grammar there is an equivalent linear bounded
automaton. We have chosen this particolar theorem for proof
because it refers to the Kuroda normal-form which will be used
later in dealing with linguistic applications (in Volume Ii), and
because it provides a good illustration of the way linear bounded
automata work.
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6.1, DEFINITIONS AND CONCEPTS

In several ways linear bounded automata resemble finite automata.
In_chapter 4 we observed that finite automata begin operating in
an initial state and first read the leftmost symbol on the input
tape. They then proceed to read the input symbols from left to
right, until a final state is reached. Like finite automata, linear
bounded automata also have a limited number of states, and they
too begin their operation in an initial state by reading the leftmost
symbol on the input tape. Buf linear bounded automata are
capable of more than finite automata in two respects. In the first
place, they can both read and write: they can write over a symbol
which they have read, and replace it with another symbol. In the
second place, they can move the input tape not only from left
to right, but also from right to left; moreover, at a transition
(a change of state and or the replacement of a symbol in the input
tape), they can remain at the same position on the tape. In writing
they can use “guxiliary symboks™ which are not part of the input
vocabulary. Becaunse linear bounded automaia may write only
within the bondaries of the original input string, two boundary
symbols (#) are placed on the tape, to the left of the first element
and to the right of the Jast. Linear bounded automata always start
in an initial state at the left-hand boundary symbol; they are said
to accept the input when they pass over the righi-hand boundary
symbol in a final state. This latier is possible, of course, only after
they have dealt with each element between the boundary symbols.
The formal definitions are as follows.

A linear bounded automaton is a system LBA = (S, I, T, J,
Soy #, F) in which:

(1) S is a finite, nonempty set of STATES, with 5, € § as INITIAL
STATE, and F € § as the set of FINAL sTATES. (States are, as usual,
denoted by the letter 5 with a subscript, or by r, 8, 4, ...)

(2) I'is a finite INPUT-VOCABULARY (notation as usual),

(3) I is a finite set of TAPE sYMBOLS, the vocabulary of symbols
which can appear on the tape. I belongs to this set, as do all
auxiliary symbols which can be used in writing. (Notation: tape
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symbols are in general denoted by ¢ with a subscript; sirings of
auxiliary symbols are denoted by lower case letters from the end
of the Greek alphabet, ¥, v, w. If it is known that a tape symbol
belongs to the input vocabulary, the notation for I can be used.)
There is also a speciai tape symbol #, the BOUNDARY SYMBOL,

(4) dis a finite set of TRANSITION RULES. A transition role indica-
tes for a pair of state and tape symbols what the following state and
tape symbol will be; it also indicates if the band remains at the
same place, goes one place to the right, or one place to the left.
This is written as follows: we say that (sp, ¥y, &) Is in (s, yy) if the
automaton, in state sy and reading y;, can change to state s, and
write p, in the place of y;. The letter & shows in which direction
the automaton moves on the tape: & = —1 indicates that it goes
to the left; £ = 1 indicates that it goes to the right; & = 0 indicates
that it remains in the same place and reads the symbol it has
written in the place of y,. By convention, d(s, ) always contains
(s, 7, 0). We say “can change” because linear bounded automata
are nondeterministic; a linear bounded automaton has in principal
several possible transitions for each configuration. J maps the
cartesiant product S X I” in subsets of § x I' x{—1,0,1} v ¢.
In every operation the boundary symbols must remain in place;
thus, whenever the automaton reads # it writes # over it. In
formal terms, if (5", y, k) is in 6(s, #), then y = # for every s,
and vice versa if (&', #, k) is in d(s, 7}, then y = #.

The concept of “configuration™ calls for some further clarifica-
tion. This can best be done with a visual representation of the
operation of a lincar bounded automaton, as in Figure 6.1. In that
figure we see the imitial and final situations in the process of
accepiing the string x = auas ... @y, as well as two possible situa-
tions during the operation,

A useful way of showing the entire configuration of automaton
and tape is to write the state of the automaton to the left of the
symbol which is being read. The configuration in Figure 6.1.a.
can thus be denoted by s,#a1 ... a,# because the automaton is
in state s, and is reading the left-hand boundary symbol. For the
configuration in Figure 6.1.b. we write # y1ys ... PeSifest -.. dn#,
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Fig. 6.1. A Linear Bounded Automaton in Operation

a. Situation at start.

::_‘ ‘ Possible sitvations during operatiotn.

d. Situation after accepting x,

in which we see that the tape symbol @z, is being read in state s5.
The configuration in Figure 6.1.c. is written # ... sgyips ... aGn#;
that represented in Figure 6.1.d. is written # ... #sy If the auto-
maton passes from configuration C to configuration C' in one step
we write C b C’, and when the change takes place by an undeter-
mined number of transitions, the notation is C F C.

A linear bounded automaton LBA ACCEPTS a siring x when




LINEAR BOUNDED AUTOMATA 95

s,#x# ¥ #aws,, where x € I', weI”, and s, ¢ F. The LANGUAGE
T(LBA) accepied by LBA is the set of strings which are accepted
by LBA: T(LBA) = {x|s,#x# ¥ #ww#s;, xeX, wel", s;eF}

ExAMPLE 6.1, Let LBA = (S, I, I, 6, 5, #, F} be a linear bounded
automaton in which § = {5, ;, 53, 53, 53, 85}, [ = {a, b}, I' =
{a, b, ya, Y5, #}, F = {57}, and with the following transition
rales in :

1. Cs(Sn, #) = {(51, #, 1)} 7. 6(32: ?b) = {(Ss, Yo _l)}
2. 8(s1, @) = {(s52, Ya, 1)} 8. (52, #) = {(ss, #, —1)}
3 6(51’ #) = {(Sf’ #, l)} 9. 6(33’ b) = {(549 Y5y _l)}
4. (s, y8) = {(51, ¥5, D} 10, 8(ss, @) = {{54, 4, —1)}
5. 8(ss, @y = {(sz, a, 1)} 11. 8(se, B) = {53, b, —D)}
6. d(sz, b) = {(s2, b, 1)} 12. &(sa, ya) = {(51, s, 1)}
8(s, ¥) = o for all other cases for which no convention holds.

It is immediately obvious that this auiomaton is deterministic:
there is never more than one possible transition. We shall first
show how the automaton accepts the string gb. The input tape
carries the string #ab#, and the first configuration is se#ab#,
i.e. LBA is reading the left-hand boundary symbol in the initial
state s, The successive steps are as follows:

softab# b #siab# (rule 1)
#s1ab# b #pusebF (rule 2)
#yaseb# b # yabsak {rule 6)
#yabsa# b # Yasabo# (rule 8)

¥ yasab# b #EsayaYo# (rule 9)
#Yayed © #WS1Yo# (rule 12)
#van1Yo# F #raPerf (rule 9
#vaypsr# b y#ayoEsy (rule 3)

The following shows in short how the automaton accepts the string
aabb: s,7aabb# F #slaabb# b #y.S.abbst Fo#y abbs, # F
#yaabssh# b Ay asabn# Fodsayabn# b o#ysiaby# b
VIS0V FE b vabs s # b Fvressby# b AvSapaved T
VS0V F BV oSy
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Thus this automaton shifts back and forth between the boundary
symbols until every a has been converted into ., and every &
into yp. Tt can reach the final state 5y only if there are as many
Ya’s a8 yp’s, and when the y;’s are in the left-hand half of the tape,
and the y»’s in the right hand half. This automaton accepts the
language {a"b® |n = 0},

6.2, LINEAR BOUNDED AUTOMATA AND
CONTEXT-SENSITIVE GRAMMARS

The equivalence of linear bounded automata and context-sensitive
grammars is established in Theorems 6.1, and 6.2.

THEOREM 6.1. For every context-sensitive language L, there is a
linear bounded auntomaton which accepts L and only L.

ProoF (summarized). Let L be a context-sensitive language. Accord-
ing to Theorem 2.11., there is a grammar & in Kuroda normal-form
which generates L. We must construct a linear bounded automaton
such that T(LBA) = L(G). Let G = (Vw, Vo, P, §). The auio-
maton LBA = (S, I, I, 8, 5o, #, F} must have the following
construction:

) S = {5, 51, 1o, 11, {£4}, Fo, 11}, With 5, as both initial and
final state: F = {s}.

(i} I=Vr

(i) F=VyuirU #

(iv) & contains the following transition rules:

L. ‘5(509 #) = {(31’ #, 1)}

2. (s, @) = {(51,a 1)} for every @ in Vo
3. 5(51’ #) = {(tO, #, “-'l)}

4. (t,, A) contains (f,, 4, 1) for every 4 in Vy
5. &(te, A) contains (fo, 4, —1) for every 4 in Vy
6. d{fo, @) contains (fs, @, 1} for every a in Fy
7. &(te, @ contains (f, g, —1) for every @ in Vp
8. d{ts, B) contains {1, A, 0) for all productions

A~—»BinP
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9. &(ts, @) contains (z,, 4, 0) for all productions
A—-sainkf

10. &(to, C) contains (rq, 4, 1) for all productions
11. &(t4, D) contains (z, B, 0) } AB-> CDin P
12, &(fs, S) contains (rs, S, —1)

13. 3ro, #) = {(r1, #, )}

4. d(r, 8) = {(n, #, 1)} for all productions
15. 8(t1, A) = {(ts, S, O} S—>84in P

16. 8(t1, #) = {(s0, #, D}

In ail other cases where no convention holds, (s, y) = ¢.

We shall now show, without complete proof by mathematical
induction, that this linear bounded automaton simulates the deri-
vations of G and only those of G. The staies 5, and s function
to verify that a string of terminal elements is found between the
two boundary symbols #. Rules 1 and 2 show that the automaton
starting at the left-hand boundary symbol passes over all terminal
elements until the right-hand boundary symbol is reached. Rule 3
indicates that at that point state f, is reached. If symbols other
than terminal elements are found between the boundary symbols,
the machine blocks and the string is not accepted. Rules 4 through
7 see to it that the automaton can move freely to the left or fo
the right without altering the content of the input; it can simply
write the symbol it reads. Rules 8 through 11 see to it that the
automaton can transpose elements or pairs of elements only
according to the productions in P. Rules 12 through 15 see to
the correct inversion of productions § — 84, the only rules in
Kuroda normal-form in whick S can appear to the right of the
arrow. Because these are the only expanding productions in the
grammar, it must be possible to derive the input string x in gram-
mar G a5 S = 54 = SAA = ... = SA ... A= x. This is simu-
lated in reverse order by the linear bounded automaton by replacing
#SAB...#, where possible, with # #SB...#. This can oceur
because when the automaton in the “work-state™ #, reads S, it
changes to state r, (fule 12} and moves one place to the lefi to
see if there is an & next to the boundary symbol 7. If that is the
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case, the automaton changes to state r; and, provided that § — 54
is a production of P, rules 14 and 15 replace S4 with #5, and
the work-state #, is again reached. The automaton then sees if $B
can be reduced to §; if it is, # # #.5...# appears on the tape, and
the process continues, In this way the string ## ... #S# will
appear on the tape only if x can be derived from S. Once the
automaton has reached state £, rules 12, 13, and 141 see to it
that it goes on to state #; and proceeds to the right in order to
read the last boundary symbol. According to rule 16, when the
automaton reaches the final state s, and the tape is pushed out,
string x is accepted.

if we wish to have LBA also accept the null-string A, we must
add a new state ¢,, and two new transition rules: 6(fo, #) confains
{t,, #, 1), and (z,, #) contains (5o, #, I). With these, when the
input is A, the final state is reached immediately after completion
of the steps required by rules 1, 2, and 3.

ExaMmPiE 6.2, Take grammar G = (Fn, Vp, P, 5), with Py =
{S, 4, B}, Vp = {a, b}, and the following productions:

{a) S 54 d A->a
b)) §-8 (&) Bob
(©) BA - AB

Because of production (c) it is clear that grammar & is confext-
sensitive and that it is in Kuroda normal-form. G generates the
language L(G) = {a'ha?|i - j = 0}. The sentences are thus
strings of a's with one b in them. Production (a) generates the
string §4%; production (b} replaces the single S with B; by pro-
duction (c) the B can be moved any number of places to the right.
Productions () and (&) replace the variables with terminal symbols.

L Notice that rule 14 exists only if there is indeed a production 5 - §4 in P.
If this were not the case, the operation would stop, When no such production
exisis, language I(G) consists exclusively of sentences of length 1, and it
obviously remains possible to construct a lincar bounded awtomaton which
accepts that language and only that language. Also rule 14 sirictly violates the
convention that no new boundary symbols may be written. Paragraph 7.1 gives
an easy way out,
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We can construct a lincar bounded automaton LBA which
accepts L{G), according to the procedure given in the proof of
Theorem 6.1. Thus LBA = (S, I, I, 8, 8o, #, F), with 8§ = {5, 51,
oo I, 18, o ip I ={a, 6%, I'={S, A, B,a, b, #}, F = {50}, and
the following transition rules in 4:

L o(s0, #) = {{s1, #, 1)}

2. é(s1,@) = {{s1,a, 1)} ‘becauseac ¥Vr

3. 651, 5) = {(s1,5,1)} Dbecausebe Vyp

4. 5(.5'1, #) = {(fg, #, _1)}

5. 500’ S) = {(tfb S, l)s (10, Ss _"1): (rlh Ss "'"1)}
because S & Vi

6. 3(t, A) == {(tﬂa 4, 1)1' (fo, A, _l)a (s, B, l)}

because 4 € Vy, and BA - ABin P
7. 500: B) = {(tﬂy Bv 1)’ (fo, B, "_I)s (rﬂ’ S> 0)}
because Be Py, and § > Bin P
8. J(to’ a) = {(tﬂx a, ]), (fo, 4a, _“1): (to; A, 0)}
becanse g € Vi, and A < ain P
9. 3t &) = {(to, b, 1), (f0, b, —1), (s, B, 0)}
because be Vp,and B > bin P
10. &(ts, B) = {(i#p, 4, 0)} because BA — ABinP
11. 8(ro, #) = {(r1, #, 1)}
12, &(r1, S) {(r1, #, I)} { because S - S4in P
13. é(f]_, A) = {(fm Ss 0}} {
14, J(ll; #) = {(503 #s 1)}

The following shows the consecutive configurations in LBA for
the acceptance of the sentence abaa; the numbers over the transi-
tion symbols | indicate the rule used in the transition.

s,#abaa# L #sabaa# H #as,baa# = #abs,aa X2
#abassask 1= #abaas,# '+ #aebata# V& #abat Ad# V-
#abt aA# X #abt AA# \& FarhbAA# V2 #at,BAAH# F-
#1,aBAA# V- #1,ABAA# V& #B1BAA# P2 #Bt AAA# V&
#t BAAA#E tL #1,SAAA# 2 1, #SAAA# VP #r SAAA#
M2 st AAAx V2 s SAAz PR uopopr O
T A e R Al =T >
HH Sy

[
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To complete the statement of equivalence between linear
bounded auvtomata and context-sensitive grammars, we mention
the following theorem.

THEOREM 6.2. For every linear bounded automaton LBA, there is
a confext-sensitive grammar @ such that T(LBA) = L(G).

A large number of rules are needed for the construction of such
an equivalent context-sensitive grammar, The proof of this theorem
is beyond the scope of this book; for it we refer the reader to
Landweber (1963) and Kuroda (1964).
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TURING MACHINES

An obvious question at this point is whether it is possible to
design an automaton which could accept type-0 langnages. The
answer is affirmative; in fact some time before the theory of formal
languages came into existence, Turing had described an automaton
which later proved capable of accepting type-0 languages. The
TURING MACHINE, as the antomaton is called, is in principle capable
of performing every operation which one might intuitively qualify
as a MECHANICAL (EFFECTIVE)PROCEDURE {(cf. paragraph 2.1.). In
this chapter we will make the notion of “procedure” more explicit
in order to facilitate an understanding of a number of important
properties of natural languages. However, we shall first show that
Turing machines accept type-0 languages and only type-0 lan-
guages, and that there exists a type-0 grammar for every langnage
accepted by a Turing machine.

In this chapter, more than in the preceding chapters, theorems
will be stated without proof. The theory of Turing machines has
recourse to refined fields of mathematics, such as recursive function
theory, with which we can suppose no acquaintance on the part
of the reader. Moreover Turing machines are less of interest to
linguistics and psycholinguistics than automata of more limited
capacity. Therefore, we shall state and discuss only a limited
number of theorems which are of some importance to linguistics,
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7.1. DEFINITIONS AND CONCEPTS

Several different but equivalent terminologies have been used in
describing Turing machines. The terminology which we shall use
here is closely akin to that of linear bounded automata used in the
preceding chapter

Like linear bounded automata, a Turing machine is made up of
a finite antomaton and a tape. A Turing machine can read and write
tape symbols in the same way as a linear bounded automaton,
but it is not subject to linear limitation: it can read and write to
the left and to the right of the original input. We must suppose
that the length of the tape is infinite, and that at the beginning of
an operation a limited and continuous portion of the tape carries
input symbols, bordered left and right by boundary symbols, To
facilitate further formulation, we also suppose that the remainder
of the tape is filled with boundary symbols. The machine can read
the boundary symbols and replace them with other tape symbols,
but cannot itself write boundary symbols, Consequently the tape
carries a coniinuous siring of input symbols which cannot be
interrupted by boundary symbols. Ou the other hand, there may
be “pseudo-boundary symbols”, equivalent in every respect {o the
ordinary boundary symbols except in that they may also be written;
in informal treatment of Turing machines, the distinction between
the two types of boundary symbols is often neglected.

The notation will be the same as that wsed for linear bounded
automata.

In formal terms, a Tuaring machine TM 18 a system (S, I, T, &,
So, #, F), in which:

(1) S is a finite set of STATES, with 5, as the INITIAL STATE, 2nd
F = § as the set of FINAL STA'TES,

{2) Iis a finite set of INPUT SYMBOLS.

(3) I' is a finite set of TaPE sympoLs, of which I is a subset,
Elements of I" which are not elements of I are called AUXILIARY
sYMBO13, one of which is the BONUDARY sYMBOL #. In the initial
configuration the tape carries a string from I*, bordered on the left
and on the right by strings of boundary symbols of infinite length,
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(4) 4 is a finite set of TRANSITION RULES which indicate, for every
pair of state and input symbol, what the machine must write {the
boundary symbol cannot be written by the machine), what the
following state will be, and whether the machine will remain at
the same place on the tape, or move one step to the left or right.
It is also possible for the machine to block. We can therefore say
that d maps § x I'in § X {I' —#} x {—1, 0, 1} U ¢. The transi-
tion rules have the form &(s, ) = (s', ¥/, k), where k = —1, 0,
or 1. They should be interpreted as follows: if the Turing machine
is in state s and reads the symbol p, it passes to state s', writes ¥’
over the symbol y, and moves the tape according to the value of &,
Turing machines are deterministic; for every combination of state
and tape symbol, only one transition is possible. It is possible, of
course, to define nondeterministic Turing machines, but these are
equivalent to deterministic Turing machines.) (We shall vse non-
deterministic Turing roachines in the proof of Theorem 7.1.).

Before defining the language accepted by a Turing machine, we
must indicate what is meant hers by coufiguration. As was the
case for linear bounded automata, a configuration in a Turing
machine includes the content of the tape, the state of the auto-
maton, and the position of the tape content in relation to the
antomaton. The notation is the same as for configurations in linear
bounded automata, but redundant boundary symbols are omitted.
Thus, for example, s# 7172 ... pa# stands for ...# £s#p1ys ...
yat # # ..., and means that the Turing machine is in state s and
is reading the boundary symbol directly to the left of the tape
content ¥1P2 ... . The initial configuration is s,#w#, where
w e I'. A final configuration is every configuration in which the
Turing machine is in a final state: wsyy, where o and y are elements
of I, and sy is an element of F. In this case the automaton is said
to sTop (stopping should not be confused with blocking). A string
x in I" is accepted by a Turing machine when 5,#x# F ws,z. The
LANGUAGE accepted by a Turing machine is the set of the strings
in I* accepted by the machine. Figure 7.1, illusirates an imitial

1 Tt is not known whether deterministic and nondeterministic linear bounded
automata are also equivalent,
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configuration, a configuration during operation, and a final con-
figuration of a Turing machine in the process of accepting the
imput string x = & ... dm.
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7.2. A FEW ELEMENTARY PROCEDURES

In this paragraph we shall give a few examples of operations which
can be performed by a Turing machine, The operations given here
will later serve as elementary procedures in the comparison of
Turing machines and type-0 grammars.

ExaMpLE 7.1. The transfer of information. on the tape
In several cases it is mecessary to transfer parts of the original
input, or of the tape content which develops later, to a different
place on the tape. In this way information can be stored while
other operations are carried out. A simple example of this may be
seen in the following Turing machine:

TM = (S, 1, I, 8, 50, #, F), with § = {5, 54, 58, 51, 52, 53},
I={a b}, '={#,a b, ¢ 4, B}, F= {53}, and where § con-
tains te following transition rules:

1. 8(se, #) == (S5, #, 1} 13 d(sg, 4) = (58, 4, 1)
2. (s @) = (54,0, 1) 14. 8(sg, B) = (s, B, 1)
3 s b) = (sB,c, 1) 15. d(ss, #) = (51, B, —1)
4, 5(so, Ay = (52,4, 1) 16, 8(s1, d) = (51, ¢, —1)
5. ¥se B) = (52,5, 1) 17. (51, B) = (51, b, —1)
6. s, a) = (s4,a, 1) 18. 8(s1,¢) = (s, 0, 1)
7. 854, B = (54,5, 1) 19, &(s1, A) = (51, 4, —1)
8. d(st, A) = (34, 4,1) 20. 8(s1, B) = {51, B, -1}
9. §(s4, BY = (54, B, 1) 21. &(s2, 4) = (52,4, 1)

10. 8(s4, #) = (51, 4, —1) 22, d(s2, B) == {52, 5, 1)
1. ¥sp, @) = (sm, 4, 1) 23. O(sz, #) = (53, #,0)
12, §(s, B} = (88, b,1) &(—, —, —) = pinall other cases,

This Turing machine will replace every string x in I+, where
|x] = n, with a string ¢®x; the original string of ¢’s and &’s is moved
exactly its length to the right and is replaced by a string of ¢’s
whose length is equal to that of the string of a’s and #’s. Let us
take for example the transfer of the string aab. The following gives
the successive configurations in the machine; the number of the
transition rule involved is given over the transition symbol,
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except whete a sequence of operations is repeated, in which case
an asterisk * appears over the transition symbol,

s, #aab# (R #saab# - #es ab# e F#cas b# H-
#eabs gt V2 #eas,bA# P ses,abA# V> #s cabA# HE
#es,abAst Yo sces bA# ¥ #echs, AA# P2 Hees,bAA# HT
desychAA# P2 #eespAA# V- #ceesgAAs# ¥V #HcceAAsy#
=8 #Heccds, AB# P— #eces, AAB# - deccas, AB# =
#eccaas, B# [ #eccaabs,7# (2 #eccaabs, #.

Exampre 7.2, The comparison of two strings

At times it is necessary to decide whether two strings of elements
are identical. One can easily see that this is possible with a Turing
machine. Imagine that we are inferested in two strings r; and re
over a vocabulary V. We place the string ricrz on the tape, where
¢ ¢ V. The language T = wew is then a context-sensitive langnage
with a vocabulary VU {c}. This means that there is a context-
sensitive grammar which generates the semtences wew and only
the sentences wew, There is consequently a linear bounded autom-
aton LB4 which accepts language T, and since Turing machines
are a generalization of the linear bounded automaton, there is
a Turing machine which accepts Ianguage 7. In other words, a
Turing machine accepts a string ricrs on condition that ry = ra,
and can therefore be considered an antomaton which determines
the identity of two strings.

7.3, TURING MACHINES AND TYPE-0 LANGUJAGES

It is possible to construct a “Universal Turing machine” UTM,
which can simulate the operation of any given Turing machine.
A description of the TM (its fransition rules, etc,) would be placed
on the input tape of the UTM, while the input of the TM would
appear in ancther place on the input tape of the UTM. Thus
“programmed”, the UTM would imitate the operation of the TM
precisely. It is even possible to consiruct a UTM with only two
states, but it would need an extremely large tape vocabulary,
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However, it is not our intention to discuss Universal Turing
machines here. We have mentioned them only to render the propo-
sition acceptable that various elementary procedures for which
Turing machines have been constructed can be combined in a
single Turing machine. Such a machine could switch over from
one procedure to another, just as a digital computer can switch
from one subrontine to another. (The only essential difference
between a computer and a Turing machine is that the latter disposes
of an unlimited store: all information presented can be stored on
a tape of infinite lenpth.) With this background, we can discuss
ihe following theorem.

Tueorem 7.1. For every type-0 language L there is a Turing
machine such that T(TM) = L.

ProoF (summary). The construction of a TM which accepts lan-
guage L is roughly as follows. Let L be a type-0 language, and G the
type-0 grammar which generates it. Let x be a sentence in L. We
put the string x on the input tape as #x#, and build in a procedure
according to which the symbols ¢ and S (neither of which are ele-
ments of Pr) are added to the string as follows: 7#xc87#. For every
production & — §in G we construct such iransition rules for TA
that a string « can be rewritten on the tape as f. If « is not of the
same length as f§, it will be necessary at rewriting to transfer the
information directly to the right of «, either to the left or to the
right, so that § will fit precisely into place. Therefore we must
include a transfer procedure in the Turing machine, similar to
that of Example 7.2,

IM can nondeterministically replace S with some §f, where
S -+ B is a production in G, Let § = By Bz ... By (where By is an
element of ¥, but not necessarily of V). In that case the tape
shows #xcB1Bs ... By#.

Next we must build a procedure into TM according to which
the left-hand members (o) of the productions oy — f; can be
rewritten as an identification symbol. The automaton now unon-
deterministically chooses an oz and a By from the string mentioned
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above, and switches over to a comparison procedure which com-
pares «; element for element with BBy, .... Example 7.2. showed
that such a comparison procedure is possible in principle, If siring
o is identical to string BBy, 1 ..., it is replaced by f, the right-hand
membet of the production a; — f;. By continued replacement of
strings between ¢ and # according to the productions of G, a
string of terminal elements is (nondeierministically) composed
between ¢ and #. At this point the Turing machine can switch
back to the comparison procedure in order to compare this new
string with string x. If the two are identical, the machine reaches a
final state and stops. It is clear that the terminal strings between ¢
and # can only be sentences of J{G), and that any sentence in
L(G) can appear there. Thus T'M accepts the sentences of IL{G)
and only the sentences of L{G). If there is a nondeterministic
TFuring machine which accepts L{G) and only L(G), then there is
a deterministic Turing machine which does the same,

THeEOREM 7.2, For every langnage T accepted by a TM, thereis a
type-0 grammar @ such that L(G) = T{TM).

ProoF (summary). Let T be the language accepted by Turing
machine TM. For every x in T, TM goes from its initial state to
a final state in a finite number of operations: s, #x# F #os X
with sfe Fand o, y € I'*. We write x as @142 ... g, (# > 0). The
first step in the process of accepting is as follows: sp# a1az...a, % +
#5,0,085.-.4, % . Another transition arbitratily chosen is #yy,sy.0
# b #s'yyhe# if TM moves to the left (with s, s’ €S, y;,
5,7, € T, and , o € I'"). This can be described as rewriting triads:

(1) 71872 = Y172
Nothing else changes in the configuration, and given the construe-
tion of TM, the transition is completely determined by the triad
y18y2. There is a similar pair of triads for the case that the machine
moves to the right. The transition has the form sy y.0% b
#alyys'y,0# and can be reptesented as a rewrite:

(2) 57172 = 71572



TURING MACHINES 109

If the machine remains in place, we write:

(3) sy, = 52

Becanse the number of states s and tape symbols y for each Turing
machine is finite, the number of pairs or triads is also finite. A
subset of the set of these pairs gives a complete description of the
possible operations of the Turing machine. Because Turing ma-
chines are deterministic, for every triad or pair to the left of the
arrow there is only one possible triad or pair which can foilow to the
right of the arrow. Therefore, we can conclude that the operation
of every Turing machine can be completely described by means of
a finite set of deterministic rewrite rules.

Let TM accept x. We have seen that the final configuration has
the form 7#wsey7£. It is not difficult to construct a Turing machine
TM’equivalent to TM, which has as final configuration 3 578" #. For
this purpose we build M’ in such a way that, just before reaching
a final configuration, it will follow a procedure to replace all the
remaining tape symbols with (pseudo) boundary symbols, except
the last which is replaced by the as yet unused tape symbol S’
The initial and final configurations are therefore respectively
Sodtx# and #5585 #.

We can now construct a grammar G for which L(G) = I(TM) =
T(TM'). We collect all the rules of types (1), (2), and (3} in TH{".
If f—ais 2 rule of TM', we make @ — # a production of G.
Given the deterministic character of rules £ - «, if « —» § and
o = B, then ¢ = &', Next we add to the productions of G the
productions § — 5p8" for every sy in F, and the production
So# = #. It is clear that by means of these productions, the
derivations S = 5,5’ = x and only these can be made for every x
in T and only if x € T. G is a type-0 grammar, and consequently
the theorem is proven.

It follows from Theorems 7.1. and 7.2, that Turing machines
are equivalent to type-0 grammars or unresiricted rewrite systems.
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7.4. MECHANICAL PROCEDURES, RECURSIVE
ENUMERABILITY, AND RECURSIVENESS

Given a type-0 grammar G with a vocabulary Vo, there is a Turing
machiné T3 which will stop in a final state after a finite number of
transitions for every string x in V5 where x € I{G). We call
this a mechanical procedure. In general we can define a mechanical
(effective) procedure as an operation which can be performed by
a Turing machine in a finite number of steps, Thus we replace
the temporary definition of “procedure” given in paragraph 2.1.
with the more precise definition “that which can be performed by
means of a Turing machine”. In paragraph 2.1. we imagined a
procedure as a computer program by which an operation can be
performed systematically. It does not at first seem evident that
anything that can be performed systematically in a mechanical
way (that is, without the use of human intuition), possibly by
computer, can also be done on 2 Turing machine., The Turing
machine appears to be far too simple a mechanism. But since the
publication of Turing’s original article (1936) it has become
increasingly evident that the Turing machine can indeed perform
anything which we might intuitively qualify as a procedure. For
a good survey of the question, see Minsky (1967), It is therefore
clearly justified formally to define the concept “procedure”, as
we have done, in terms of Turing machines. This opens the possi-
bility of establishing with exactitude the problems for which no
procedure exists, for such are the problems for which no Turing
machine can be constructed. In the remainder of this chapter we
shall speak freely of Turing machines whenever it is clear that a
mechanical procedure must exist. Whenever we can explicitly
indicate the consecutive steps of an operation, we conclude that
the operation can be performed on a Turing machine.

The acceptance of a sentence by a Turing machine is by defini-
tion a mechanical procedure, but the same is true of the acceptance
of sentences by more limited automata, It follows from the hierar-
chy of languages that for every language which is accepted by a
finite automaton, a nondeterministic push-down automaton, or
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a linear bounded automaton, there exists a Turing machine which
also accepts it. We can therefore treat the acceptance of languages
and sentences by automata in general in terms of procedures.

We would point out that the definition of “accepting” has been
rather weak for all automata. We know that if x e L, there is a
procedure (TM) which will confirm that x is an element of L.
But what happens if a string in V; which is not an element of L
is introduced as input? The Turing machine cannot reach a final
state, but rather becomes blocked or goes on endlessly computing.
We shall return to this point, but we shall first show that for every
type-0 language L there is a mechanical procedure by which each
sentence in L can be enumerated within a finite amount of time.
L is then said to be RECURSIVELY ENUMERABLE,

THEOREM 7.3. Bvery type-0 language is recursively enumerable,

ProOF. Tt is easy to see that the strings in V' can be enumerated
by means of 2 mechanical procedure. If ¥r contains & elements,
the strings of ¥ can be considered as numbers in a system with
a base k, plus the null-string, If, for example, there are ten elements
in ¥V, we can give them the labels 0, 1, 2, ..., 9. strings of ¥ are
thus numbers of the decimal system: 90, 1,2, ..., 10, 11, ..., 100, 101,
..y and it is certainly possible to design a Turing machine which
will write these sentences in sequence on its tape (the Turing ma-
chine must be able to perform the operation #-+1). Each of these
numbers appears on the tape after a finite number of operations,
and no number is omitted, The same will hold for . Furthermore,
we know that there is a procedure which can determine whether
a string i an element of L (Theorem 7.1.). This procedure can be
applied to every newly epumerated string of ¥y, in order to
enumerate the sentences of L. There is a problem, however, for
we do not know what will oceur if the string in question is not an
element of L. It is possible that the machine will go on endlessly
computing and will never come to enumerate and test the following
strings. This situation can be avoided by interrupting the test
procedure at a given moment in the following way., We number
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the strings in P3: 4 =1, a3 = 2, a2 = 3, etc. (this is possible, as
we have seen), and we indicate by number how many transitions
the 7M can undergo at a given stage of the test procedure for a
given string. The process takes place as shown in Table 7.1. In

TaBLE 7.1.' Test Procedure for the Enumeration of the Sentences of L.,

Number of Tranzltions of T to be Simulated

String 1

sesing i/a/s/m

fact we have constructed a new Turing machine, TM’, which
simulates the test procedure of TM. TM' first tests string 1 to see
if it is an elernent of X, by simulating one transition of the procedure
of TM. If TAL finds that the siring is an element of L, it enumeraies
the siring and proceeds to test string 2. If it is not yet clear whether
or not string 1 is an element of L, TM still proceeds to test string 2.
According to the table, 7’ may simulate again only one transition
of TM. String 2 is or is not enumerated according to the results of
this test; according to the table, TM’ then goes back to string 1
and simulates two steps from TM to test the string. According
to the results of this test, the siring is or is not enumerated, and
TM’ then goes on to test string 3 with one step from TM. Tt goes
on in the same way to test siring 2 with two transitions, string 1
with three transitions, string 4 with one transition, and so forth.
In this way the antomaton returns to each string and performs one
step more than the preceding time to test it. Thus each string in
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Vy is successively tested for membership in L by way of a finite
number of tramsitions. For cach x in L the procedure finally
leads to the acceptance and enumeration of x.

We siate without proof that the inverse of Theorem 7.3. is also
valid: every recursively enumerable language can be generated
by a type-0 grammar,

‘We have seen that the recursive enumerability of a type-0 lan-
guage follows from the existence of an accepting procedure for
the sentences of L, and have remarked that this is a weak theorem,
We do not konow what the Turing machine will do to a string in
¥ which does not belong to the language. In order to discuss this
question further, we define the COMPLEMENT OF A LANGUAGE L,
with vocabulary Vy, as V5 — L. This is the set of strings over the
terminal vocabulary which are not elements of the language.
Linguists call this the set of UNGRAMMATICAL SENTENCES. The
complement of a language is denoted by CL.

A stronger form of acceptance would be a procedure according
to which for every string in V7 it would be indicated if the string
belongs to L or to CL. One might imagine a “twin Turing machine”
which would reach a final state for a string in CL, while the
original Turing machine would do the same for a siring in L.
One might also imagine a Turing machine with two sets of final
states, one for accepting, the other for rejecting. For every string
x in ¥y, the Turing machine would reach a final state: the
accepting final state when x € L, and the rejecting final stafe
when x € CL. Xf such a procedure exists for language I, the
automaton is said to RECOGNIZE (as opposed to accept) L. A recogni-
tion procedure of this sort is vsually cailed an ALGORITHM. An
algorithm is thus a procedure according fo which for every x in
V1, it can be determined whether or not x belongs to L. Because
algorithms Tead to decisions for every string in Vy, the language
L < ¥y is called a DECIDABLE (RECURSIVE) SET if an algorithm exists
for the recognition of L, It follows from the construction of the
twin Turing machines that a language is recursive if both the
language and its complement are recursively enumerable,

We know that type-0 languages, and consequently also type-1,
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type-2, and type-3 languages are recursively enumerable, but are
the complements of these languages also recursively enumerable?
That is not the case in general. We state without proof that there
are type-0 languages which are not recursive, because they have
complements which are not recursively enwmerabie. This means
that the complements are not type-0 languages. However, the
complement of a coniext-sensitive language is recursively enumer-
able, and consequently context-sensitive; context-free and regular
languages are all recursive. There are (recognition) algorithims
for all of these languages.

We have seen that the complement of a type-0 language is not
necessarily itself of type-0, but what of the other language types?
It is not yet known if the complement of a context-sensitive
langnage is context-sensitive; all we know is that it is recursively
enumerable, and consequently of type-0. It has been proven that
no general procedure exists for determining whether the comple-
ment of any context-free language is also context-free. In any
case it does not hold in general that the complement of a context-
free language is also context-free; the complement of a determini-
stic contexi-free language is, however, also deterministic and con-
text-free. It is alse known that the complement of a regular lan-
guage is likewise regular.
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GRAMMATICAL INFERENCE

8.1. HYPOTHESES, OBSERVATIONS, AND EVALUATION

Is it possible on the basis of samples of a language to decide on an
acceptable grammar for that language? In its present form, this
question cannot be answered, but the day to day work of the
linguist, as well as the fast growing language capacity of the young
child, suggest that an affirmative answer might be expected to at
Jeast some forms of the question. The answer depends on (1) what
is known about the grammar, (2) the composition of the sample
of data, and (3) what is understood by “accepiable”, The investiga-
tion of these matters is known as the study of GRAMMATICAL
INFERENCE.

That which is already known or supposed of a grammar is
referred to by the term HYPOTHESIS-SPACE. The terminal vocabulary
Vw, for instance, is ordinarily given. Certain suppositions can also
be made as to ibe class to which the grammar belongs (regular,
context-free, etc.). In the case of a probabilistic grammar, not only
can suppositions be made about the type of grammar, but infer-
ence can also have the more limited goal of finding the most
acceptable production probabilities for a grammar which is given.
This latter has rather direct possibilities of application, and we
will deal with it in some detail in paragraph 8.2. Paragraph 8.3,
will treat a number of general findings relative to nonprobabilistic
hypothesis-space, and paragraph 8.4. will discuss the most general
kind of hypothesisspace, probabilistic grammars for whick both
productions and production probabilities must be found.
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The term OBSERVATION-SPACE refers to the composition of the
data sample; it can take on various forms. ¥ L is the language
investigated and x is a given string in ¥, we can obtain positive
information, x € L, or negative information, x ¢ L (Le. x € CL),
about L. In the former case we spezk of a POSITIVE INSTANCE, in
the latter, of a NEGATIVE INSTANCE. The information available is
called an INFORMATION SEQUENCE. If all the instances in the sequence
are positive, we have a POSITIVE INFORMATION SEQUENCE; if negative
instances also occur, we have a MIXED INFORMATION SEQUENCE.
A COMPLETE INFORMATION SEQUENCE is a mixed information
sequence in which all positive and negative instances are enumerat-
ed; such sequences are generally infinite in length. A COMPLETE
POSITIVE INFORMATION SEQUENCE is the enumeration of all positive
instances; it is called TEXT PRESENTATION, since the language is
presented, sentence for sentence, as a text. Repetitions may occur,
provided that the enumeration is complete, ie. every sentence of
the language must oceur afier a finite number of other sentences.
INFORMANT PRESENTATION is the term for a complete mixed in-
formation sequence, or a sequence in which every positive and
negative instance over Vy occurs after a finite number of other
instances, One might picture this as a researcher who wishes to
find the grammar of a language and reads each string of ¥y to an
informant who in turn tells him for every string whether it belongs
to the language or not. A STOCHASTIC TEXT PRESENTATION is an
infinite sequence § = xi1, x3, ..., where x; is an ¢lement of L, and
L is a probabilistic langnage in which for every xi, plxi=x¢) =
plx =x);* this means that the chance that string x will be in
position 7 is constant and equal to the probability of the siring in
the language. The sentences thus appear successively with their
respective probabilities in L. Notice that the definition of a stochas-
tic text presentation does not include the property of completeness.
At the limit, however, the relative frequency of a sentence in a
stochastic text presentation is equal to its probability in L. The
chance of occurrence of a sentence x in L can be increased by

1 plx = x) is the probability of x in L. We suppose the variables x; to be
independent, i.e. plxs = x5 | Xy = x3) = plxg == xp).
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increasing the length of the information sequence. A sample of
a stochastic text presentation of size k consists of the first k& elements
of that text presentation. On the basis of the assumption of inde-
pendence,® the probability of this particular sample is the product
of the probabilities of its k elements.

What is an “acceptable” grammar ? Suppose that the information
consists of an information sequence up to a given point k: xi,
X2, ..y Xk Any grammar which corresponds to the elements
X1, ..., X% 18, in 2 weak sense, acceptable. By “corresponds” we
mean that the positive instances in the sequence are generated by
the grammar, and the negaiive instances are not. But the criterion
of correspondence will in general allow an infinity of possible
grammars. If we concentrate our attention on the positive instances
in the text presentation, we find that the one extreme is a grammar
which generates only the & elements of the information, whereas
the other extreme is a universal (regular) grammar over V7 which
generates all the strings of V. Both these grammars correspond
to the information, but the former is “unnecessarily” complex,
and the latter would correspond to any sample, and therefore does
not “fit”, Both complexity and fit must decidedly be included in
the standard of evaluation of the acceptability of a grammar. To
a large extent, complexity is a matter of teste and of the preferences
of the researcher. That the standard is relative is probably the
only point on which one conld expect all to agree. Grammars may
be compared on the basis of vatious criteria, such as the number
of symbols, the number of productions, the number of alternatives
for each production, etc. These criteria make up the context of
evaluation; on it depends the complexity of a grammar. The use
of the mechanism of probabilistic grammars can permit a definition
of context (without excluding other definitions, as complexity
remains a matter of tasie) in terms of the a pricri probability of
alternative grammars in the hypothesis-space. This will be done
in paragraph 8.4; it will at the same time permit an evaluation,
by way of the Bayes theorem, of the fit of various probabilistic
£ramrmars.

2 Seenotel,
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In the following paragraph, however, we shali deal only with
the classical statistical evaluation procedure. This method is more
efficient in that context, and yields results for large samples which
scarcely deviate from those of a Bayes analysis.

8.2, THE CLASSICAL ESTIMATION OF PARAMETERS
FOR PROBABILISTIC GRAMMARS

We will be dealing here with the simple case in which, except for
the production probabilities, the entire grammar is given. The
discussion will be limited to nonambiguous context-free grammars.

On the basis of a sample of language L, we must determine
which probabilistic grammar will be the best for I, that is, we
must find an optimal estimate for the production probabilities of
the grammar,

Let G be a nonambiguous context-free grammar with N produc-
tions. The respective production probabilities are labelled p,
D2, ..., pN. To normalize the grammar, we must see to it that for
every variable 4 in Vi, ¥ p (4 — ) = 1. If there are I( > 0)

productions in which 4 occurs to the left of the arrow, then for the
productions 4 — a¢ {(where i = 1, 2, ..., I), I—1 production pro-
babilities must be found, (If G has only one production, 4 — x, then
pld = x) = 1) If Vy has M variables, and the number of inde-
pendent production probabilities in the gramimar is denoted
by k, then £ = N — M. On the basis of the sample, estimates
must be found for these & parameters, qi, g2, ..., gz. When that
is dong, the production probabilities p1, p2, ..., pa will follow direct-
ly from the normalization.

Given a sample from language L, we proceed as follows. Let
the sample contain » different sentences (or sentence types, since
a particular sentence can occur more than once in the sample).
The leftmost derivation S = 5; must be determined for every
sentence 5; (where i = 1, ..., n). If the productions used in the
derivation are independent, then p(S = 5,) = p(s)) can be expressed
as the product of the production probabilities p; of the various



GRAMMATICAL INFERENCE 119

steps in the derivation. For the derivation S HysZp = Y 2 s,
for example, this is p(s) = pipyp;. This product for each of the
n sentence types is denoted by my, and each of ifs terms can be
cxpressed in parameters 4, ..., ¢x.

We define the likelihood function % for the sentences 5y, ..., &»
and the parameters g1, ..., gx as follows:

“?(sls vaes Sys Gys oons Qk) = R{ln{z R{"’

where f; is the number of times senience type i ocours in the sample,
Using logarithms, this is:

log# = f,logn, + fylogn, + ... + flog=n, = Y filogm,
i

The best estimate of the parameters 4, ..., gx is that which gives
a maximum for %, and thus also for log%, With these parameters,
the chance of drawing precisely this sample is at a maximum.
The various parameter estimates &, §z, ..., dx, are found by
expressing every m; in parameters, and then determining the %
partial derivatives of % according to ¢i, ..., g This yields a
S log ¥
dg;
desired estimates §u, ..., §z. At this point the probabilities py, ..., pwv
can be calculated.

system of k equations = {, the solutions of which are the

Exampit 8.1, Let L be 2 language over the vocabulary {a, b, c}.
Suppose we have a sample of L consisting of 100 sentences with
the following distribution of sentence types: ¢ (22 times), aca
(42 times), abeba (19times), abbcbba (12 times), abbbebbba (4 times),
and abbbbchbbba (once). A possible grammar for these sentence
types has the following productions:

S8 qda AB bAb
Sl;g;c Al—_?f-c

Above the arrows we find the production probabilities expressed
in parameters, and in such a way that the grammar is normalized.
The lefimost derivations of the sentences in the sample are given
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below with the probability of the production concerned at each
step.

s=e oo = 1-a,

S8 a4a =¥ aca placa) = g,{l—qg;)

S% 04a% abAba' =L abcba pabeba) = q,4,(1~4;)
eic. pabbebba) = q,q45(1—q5)

pabbbchbba) = q,q3(1—q,)
plabbbbebbbba) = q,45(1—q5)

The likelihood function then becomes:

2z =3[(1—ql) 21,0 —g)]* [4;42(1—42.)]12 [2:a50—a)]*% x
(21451 — 301" [49:9%(1 ~42)] = 41°45 (1 —q,)**(1 —g,)"%, and the
natural Jogarithm of & is:

hF=7inq +55hg +22In{1—q) + 78 In (1—gz). The
most likely values of ¢y and gz are found by taking partial deriva-
tives of In.% with respect to g1 and gs, putting them equal to zero,
and solving the equations:

ilhy 1718 22 shh® 59 78
0g, q 1-gq, 04, 4 1-q,
thus §, = 0.78 thus §, = 043

With these estimates of the parameters, we can calculate the proba-
bilities of the sentence types in the sample. For ¢ we have l-¢; =
0.22, for aca, q1(l-g») = 0.78 % 0.57 = 0.443, and so forth. In
a sample of 100 sentences we would expect the sentence ¢ 22 times,
and the sentence aca, 44.5 times, etc. All the values are given in
Table 8.1., together with the observed values. The correspondence
between observed and expected values can be measured and evalu-
ated with standard statistical tests such as, for example, the chi-
square test for goodness of fit.
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Taeik 8.1. Observed and Ezpected Frequencies of Sentence Types
(Exampie 8.1.).

Sentence Type Observed Expected Sentence Type Obscrved Expecied

¢ 22 22 abbbchbba 4 3.5
aca 42 44.5 abbbbebbbba 1 1.5
abeba 19 121 other 0 12
abbebbea 12 8.2

8.3. THE “LEARNABILITY" OF NONPROBABILISTIC
LANGUAGES

A number of theorems concerning the “learnability” of non-
probabilistic langrages were presented by Gold in a fundamental
article (1967). In this paragraph we shall state some of his more
imporiant findings without proving them,

Suppose we have a complete (text or informant) information

sequence for a language of a given class (finite, regular, etc.). An
algorithm must be found with the following characteristics:*
(1) cach time a new input element x; is introduced, the algorithm
produces a grammar (or a code for a grammar) of the given class
which is consistent with the information received up to that point.
(2) after a finite number of elements has been received, the output
remains constant: the grammar produced as output is always the
same or equivalent, and is a grammar of L.

A language is said to be IDENTIFIABLE IN THE LIMIT Or LEARN-
ABLE if such an algorithm exists for it for every complete informa-
tion sequence. A. class of languages is fearnable if every language
in it is learnable. The most important conclusions drawn by Gold
from his investigation concerning the various classes of languages
are given in Table 8.2.; in it, the symbol + denotes “learnable”,
and the symbol —, “not learnable”.

1 “Algorithm™ is used in the same sense here as in the preceding chapter:
a Turing machine which stops {praduces an ouiput} after every input. Gold
also analyzes learnability as a procedure, but we will not discuss his findings
here; they are not much different from the results for algorithms.
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TaeLe 8.2, “Learnability” of Languages of Various Classes according te Text
or Informant Presentation

Language Class Text Informant

Type-l

Type-0 {recursive)

Type-0 {primitive recursive)
Contexi-Sensitive
Context-Free

Regular

Finite

+{ b1

f+++++ 11

The table calls for some explanation on (a) the broad difference
between “learnabilty” on the basis of text presentation and “learn-
ability” on the basis of informant presentation, and (b) the fine
differentiation within the class of type-0 languages.

(a) Text presentation involves learnability for finite languages
only. The fact that a finite langnage can be learned through text
presentation can easily be understood as follows. Every sentence
of the language appears after a finite number of earlier instances
(since the presentation is complete). The algorithm can simply
be to enumerate afl different sentences which have appeared in
the presentation up till and including the Iast instance. This list
of sentences can as well be written as a grammar with rules §' — x;
with one rule for every sentence x;. Afier a finite amouni of iime,
all the sentences of the language will have passed in review (as
the number of sentences is finite), and from that point the grammar
will remain unchanged. The grammar thus produced will certainly
be a grammar of the language.

The process, however, will only succeed with finite languages;
not even regular languages are learnable, according to Gold’s
definition of the term, on the basis of text presentation. One nright
imagine the following algorithm for the learning of regular lan-
guages on the basis of text presentation: the first and all following
outputs of the algorithm would be a universal grammar U, with
prodnctions § — g and § — aS for every 4 in V. As such a gram-
mar can generate any string in ¥, all subsequent outputs would
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be the same grammar, which will be consistent with all farther
information. But this algorithm would not satisfy condition (2)
of the definition, because the grammar produced is not a grammar
of the language (unless the language is the universal language V7).
The grammar would then be “too broad” for the language. The
algorithm should be set up in such a way that the grammar is as
narrow 3s possible at first, and is broadened according to the
incoming information. As the class of finite languages is contained
by the class of regular languages (Theorem 2.3.), it is not impossible
that the language here in question be finite. The algorithm must
begin here with the narrowest conjecture, namely that the language
is finite. If it more broadly supposed the language to be infinite,
while in fact the language was finite, it would never receive informa-
tion incompatible with that supposition. We might, of course,
imagine an algorithm which decides that a language is finite if it
finds k repetitions of the same set of sentences, but this still would
not solve the problem. Although such an algorithm would yield
a correct grammar for a finite Jangnage, it couid mistake an infinite
for a finite language. Suppose, for example, that from infinite
language L a text presentation is prepared as follows: take from L
subsets 71, Fy, ... of increasing size. Begin presenting the sentences
in Fy with k or more repetitions. The algorithm will then incorrectly
decide that the language is finite. When Fo is introduced, the
algorithm must review its judgment, but if there are also k or
more repetitions of the sentences in Fp, it will return to its original
decision that the language is finite, But the same process will
occur when F3 is introduced, and so forth. The presentation is
complete, for every sentence of the language wilt be presented after
a finite amount of time, but the algorithm would always produce
nothing other than grammars for finite languages. Thus an algo-
rithm which functions flawlessly for finite languages cannot learn
an infinite language, and an algorithm adapted to infinite langnages
will, when presented with a finite language, produce grammars
which are too broad. Therefore it is impossible to “learn” an
infinite language only on the basis of text presentation.

(b} In the preceding chapter it was stated that type-0 languages
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are generally not recursive, However there are type-0 languages
which are recursive, but not context-sensitive; the set of recursive
type-0 languages does not coincide completely with that of context-
sensitive languages. The table shows that only “primitive recursive”
type-0 languages, a subset of recursive type-0 languages, are learn-
able according to Gold’s definition of the word. Primitive recursive
languages cannot be defined without recourse to the theory of
recursive functions.! Suffice it to note that “most” recursive
languages are primitive recursive (also, in the history of mathe-
matics, it has been difficult to find exceptions to this), and that the
distinction between recursive and primitive recursive languages is
of little importance to the study of natural languages. All recursive
grammars (Le. grammars of decidable languages) which will be
mentioned below are in fact primitive recursive.

8.4. INFERENCE BY MEANS OF BAYES’ THEOREM

In paragraph 8.2. we found by “classical” means optimal statistical
parameters for a given nonambiguous context-free grammar. We
renounced the possibility of choosing from among several gram-
mars. In paragraph 8.3. the procedure was inverse, in a sense.
We examined the conditions of presentation under which a gram-
mar may be selected from the class of a priori possible grammars,
renouncing the probabilistic formulation. The notion of “learn-
ability” had to be defined in terms of equivalent grammars, as
the algorithms cannot select an optimal or “most efficient™ (cf. 3.1.)
grammar from the class of equivalent adequaie grammazs,
Horning (1969) combined the two approaches, and developed
a method of selecting an optimal probabilistic grammar from a

1 A language is PRIMITIVE RECURSIVE if its characteristic function is primitive
recussive. The characteristic function Cr. of a language L, where L © Vi, hag
the value 1 for every string in V# which is an element of I, and the valoe 0
for every string in P& which is not an element of L.

Definitions of recursive functions may be found in Kleene (1952), Minsky
(1967, Nelson (1968), of alibi,
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given class on the basis of a given information sequence. We shall
state some of his most important findings here concerning non-
ambiguous context-free grammars.

We have scen that a standard of evaluation must express two
aspects: the complexity of the grammar, and the degree to which
it fits the information which is available at a given moment (para-
graph 8.1.). The complexity of a grammar depends on the context,
which includes at east (1) the size of the nonterminal vocabulary,
(2) the number of alternative rewrites for a given variable, and
(3) the length of those alternatives. (In practical and linguistic
situations the context can include far more than this. The three
aspecis mentioned here, however, are constant themes in the lin-
guistic literature on the subject.) The relative importance to be
attributed to each of these aspects of context is a matter of taste,
but there is a method by which this can at least be done in an
exact manner. The method is by means of a so-called GRAMMAR-
GRAMMAR. We will now introduce this notion.

A grammary is a finite string of symbols; a set of grammars (an
hypothesis-space) may be regarded as a set of such strings, and
thus as a kind of “language”. A grammar-grammar is a grammar
which generates such a “language”™. If the grammar-grammar is
probabilistic, it will define a probability distribution over the
“sentences” of the “language™, and thus over the class of gram-
mars which it generates. The complexity of a grammar can then
be defined as minus the base two logarithm of its probability, as in
information theory, The probabilistic grammar-grammar is thus a
precise definition of the context; moreover, the more variables, the
more alternatives for each variable, or the longer the alternatives
in a generated grammar, the smaller its probability and the greater
its complexity. The relative importance of each of the aspects can
be varied by varying the production probabilities of the grammar-
grammar.

We illastrate this with an example. To avoid ¢onfusion, name,
variables, and arrow of the grammar-grammar are given in bold
face type, while those of grammars are in ordinary type.
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ExampLE 8.2. Let G be a probabilistic grammar-grammar with the
following productions;

Ls¥r 7. A% TN
2. SSRR 8. T q

3 R>N-P 9. T2 p

4, PXA 0. NS s

s.pXp A 1. N& 4

6. AXT

This grammar-grammar generates regular grammars with one
or two variables (S, 4) and one or two terminal symbols (g, ).
We shall show the leftmost derivation of a regular grammar G
with the following productions:

S~ 5,65, ad A—a b4, al

These are in fact six productions: the commas indicate alternative
rewrites for a single variable. If we know that G is a context-free
grammar, and thus that the firsi member of every production is
a single variable, the grammar can be written withont ambiguity
as follows:

S = b, bS5, adA — a, bA, uS

(In the triad a4 A4, the reader should imagine a cacsura between
A and A.) This is precisely the “sentence™ which we wish to derive
from G; its leftmost derivation is as follows:

5

SZ RR % S AAAR
4 N - PR ST, A, AR
s PR %2 8- b, A, AR
= 5P AR = 5o b, TN, AR

2255 P A AR 225 b, BN, AR
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%25 - b, bS, AR %S b, bS,add > T, A A
= § - b, bS, INR %S b, bS, add > a, A, A
&S o b, bS, aNR %S - b, bS, a4 > 4, TN, A
=8 > b, bS, aAR %S b, bS,add > a, bN, A
= S b, bS, aAN > P & 85 b, bS, adAd > a, b4, A
&S b, bS, 044> P % 5 b, bS, ad4 - a, bA, TN

8’8 b, bS, aAA P, A %S b, bS, aAAd - a, bA, aN
S b, bS, adA P, A, A %S b, bS, adA - a, bA, aS
2S5, b5, add > A A A

The product of the probabilities of the rewrites is p{G) = 0.5%,
and the complexity of & in context @ is thus —2log 0.525 = 25,
The reader can verify for himself that grammar U with productions
S —a, b, a8, b8 (this is the universal grammar which generates
all strings in V) has a complexity of 15 in context G.

If we consider jt particularly important that a grammar should
have few variables, we make production 2 less probable; the
probability of a grammar with two variables decreases, and the
complexity incregses. If, on the other hand, we wish the number
of alternative rewrites important, we can reduce the probability
of production 5, which determines the number of alternatives for
rewriiing of a variable. Finally, if we wish to increase the impor-
tance of rewrite length, we reduce the probability of production 7.
Many oiher variations are possible.!

We suppose that a complexity distribution is defined over the
grammars in the hypothesis-space by means either of a grammar-

1 QOmne should, however, remtain cattious. A grammar-grammar which
generates all grammars of a certain type (e.g. regular grammars) will have
a terminal vocebulary of infinite size, since the nonterminal vocabulary of
every grammar generated is a subset of the terminal vocabulary of the grammar-
grammar. Solutions o this problem have been found by Feldman, et al. (1969)
and Horning (1969).
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grammar or of some other context. We express the “credibility”

of a grammar G; in ihe hypothesis-space as a number p(Gy), such

that it is an inverse function of complexity {whichever way this is

defined), with 0 < p(G) < 1, and } p(G) = 1 for the grammars
* i

in the hypothesis-space. These propositions hold automatically
in the context of a consistent probabilistic grammar-grammar,
The p-values will be treated in all other regards as probabilities.
We also suppose that the grammars in the hypothesis-space can
be enumerated according to the order of their a priori credibility
or “probability” p. (From this point we shall use the word “proba-
bility” exclusively.)

The observation-space is assumed to be a stochastic text presen-
tation (cf, paragraph 8.1.).

As the OPTIMAL GRAMMAR We consider the a priori most probable
grammar which is stochastically equivalent to the grammar by
which the text was derived,

A procedure must be devised (in the sense of a Turing machine)
which at receiving each new instance can maximalize the chance
of conjecturing the optimal grammar, i.c. it must conjecture the
grammar with the highest a posteriori probability, given the text
and the a priori probabilities of the grammars. In order to investi-
gate the existence of such a procedure we must, therefore, first
explicate the relations between a priori and a posteriori probabilities
of grammars.

The a priori probability of a grammar G} in the hypothesis-space
is denoted by p(G;). The probability of an information sequence
(a sample) Sy, up to a given moment of the text presentation and
given the hypothesis-space, is p(S;). The conditional probability
that .S; will occur when G is really the grammar of the language is
p(S;|Gy), and this is equal to the product of the probabilities of
the sentences in the sample, given grammar Gy (cf. paragraph 8.1).
Therefore, if the sample contains the sentences si, 52, ..., Sz, then
PS3|G) = p(s1Ga) - (p(s2lGi) * ... - p(sx|Gy), or simply:

(1) P(Slei) = _;131 P(Sjin)-
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On the other hand we indicate the chance that Gy is really the
grammar of L, given the sample §j, as p{Gi|S;), which, according
KG» 59

sy
where p(Gi, Sy) is the chance that G; is correct and that the sample
Sy occurs, Therefore:

2) WG, S j) = S j) * P(G:'Sj)-

This means that the common chance of G; and §; is the a priori
probability of §;, multiplied by the conditional probability that G
is the real grammar when S; occurs. For the sake of symmetry,
this can also be written as follows:

(3) KG,, S)) = p(G) - p(S|G).

On the basis of (1) and (2) we can find the a posteriori probability
of Gy:

* KG|Sy =

to an elementary rule of probability theory, is equal to

KG) - KS)|G)
Sy
(This is a form of the Bayes theorem.)

If we determine the a posteriori probabilities of afl grammars in
the hypothesis space, given the sample and the a priori probabilities,
the denominator in (4), #(Sy), remains constant, and only the two
terms of the numerator vary. To find the optimal grammar, we
must therefore find the grammar which yields the greatest numer-
ator p(Gye) - p(551Gs). We can write this product as p'(Gi| ;). If the
sample contains k sentences, by substitution of (1) we get:

) PGSy = pG) - J]_:[1 Ks{G).

Horning has proven that a procedure does exist by which at every
new instance that G in the hypothesis-space can be found for which
{5), and thus its posteriori probability, is at a maximum. We shall
neither describe the procedure here nor prove the theorem, but
only wonder if indeed the optimal grammar can, in the long run,
be found in this way. In Gold’s terms, the procedure does not
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lead, afier a finite number of instances, te the reproduction at
every new instance of the same grammar or stochastic equivalents
which are grammars of the language, It only leads to the some-
what weaker result, that every nonoptimal grammar in the hypo-
thesis-space is rejected after a finite number of instances. In other
words, the chance that a nonoptimal grammar be conjectured
decreases as the number of instances increases. This can also be
regarded as a definition of “learnability”, although it is weaker
than that given by Gold. Taken in this sense, however, Horning
has shown that probabilistic nonambiguous context-free grammars
are “learnable” by means of a stochastic text presentation.

Until now we have assumed that the hypothesis-space consists
of probabilistic grammars. However, if the hypothesis-space is
generated by a probabilistic grammar-grammar this is not the
case. Example 8.2, showed that the output of such a grammar-
grammar is a grammar and its corresponding probability. Addi-
tionally, a way must be found to obtain optimal parameter esti-
mates for produciion probabilities in the grammars in the hypoth-
esis-space. Horning presents a (Bayes) procedure for this as well,
and shows that the conclusions on learnability which we have just
mentioned still hold in essence for this complete case,



HISTORICAL. AND BIBLIOGRAPHICAL REMARKS

The theory of formal languages, except for the probabilistic part,
is largely based on Chomsky’s work. The original publication in
which the hierarchy of grammars was introduced is Chomsky
(1959 a, b.) A later survey is Chomsky (1963) in which the hierarchy
of grammars was somewhat refined. Grammars with productions
exclusively in the context-sensitive form were given a separate
type number, and consequently the numeration differs there from
that of the earlier work. We have followed current usage and
maintained the original numeration,

The term “regular language™ has a history of its own. Qriginally
{Chomsky and Miller 1958; Bar-Hillel, Gaifman, and Shamir
1960) these langnages were called “finite state languages” because
of the connection with finite or finite state automata. But in
mathematics, the theory of recursive functions dealt independently
with, among other things, “regular sets”, which can be recursively
generated by “regular expressions”, and Kleene showed the equiva-
lence of these sets and the sets accepted by finite automata. As
type-3 grammars are equivalent to finite automata (as in Theorems
4.2. and 4.3. proven by Chomsky and Miller 1958), type-3 languages
are regnlar sets. Consequently type-3 grammars and languages
are now generally called “regular grammars” and “regular lan-
guages”.

Context-free grammars are treated in great detail in Chomsky’s
original work. The expression “normal-form™ originated in Choms-
ky’s notion of a “normal grammar” (Chomsky 1963). He said that
normal grammars are the kind of grammars usually dealt with in
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lingnistic discussions on constituent structure analysis: produc-
tions 4 — a concern the LExicON of the language, and productions
A - BC lead to binary divisions into CONSTITUENTS. At present,
however, the term “normal-form” is used omly to denote stan-
dardized forms for the productions of grammars. The Greibach
normal-form is presented in Greibach (1965). The self-embedding
theorem (Theorem 2.8.) for contexi-free languages was first
formulated by Chomsky (1959a); a complete proof can be found
in Salomaa (1969). The notion of ambiguity was first handled
by Parikh (1961). For later developments see Ginsburg and Uliman
(1966). For linear grammars see Greibach (1963) and (1966) and
others. A textbook on context-free grammars is Ginsburg (1966).

The equivalence of type-1 graminars and grammars with produc-
tions only in the context-sensitive form was treated by Chomsky
{1963). Grammars of the form which we have called the Kuroda
neormal-form were called “linear bounded grammars” by Kurcda
and several other authors, by analogy with the automaton, The
normal-form theorem (Theorem 2.11.) was first proven by Kuroda
(1964).

The earliest publications on the subject of probabilistic gram-
mars are Grenander (1967), Ellis (196%9), and Booth (196%). It
was an obvious matter to relate them to the Chomsky hierarchy.
The consistency theorem for regular grammars (Theorem 3.1.)
was proven by Ellis (1969) as was Theorem 3.2. The hypothesis
formulated in Theorem 3.3. may be found in Suppes (1970). The
Chomsky and Greibach normal-form theorems were originally
proven by Ellis (1969); in the proof given here, we have followed
Huang and Fu (1971). The conditions of consistency for probabi-
listic context-free grammars were investigated by Booth (1969) and
Ellis (1969) where the reader may find more details on the subject.

The invesiigation of finite automata originated in the work of
McCulloch and Pitts (1943), in which they gave models for neural
networks which could be regarded as FINITE STATE MACHINES. Of
the many early publications on this subject, we mention Rabin
and Scott (1959), in which the proof of Theorem 4.1. can be
found, and Kleene (1956). Later surveys are those by 5. Ginsburg
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(1962) and by A. Ginzburg (1968). The equivalence of finite
aumtomata and regular grammars (Theorems 4.2. and 4.3.) were
proven by Chomsky and Miller (1958). Probabilistic finite auto-
mata were infroduced by Rabin (1963). Much work in this area
was done by Salomaa, who gives a good survey in Salomaa (1969).

The notion of the “push-down store™ was introduced by Newell,
Shaw, and Simon (1959). The first formulation of the relationship
between push-down automata and formal langnages is that of
Oettinger (1961). The relationship between context-free grammars
and push-down automata (FTheorems 5.1. and 5.2.) was formulated
by Chomsky (1963) and Evey (1963) more or less independenily.
The equivalence of deterministic push-down auwtomata and LR(k)-
grammars was proven by Knuth (1965}

Deterministic linear bounded automata were introduced by
Myhill (1960)}; Landweber (1963) gave proof of Theorem 6.2. on
deterministic linear bounded automata. Kuroda (1964) introduced
the nondeterministic linear bounded automaton and proved the
equivalence of them and context-free grammars (Theorems 6.1.
and 6.2.).

The Turing machine was presented by Turing (1936) as a machine
which could perform any computaiion for which an explicit
procedure is known. For an introduction {o the subject of mechan-
ical (effective) procedures, see Minsky (1967); in the same work
models by Post and Church, similar to the Turing machine, are
also discussed. The relationship between Turing machines and
type-0 languages formulated in Theorems 7.1. and 7.2, was first
mentioned by Chomsky (195%9a). We have borrowed the argumenta-
tion for Theorem 7.1. from Hopcroft and Ullman (1969). The
argumentation for Theorem 7.2. was taken from Chomsky (1963),
who in turn refers to Davis {1958), starting from the fact that type-0
langnages are recursively enumerable sets. The argumentation
for Theorem 7.3. was borrowed from Hopcroft and Uliman (1969).
The first surveys of the relationship between format languages and
antomata were Chomsky (1963) and Chomsky and Miller (1963)
on the one hand, and Bar-Hillel (1964) on the other.

The earliest publication on grammatical inference is Miller and
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Chomsky (1957). Solomonoff (1958, 1964 a, b} was the first to
develop these ideas. The Feldman group, with among them
Horning, has also done important work in this field (Feldman et
al. 1969).

The best recent surveys of the subjects treated in this volume
are Nelson (1968) where various topics are treated within the theory
of formal systems, and Hopcroft and ¥llman (1969} to which
the present work is indebied and which would serve as excellent
further reading. Neither of these books, however, deals with
probabilistic grammars or probabilistic automata. For the latter,
we refer the reader to Salomaa (1969). There are no standard
texts on probabilistic grammars or grammatical inference.
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(italicized numbers refer to definitions)

Accepting, passim
by finite automaton, 54, 55
by linear bounded automaton, 94
by nondeterministic FA, 60
by nondeterministic PDA4, 81
by push-down automaton, 78
by Turing-machine, 103, 113
Accepting systems, 2, 53
Algol, 75
Algorithm, 113, 114, 121
Ambiguity, 25, 26, 31
of grammar, 26, 37, 51, 118
inherent, 26
of language, 26
Avtomata, 2, passim
finite, 54, see also finite automaton
lincar bounded, 91, 92, 93-100, i33
normaized, 68, 73, 74
probabilistic, 68, 68-74, 133
push-down, 75, 76-90

Bayes® theorem., 117, 124, 129
Boundary symbol, 93, f02

Cartesian product, 5

Categorical gramnur, 2

Category symbol, ¢

Characteristic function, 24

Chomsky hierarchy, /2, t31

Chomsky normal-form, f7, 18, 21,
45, 47, 49

Complement of language, 713

Computer language, 3, 75

Configuration, 77, 93, /103

initial, 78, {03
final, 103
Connected grammar, 22
Consistency, 38, 50, 128, 132
conditions, 38, 50, 132
Constituent structure, 132
Context-fres
grammar, I f, 16-27, 37, 81-90, 118,
132, 133
language, 1/, 16-27, 38, 114
Coniext-sensitive
grammar, [0, 27-34, 37, 96-100
language, 14, 38, 27-34, 96-100,
106, 124
productions, 27, 28, 29, 30, 131
Control unit, 5§
Corpus, 43
Credibitity of grammar, 128
Cut-point probability, 72

Decidability, 713

Effective procedure, 11¢
Efficiency of grammar, 35, 124
Eigenvalue, 52
Equivalency, passin:
strong, 5
weak, 5, 55, 66, 82, 121
of probabilistic grammars, 37, 50,
124
Evaluation context, /17, 125

Finat
state, 54, 62, j02
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vector, 71
Finite automaton, {6, 22, 53-74, 131,
132
deterministic, 60, 63
k-limited, 58§
non-deterministic, 60-63
probabilistic, 68, 69, 70-74
Finite language, 16
Finite state
automaton, 131
grammar, 17
language, /1, 131
machine, 132
Formal
grammar, [, 2
system, 1, 2, 3, 134

Generate, 5, passim
Generative
grammar, 2
system, 2, 33
Greammar, 5, passim
acceptability of, 115
ambiguity of, 26, 37
categorical, 2
connected, 22
complexity of, 117, 125, 128
context-free, see contexi-free
context-sensitive, see context-sensi-
tive
equivalent, 3, passim
generative, 2
—-gramrar, 725-128
hierarchy, 9, 131
leftylinear, 26
linear, 26, 132
linear bounded, 34, 132
LR(K}-. 81,133
normal, 131
normalized, 35-43, 48, 50
optimal, 128, 129
picture—, 3
probabilistic, 35-52, 74, 115, 117,
124, 130, 132, 134
regular, 71, 12-16, 37-44, 65, 67,
126, 131, 132
right-linear, 26
self-embedding, 2/, 22

transformational, 31

type-0, 10, 37, 101, 105, 107

type-1, see context-sensitive

type-2, see context-free

type-3, see regular

universal, 117, /22

unrestricted probabilistic, 35
Greibach normal-form, 17, 19, 20,

45, 50, 85, 86, 132

Hierarchy
Choemsky, 12, 131
of grammmars, 9, 131
of languages, 12
Hypothesis-space, {15, 117, 125, 128,
130

Inference, 1, 3, 115-130, 133, 134
Informant presentation, 176, 121, 122
information sequence, 116
complete, 176, 12]
mixed, 116
positive, 116
nitial
configuration, 78, 103-104
distribution, 69
probability, 69
state, 54, 76, 92, 102

Instance, positive, negative, 116

k-limited automaton, 58, 59

Kuroda normat-form, 31, 32, 96, 98,
132

Language, 5, 37, 55, 78, 95, 103,
passim
-acquisition, 3
ambiguity of, 26
complement of, 113
context-free, /1, 16-27, 38, 114
context-sensitive, 71, 38, 27-34, 96-
100, 106, 124
deterministic, 871, 114
finite, /6
mir¢or-image, &
normalized, 37, 38
probabilistic, 37
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recursively enumerable, 9, 10, 111,
113
recursive, f13, 114
regular, 11, 38, passim, 53, 66, 72,
114, 122, 123
self-embedding, 21, 22
stochastic, 72
universal, 123
“Learnability” of language, 12/-124,
130
Leftmost derivation, 25, 26, 50, 51,
83, 118
Likelihood function, /19
Linear
grammar, 26, 132
production, 26
Linear-bounded
automaton, 34, 91-100, 92, 102,
106, 133
grammar, 34, 132
Listener, 2
LR({})y-grammar, §1, 133
Logic, 1, 3

Markov-process, 60
Matrix, 39
algebra, 38
element, 39
multiplication, 47
stochastic, 42, 69
Mechanical (effective} procedure, 9,
101, 110, 111, 133
Mirror-irnage language, 6

Natural language, 9, 101
Neural networks, 132
Normal-form, /7, 19, 28, 34, 45-50,
131, 132
Chomsky, see Chomsky normal-
form
Greibach, see Greibach normal-
form
Kuroda, see Kureda normal-form
Normalized
automaton, 68, 74
grammar, 36-43, 48, 50
language, 37, 38
Null-string, ¢, passim
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Observation space, 116
Optimal grammar, 728, 129

Picture~-grammar, 3
Primitive recursiveness, 122, 124
Probabilistic
context-free grammar, 44-52
finite automaton, 68-74, 133
gramumar, 35-52, 74, 115, 117, 124,
130, 132, 134
grammar-grammar, 725-128
language, 37
regular grammar, 3844
Product of languages, 16, 66
Production rule, 4, passim
Production probability, 35, 44, 48,
115, 118, 119, 125, 130
Psycholinguistics, 2, 101
Pushdown aatomaton, 75, 76-90
nondeterministic, 87-90
Pushdown store, 75, 133

Reading head, 55
Recognizing, 113
Recursive, 113
Recursive emmmeration, 9, 10, if1,
113, 114, 133
Regular
expression, 131
geammar, 71, 12-16, 37-44, 85, 67,
126, 131, 132
language, 11, 38, passim, 53, 66,
72,114, 122, 123
set, 131
Representation problem, 43
Rewrite rule, see preduction tule
Right-branching, 14
Right-linear
grammar, 14, 26
production, 26

Self-embedding, 21-24, 132

Sentence, 5, 36, 55, passim

Sentence probability, 37, 73

Speaker, 2

State, inifial, final, 54, 76, 92, 102,
pdssim

Siate transition function, 5¢
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Start symbol, 2, 5, 76
Stochastic

matrix, 42, 69

Ianguage, 72

text presentation, 716, 117, 130
Structural description, 35, 53

Tape symbol, 92, I02
Text presentation, 116, 121, 122, 128
Terminal vocabulary, 4, passim
Top symbol, 76
Transition
diagram, 36, 59, 61, 66, 70
matrix, 69, 71
rule, 54, 76, 93, 103
table, 58
Tree diagram, 13, passim

Turing machine, 1, 2, 101, 102-114,
121, 133

Ungrammatical sentence, 773
Universal
grammar, 117, 122
languvage, 123
Turing machine, 106, 107
Dnrestricted
probabilistic grammars, 36
rewriting systems, 10, 109

Variables, 4, passim

Vocabulary, 2, 3, 4, 54, passim
nonterminal, £, passim
terminal, 4, passim
push-down, 76



