Publications

Displaying 101 - 200 of 695
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Chen, A., & Den Os, E. (2005). Effects of pitch accent type on interpreting information status in synthetic speech. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 1913-1916).
  • Chen, J. (2005). Interpreting state-change: Learning the meaning of verbs and verb compounds in Mandarin. In Proceedings of the 29th Annual Boston University Conference on Language Development.

    Abstract

    This study investigates how Mandarin-speaking children interpret state-change verbs. In Mandarin, state-change is typically encoded with resultative verb compounds (RVCs), in which the first verb (V1) specifies an action and the second (V2) a result, for example, zhai-xia 'pick-descend' (= pick, pick off/down). Unlike English state-change verb such as pick, smash, mix and fill, the action verb (V1) may imply a state-change but it does not entail it; the state-change is specified by the additional result verb (V2). Previous studies have shown that children learning English and German tend to neglect the state-change meaning in monomorphemic state-change verbs like mix and fill (Gentner, 1978; Gropen et al, 1991) and verb-particle constructions like abplücken 'pick off' (Wittek, 1999, 2000) - they do not realize that this meaning is entailed. This study examines how Mandarin-speaking children interpret resultative verb compounds and the first verb of an RVC. Four groups of Mandarin-speaking children (mean ages 2;6, 3;6, 4;6, 6;1) and an adult group participated in a judgment task. The results show that Mandarin-speaking children know from a very young age that RVCs entail a state-change; ironically, however, they make a mistake that is just the opposite to that made by the learners of English and German: they often incorrectly interpret the action verb (V1) of an RVC as if it, in itself, also entails a state-change, even though it does not. This result suggests that children do not have a uniform strategy for interpreting verb meaning, but are influenced by the language-specific lexicalization patterns they encounter in their language.
  • Cho, T., & McQueen, J. M. (2005). Prosodic influences on consonant production in Dutch: Effects of prosodic boundaries, phrasal accent and lexical stress. Journal of Phonetics, 33(2), 121-157. doi:10.1016/j.wocn.2005.01.001.

    Abstract

    Prosodic influences on phonetic realizations of four Dutch consonants (/t d s z/) were examined. Sentences were constructed containing these consonants in word-initial position; the factors lexical stress, phrasal accent and prosodic boundary were manipulated between sentences. Eleven Dutch speakers read these sentences aloud. The patterns found in acoustic measurements of these utterances (e.g., voice onset time (VOT), consonant duration, voicing during closure, spectral center of gravity, burst energy) indicate that the low-level phonetic implementation of all four consonants is modulated by prosodic structure. Boundary effects on domain-initial segments were observed in stressed and unstressed syllables, extending previous findings which have been on stressed syllables alone. Three aspects of the data are highlighted. First, shorter VOTs were found for /t/ in prosodically stronger locations (stressed, accented and domain-initial), as opposed to longer VOTs in these positions in English. This suggests that prosodically driven phonetic realization is bounded by language-specific constraints on how phonetic features are specified with phonetic content: Shortened VOT in Dutch reflects enhancement of the phonetic feature {−spread glottis}, while lengthened VOT in English reflects enhancement of {+spread glottis}. Prosodic strengthening therefore appears to operate primarily at the phonetic level, such that prosodically driven enhancement of phonological contrast is determined by phonetic implementation of these (language-specific) phonetic features. Second, an accent effect was observed in stressed and unstressed syllables, and was independent of prosodic boundary size. The domain of accentuation in Dutch is thus larger than the foot. Third, within a prosodic category consisting of those utterances with a boundary tone but no pause, tokens with syntactically defined Phonological Phrase boundaries could be differentiated from the other tokens. This syntactic influence on prosodic phrasing implies the existence of an intermediate-level phrase in the prosodic hierarchy of Dutch.
  • Cho, T. (2005). Prosodic strengthening and featural enhancement: Evidence from acoustic and articulatory realizations of /a,i/ in English. Journal of the Acoustical Society of America, 117(6), 3867-3878. doi:10.1121/1.1861893.
  • Choi, S., McDonough, L., Bowerman, M., & Mandler, J. M. (1999). Early sensitivity to language-specific spatial categories in English and Korean. Cognitive Development, 14, 241-268. doi:10.1016/S0885-2014(99)00004-0.

    Abstract

    This study investigates young children’s comprehension of spatial terms in two languages that categorize space strikingly differently. English makes a distinction between actions resulting in containment (put in) versus support or surface attachment (put on), while Korean makes a cross-cutting distinction between tight-fit relations (kkita) versus loose-fit or other contact relations (various verbs). In particular, the Korean verb kkita refers to actions resulting in a tight-fit relation regardless of containment or support. In a preferential looking study we assessed the comprehension of in by 20 English learners and kkita by 10 Korean learners, all between 18 and 23 months. The children viewed pairs of scenes while listening to sentences with and without the target word. The target word led children to gaze at different and language-appropriate aspects of the scenes. We conclude that children are sensitive to language-specific spatial categories by 18–23 months.
  • Chwilla, D., Hagoort, P., & Brown, C. M. (1998). The mechanism underlying backward priming in a lexical decision task: Spreading activation versus semantic matching. Quarterly Journal of Experimental Psychology, 51A(3), 531-560. doi:10.1080/713755773.

    Abstract

    Koriat (1981) demonstrated that an association from the target to a preceding prime, in the absence of an association from the prime to the target, facilitates lexical decision and referred to this effect as "backward priming". Backward priming is of relevance, because it can provide information about the mechanism underlying semantic priming effects. Following Neely (1991), we distinguish three mechanisms of priming: spreading activation, expectancy, and semantic matching/integration. The goal was to determine which of these mechanisms causes backward priming, by assessing effects of backward priming on a language-relevant ERP component, the N400, and reaction time (RT). Based on previous work, we propose that the N400 priming effect reflects expectancy and semantic matching/integration, but in contrast with RT does not reflect spreading activation. Experiment 1 shows a backward priming effect that is qualitatively similar for the N400 and RT in a lexical decision task. This effect was not modulated by an ISI manipulation. Experiment 2 clarifies that the N400 backward priming effect reflects genuine changes in N400 amplitude and cannot be ascribed to other factors. We will argue that these backward priming effects cannot be due to expectancy but are best accounted for in terms of semantic matching/integration.
  • Clark, E. V., & Bowerman, M. (1986). On the acquisition of final voiced stops. In J. A. Fishman (Ed.), The Fergusonian impact: in honor of Charles A. Ferguson on the occasion of his 65th birthday. Volume 1: From phonology to society (pp. 51-68). Berlin: Mouton de Gruyter.
  • Clifton, Jr., C., Cutler, A., McQueen, J. M., & Van Ooijen, B. (1999). The processing of inflected forms. [Commentary on H. Clahsen: Lexical entries and rules of language.]. Behavioral and Brain Sciences, 22, 1018-1019.

    Abstract

    Clashen proposes two distinct processing routes, for regularly and irregularly inflected forms, respectively, and thus is apparently making a psychological claim. We argue his position, which embodies a strictly linguistic perspective, does not constitute a psychological processing model.
  • Coombs, P. J., Graham, S. A., Drickamer, K., & Taylor, M. E. (2005). Selective binding of the scavenger receptor C-type lectin to Lewisx trisaccharide and related glycan ligands. The Journal of Biological Chemistry, 280, 22993-22999. doi:10.1074/jbc.M504197200.

    Abstract

    The scavenger receptor C-type lectin (SRCL) is an endothelial receptor that is similar in organization to type A scavenger receptors for modified low density lipoproteins but contains a C-type carbohydrate-recognition domain (CRD). Fragments of the receptor consisting of the entire extracellular domain and the CRD have been expressed and characterized. The extracellular domain is a trimer held together by collagen-like and coiled-coil domains adjacent to the CRD. The amino acid sequence of the CRD is very similar to the CRD of the asialoglycoprotein receptor and other galactose-specific receptors, but SRCL binds selectively to asialo-orosomucoid rather than generally to asialoglycoproteins. Screening of a glycan array and further quantitative binding studies indicate that this selectivity results from high affinity binding to glycans bearing the Lewis(x) trisaccharide. Thus, SRCL shares with the dendritic cell receptor DC-SIGN the ability to bind the Lewis(x) epitope. However, it does so in a fundamentally different way, making a primary binding interaction with the galactose moiety of the glycan rather than the fucose residue. SRCL shares with the asialoglycoprotein receptor the ability to mediate endocytosis and degradation of glycoprotein ligands. These studies suggest that SRCL might be involved in selective clearance of specific desialylated glycoproteins from circulation and/or interaction of cells bearing Lewis(x)-type structures with the vascular endothelium.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Cox, S., Rösler, D., & Skiba, R. (1989). A tailor-made database for language teaching material. Literary & Linguistic Computing, 4(4), 260-264.
  • Crago, M. B., & Allen, S. E. M. (1998). Acquiring Inuktitut. In O. L. Taylor, & L. Leonard (Eds.), Language Acquisition Across North America: Cross-Cultural And Cross-Linguistic Perspectives (pp. 245-279). San Diego, CA, USA: Singular Publishing Group, Inc.
  • Crago, M. B., & Allen, S. E. M. (1997). Linguistic and cultural aspects of simplicity and complexity in Inuktitut child directed speech. In E. Hughes, M. Hughes, & A. Greenhill (Eds.), Proceedings of the 21st annual Boston University Conference on Language Development (pp. 91-102).
  • Crago, M. B., Allen, S. E. M., & Pesco, D. (1998). Issues of Complexity in Inuktitut and English Child Directed Speech. In Proceedings of the twenty-ninth Annual Stanford Child Language Research Forum (pp. 37-46).
  • Crago, M. B., Allen, S. E. M., & Hough-Eyamie, W. P. (1997). Exploring innateness through cultural and linguistic variation. In M. Gopnik (Ed.), The inheritance and innateness of grammars (pp. 70-90). New York City, NY, USA: Oxford University Press, Inc.
  • Crago, M. B., Chen, C., Genesee, F., & Allen, S. E. M. (1998). Power and deference. Journal for a Just and Caring Education, 4(1), 78-95.
  • Cronin, K. A., Kurian, A. V., & Snowdon, C. T. (2005). Cooperative problem solving in a cooperatively breeding primate. Animal Behaviour, 69, 133-142. doi:10.1016/j.anbehav.2004.02.024.

    Abstract

    We investigated cooperative problem solving in unrelated pairs of the cooperatively breeding cottontop tamarin, Saguinus oedipus, to assess the cognitive basis of cooperative behaviour in this species and to compare abilities with other apes and monkeys. A transparent apparatus was used that required extension of two handles at opposite ends of the apparatus for access to rewards. Resistance was applied to both handles so that two tamarins had to act simultaneously in order to receive rewards. In contrast to several previous studies of cooperation, both tamarins received rewards as a result of simultaneous pulling. The results from two experiments indicated that the cottontop tamarins (1) had a much higher success rate and efficiency of pulling than many of the other species previously studied, (2) adjusted pulling behaviour to the presence or absence of a partner, and (3) spontaneously developed sustained pulling techniques to solve the task. These findings suggest that cottontop tamarins understand the role of the partner in this cooperative task, a cognitive ability widely ascribed only to great apes. The cooperative social system of tamarins, the intuitive design of the apparatus, and the provision of rewards to both participants may explain the performance of the tamarins.
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). The lexical statistics of word recognition problems caused by L2 phonetic confusion. In Proceedings of the 9th European Conference on Speech Communication and Technology (pp. 413-416).
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Mahwah, NJ: Erlbaum.
  • Cutler, A., Smits, R., & Cooper, N. (2005). Vowel perception: Effects of non-native language vs. non-native dialect. Speech Communication, 47(1-2), 32-42. doi:10.1016/j.specom.2005.02.001.

    Abstract

    Three groups of listeners identified the vowel in CV and VC syllables produced by an American English talker. The listeners were (a) native speakers of American English, (b) native speakers of Australian English (different dialect), and (c) native speakers of Dutch (different language). The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). The identification performance of native listeners was significantly better than that of listeners with another language but did not significantly differ from the performance of listeners with another dialect. Dialect differences did however affect the type of perceptual confusions which listeners made; in particular, the Australian listeners’ judgements of vowel tenseness were more variable than the American listeners’ judgements, which may be ascribed to cross-dialectal differences in this vocalic feature. Although listening difficulty can result when speech input mismatches the native dialect in terms of the precise cues for and boundaries of phonetic categories, the difficulty is very much less than that which arises when speech input mismatches the native language in terms of the repertoire of phonemic categories available.
  • Cutler, A. (2005). Why is it so hard to understand a second language in noise? Newsletter, American Association of Teachers of Slavic and East European Languages, 48, 16-16.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1989). Auditory lexical access: Where do we start? In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 342-356). Cambridge, MA: MIT Press.

    Abstract

    The lexicon, considered as a component of the process of recognizing speech, is a device that accepts a sound image as input and outputs meaning. Lexical access is the process of formulating an appropriate input and mapping it onto an entry in the lexicon's store of sound images matched with their meanings. This chapter addresses the problems of auditory lexical access from continuous speech. The central argument to be proposed is that utterance prosody plays a crucial role in the access process. Continuous listening faces problems that are not present in visual recognition (reading) or in noncontinuous recognition (understanding isolated words). Aspects of utterance prosody offer a solution to these particular problems.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1983). A language-specific comprehension strategy [Letters to Nature]. Nature, 304, 159-160. doi:10.1038/304159a0.

    Abstract

    Infants acquire whatever language is spoken in the environment into which they are born. The mental capability of the newborn child is not biased in any way towards the acquisition of one human language rather than another. Because psychologists who attempt to model the process of language comprehension are interested in the structure of the human mind, rather than in the properties of individual languages, strategies which they incorporate in their models are presumed to be universal, not language-specific. In other words, strategies of comprehension are presumed to be characteristic of the human language processing system, rather than, say, the French, English, or Igbo language processing systems. We report here, however, on a comprehension strategy which appears to be used by native speakers of French but not by native speakers of English.
  • Cutler, A., & Clifton, Jr., C. (1999). Comprehending spoken language: A blueprint of the listener. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 123-166). Oxford University Press.
  • Cutler, A., & Otake, T. (1997). Contrastive studies of spoken-language processing. Journal of Phonetic Society of Japan, 1, 4-13.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A. (1986). Forbear is a homophone: Lexical prosody does not constrain lexical access. Language and Speech, 29, 201-220.

    Abstract

    Because stress can occur in any position within an Eglish word, lexical prosody could serve as a minimal distinguishing feature between pairs of words. However, most pairs of English words with stress pattern opposition also differ vocalically: OBject an obJECT, CONtent and content have different vowels in their first syllables an well as different stress patters. To test whether prosodic information is made use in auditory word recognition independently of segmental phonetic information, it is necessary to examine pairs like FORbear – forBEAR of TRUSty – trusTEE, semantically unrelated words which echbit stress pattern opposition but no segmental difference. In a cross-modal priming task, such words produce the priming effects characteristic of homophones, indicating that lexical prosody is not used in the same was as segmental structure to constrain lexical access.
  • Cutler, A. (1999). Foreword. In Slips of the Ear: Errors in the perception of Casual Conversation (pp. xiii-xv). New York City, NY, USA: Academic Press.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A. (1982). Idioms: the older the colder. Linguistic Inquiry, 13(2), 317-320. Retrieved from http://www.jstor.org/stable/4178278?origin=JSTOR-pdf.
  • Cutler, A., Howard, D., & Patterson, K. E. (1989). Misplaced stress on prosody: A reply to Black and Byng. Cognitive Neuropsychology, 6, 67-83.

    Abstract

    The recent claim by Black and Byng (1986) that lexical access in reading is subject to prosodic constraints is examined and found to be unsupported. The evidence from impaired reading which Black and Byng report is based on poorly controlled stimulus materials and is inadequately analysed and reported. An alternative explanation of their findings is proposed, and new data are reported for which this alternative explanation can account but their model cannot. Finally, their proposal is shown to be theoretically unmotivated and in conflict with evidence from normal reading.
  • Cutler, A. (1976). High-stress words are easier to perceive than low-stress words, even when they are equally stressed. Texas Linguistic Forum, 2, 53-57.
  • Cutler, A. (1983). Lexical complexity and sentence processing. In G. B. Flores d'Arcais, & R. J. Jarvella (Eds.), The process of language understanding (pp. 43-79). Chichester, Sussex: Wiley.
  • Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception and Psychophysics, 59, 165-179. Retrieved from http://www.psychonomic.org/search/view.cgi?id=778.

    Abstract

    In three experiments, the processing of lexical tone in Cantonese was examined. Cantonese listeners more often accepted a nonword as a word when the only difference between the nonword and the word was in tone, especially when the F0 onset difference between correct and erroneous tone was small. Same–different judgments by these listeners were also slower and less accurate when the only difference between two syllables was in tone, and this was true whether the F0 onset difference between the two tones was large or small. Listeners with no knowledge of Cantonese produced essentially the same same-different judgment pattern as that produced by the native listeners, suggesting that the results display the effects of simple perceptual processing rather than of linguistic knowledge. It is argued that the processing of lexical tone distinctions may be slowed, relative to the processing of segmental distinctions, and that, in speeded-response tasks, tone is thus more likely to be misprocessed than is segmental structure.
  • Cutler, A., & Butterfield, S. (1989). Natural speech cues to word segmentation under difficult listening conditions. In J. Tubach, & J. Mariani (Eds.), Proceedings of Eurospeech 89: European Conference on Speech Communication and Technology: Vol. 2 (pp. 372-375). Edinburgh: CEP Consultants.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In three experiments, we examined how word boundaries are produced in deliberately clear speech. We found that speakers do indeed attempt to mark word boundaries; moreover, they differentiate between word boundaries in a way which suggests they are sensitive to listener needs. Application of heuristic segmentation strategies makes word boundaries before strong syllables easiest for listeners to perceive; but under difficult listening conditions speakers pay more attention to marking word boundaries before weak syllables, i.e. they mark those boundaries which are otherwise particularly hard to perceive.
  • Cutler, A., & Fay, D. A. (1982). One mental lexicon, phonologically arranged: Comments on Hurford’s comments. Linguistic Inquiry, 13, 107-113. Retrieved from http://www.jstor.org/stable/4178262.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A. (1976). Phoneme-monitoring reaction time as a function of preceding intonation contour. Perception and Psychophysics, 20, 55-60. Retrieved from http://www.psychonomic.org/search/view.cgi?id=18194.

    Abstract

    An acoustically invariant one-word segment occurred in two versions of one syntactic context. In one version, the preceding intonation contour indicated that a stress would fall at the point where this word occurred. In the other version, the preceding contour predicted reduced stress at that point. Reaction time to the initial phoneme of the word was faster in the former case, despite the fact that no acoustic correlates of stress were present. It is concluded that a part of the sentence comprehension process is the prediction of upcoming sentence accents.
  • Cutler, A. (1986). Phonological structure in speech recognition. Phonology Yearbook, 3, 161-178. Retrieved from http://www.jstor.org/stable/4615397.

    Abstract

    Two bodies of recent research from experimental psycholinguistics are summarised, each of which is centred upon a concept from phonology: LEXICAL STRESS and the SYLLABLE. The evidence indicates that neither construct plays a role in prelexical representations during speech recog- nition. Both constructs, however, are well supported by other performance evidence. Testing phonological claims against performance evidence from psycholinguistics can be difficult, since the results of studies designed to test processing models are often of limited relevance to phonological theory.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Cutler, A. (1999). Prosodische Struktur und Worterkennung bei gesprochener Sprache. In A. D. Friedrici (Ed.), Enzyklopädie der Psychologie: Sprachrezeption (pp. 49-83). Göttingen: Hogrefe.
  • Cutler, A. (1999). Prosody and intonation, processing issues. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 682-683). Cambridge, MA: MIT Press.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A., & Swinney, D. A. (1986). Prosody and the development of comprehension. Journal of Child Language, 14, 145-167.

    Abstract

    Four studies are reported in which young children’s response time to detect word targets was measured. Children under about six years of age did not show response time advantage for accented target words which adult listeners show. When semantic focus of the target word was manipulated independently of accent, children of about five years of age showed an adult-like response time advantage for focussed targets, but children younger than five did not. Id is argued that the processing advantage for accented words reflect the semantic role of accent as an expression of sentence focus. Processing advantages for accented words depend on the prior development of representations of sentence semantic structure, including the concept of focus. The previous literature on the development of prosodic competence shows an apparent anomaly in that young children’s productive skills appear to outstrip their receptive skills; however, this anomaly disappears if very young children’s prosody is assumed to be produced without an underlying representation of the relationship between prosody and semantics.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40, 141-201.

    Abstract

    Research on the exploitation of prosodic information in the recognition of spoken language is reviewed. The research falls into three main areas: the use of prosody in the recognition of spoken words, in which most attention has been paid to the question of whether the prosodic structure of a word plays a role in initial contact with stored lexical representations; the use of prosody in the computation of syntactic structure, in which the resolution of global and local ambiguities has formed the central focus; and the role of prosody in the processing of discourse structure, in which there has been a preponderance of work on the contribution of accentuation and deaccentuation to integration of concepts with an existing discourse model. The review reveals that in each area progress has been made towards new conceptions of prosody's role in processing, and in particular this has involved abandonment of previously held deterministic views of the relationship between prosodic structure and other aspects of linguistic structure
  • Cutler, A., & Ladd, D. R. (Eds.). (1983). Prosody: Models and measurements. Heidelberg: Springer.
  • Cutler, A. (1997). The comparative perspective on spoken-language processing. Speech Communication, 21, 3-15. doi:10.1016/S0167-6393(96)00075-1.

    Abstract

    Psycholinguists strive to construct a model of human language processing in general. But this does not imply that they should confine their research to universal aspects of linguistic structure, and avoid research on language-specific phenomena. First, even universal characteristics of language structure can only be accurately observed cross-linguistically. This point is illustrated here by research on the role of the syllable in spoken-word recognition, on the perceptual processing of vowels versus consonants, and on the contribution of phonetic assimilation phonemena to phoneme identification. In each case, it is only by looking at the pattern of effects across languages that it is possible to understand the general principle. Second, language-specific processing can certainly shed light on the universal model of language comprehension. This second point is illustrated by studies of the exploitation of vowel harmony in the lexical segmentation of Finnish, of the recognition of Dutch words with and without vowel epenthesis, and of the contribution of different kinds of lexical prosodic structure (tone, pitch accent, stress) to the initial activation of candidate words in lexical access. In each case, aspects of the universal processing model are revealed by analysis of these language-specific effects. In short, the study of spoken-language processing by human listeners requires cross-linguistic comparison.
  • Cutler, A. (1983). Semantics, syntax and sentence accent. In M. Van den Broecke, & A. Cohen (Eds.), Proceedings of the Tenth International Congress of Phonetic Sciences (pp. 85-91). Dordrecht: Foris.
  • Cutler, A., & Norris, D. (1999). Sharpening Ockham’s razor (Commentary on W.J.M. Levelt, A. Roelofs & A.S. Meyer: A theory of lexical access in speech production). Behavioral and Brain Sciences, 22, 40-41.

    Abstract

    Language production and comprehension are intimately interrelated; and models of production and comprehension should, we argue, be constrained by common architectural guidelines. Levelt et al.'s target article adopts as guiding principle Ockham's razor: the best model of production is the simplest one. We recommend adoption of the same principle in comprehension, with consequent simplification of some well-known types of models.
  • Cutler, A. (Ed.). (1982). Slips of the tongue and language production. The Hague: Mouton.
  • Cutler, A. (1983). Speakers’ conceptions of the functions of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 79-91). Heidelberg: Springer.
  • Cutler, A. (1982). Speech errors: A classified bibliography. Bloomington: Indiana University Linguistics Club.
  • Cutler, A. (1999). Spoken-word recognition. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 796-798). Cambridge, MA: MIT Press.
  • Cutler, A. (1989). Straw modules [Commentary/Massaro: Speech perception]. Behavioral and Brain Sciences, 12, 760-762.
  • Cutler, A., & Otake, T. (1999). Pitch accent in spoken-word recognition in Japanese. Journal of the Acoustical Society of America, 105, 1877-1888.

    Abstract

    Three experiments addressed the question of whether pitch-accent information may be exploited in the process of recognizing spoken words in Tokyo Japanese. In a two-choice classification task, listeners judged from which of two words, differing in accentual structure, isolated syllables had been extracted ~e.g., ka from baka HL or gaka LH!; most judgments were correct, and listeners’ decisions were correlated with the fundamental frequency characteristics of the syllables. In a gating experiment, listeners heard initial fragments of words and guessed what the words were; their guesses overwhelmingly had the same initial accent structure as the gated word even when only the beginning CV of the stimulus ~e.g., na- from nagasa HLL or nagashi LHH! was presented. In addition, listeners were more confident in guesses with the same initial accent structure as the stimulus than in guesses with different accent. In a lexical decision experiment, responses to spoken words ~e.g., ame HL! were speeded by previous presentation of the same word ~e.g., ame HL! but not by previous presentation of a word differing only in accent ~e.g., ame LH!. Together these findings provide strong evidence that accentual information constrains the activation and selection of candidates for spoken-word recognition.
  • Cutler, A. (1989). The new Victorians. New Scientist, (1663), 66.
  • Cutler, A., & Butterfield, S. (1986). The perceptual integrity of initial consonant clusters. In R. Lawrence (Ed.), Speech and Hearing: Proceedings of the Institute of Acoustics (pp. 31-36). Edinburgh: Institute of Acoustics.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1986). The syllable’s differing role in the segmentation of French and English. Journal of Memory and Language, 25, 385-400. doi:10.1016/0749-596X(86)90033-1.

    Abstract

    Speech segmentation procedures may differ in speakers of different languages. Earlier work based on French speakers listening to French words suggested that the syllable functions as a segmentation unit in speech processing. However, while French has relatively regular and clearly bounded syllables, other languages, such as English, do not. No trace of syllabifying segmentation was found in English listeners listening to English words, French words, or nonsense words. French listeners, however, showed evidence of syllabification even when they were listening to English words. We conclude that alternative segmentation routines are available to the human language processor. In some cases speech segmentation may involve the operation of more than one procedure
  • Cutler, A. (1997). The syllable’s role in the segmentation of stress languages. Language and Cognitive Processes, 12, 839-845. doi:10.1080/016909697386718.
  • Cutler, A., Van Ooijen, B., & Norris, D. (1999). Vowels, consonants, and lexical activation. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 3 (pp. 2053-2056). Berkeley: University of California.

    Abstract

    Two lexical decision studies examined the effects of single-phoneme mismatches on lexical activation in spoken-word recognition. One study was carried out in English, and involved spoken primes and visually presented lexical decision targets. The other study was carried out in Dutch, and primes and targets were both presented auditorily. Facilitation was found only for spoken targets preceded immediately by spoken primes; no facilitation occurred when targets were presented visually, or when intervening input occurred between prime and target. The effects of vowel mismatches and consonant mismatches were equivalent.
  • Cutler, A. (1986). Why readers of this newsletter should run cross-linguistic experiments. European Psycholinguistics Association Newsletter, 13, 4-8.
  • Cutler, A. (Ed.). (2005). Twenty-first century psycholinguistics: Four cornerstones. Hillsdale, NJ: Erlbaum.
  • Dahan, D., & Tanenhaus, M. K. (2005). Looking at the rope when looking for the snake: Conceptually mediated eye movements during spoken-word recognition. Psychonomic Bulletin & Review, 12(3), 453-459.

    Abstract

    Participants' eye movements to four objects displayed on a computer screen were monitored as the participants clicked on the object named in a spoken instruction. The display contained pictures of the referent (e.g., a snake), a competitor that shared features with the visual representation associated with the referent's concept (e.g., a rope), and two distractor objects (e.g., a couch and an umbrella). As the first sounds of the referent's name were heard, the participants were more likely to fixate the visual competitor than to fixate either of the distractor objects. Moreover, this effect was not modulated by the visual similarity between the referent and competitor pictures, independently estimated in a visual similarity rating task. Because the name of the visual competitor did not overlap with the phonetic input, eye movements reflected word-object matching at the level of lexically activated perceptual features and not merely at the level of preactivated sound forms.
  • Davis, M. H., Johnsrude, I. S., Hervais-Adelman, A., Taylor, K., & McGettigan, C. (2005). Lexical information drives perceptual learning of distorted speech: Evidence from the comprehension of noise-vocoded sentences. Journal of Experimental Psychology-General, 134(2), 222-241. doi:10.1037/0096-3445.134.2.222.

    Abstract

    Speech comprehension is resistant to acoustic distortion in the input, reflecting listeners' ability to adjust perceptual processes to match the speech input. For noise-vocoded sentences, a manipulation that removes spectral detail from speech, listeners' reporting improved from near 0% to 70% correct over 30 sentences (Experiment 1). Learning was enhanced if listeners heard distorted sentences while they knew the identity of the undistorted target (Experiments 2 and 3). Learning was absent when listeners were trained with nonword sentences (Experiments 4 and 5), although the meaning of the training sentences did not affect learning (Experiment 5). Perceptual learning of noise-vocoded speech depends on higher level information, consistent with top-down, lexically driven learning. Similar processes may facilitate comprehension of speech in an unfamiliar accent or following cochlear implantation.
  • Dietrich, R., & Klein, W. (1986). Simple language. Interdisciplinary Science Reviews, 11(2), 110-117.
  • Dijkstra, T., Moscoso del Prado Martín, F., Schulpen, B., Schreuder, R., & Baayen, R. H. (2005). A roommate in cream: Morphological family size effects on interlingual homograph recognition. Language and Cognitive Processes, 20, 7-41. doi:10.1080/01690960444000124.
  • Dijkstra, T., & Kempen, G. (1997). Het taalgebruikersmodel. In H. Hulshof, & T. Hendrix (Eds.), De taalcentrale. Amsterdam: Bulkboek.
  • Dimroth, C., & Lindner, K. (2005). Was langsame Lerner uns zeigen können: der Erwerb der Finitheit im Deutschen durch einsprachige Kinder mit spezifischen Sprachentwicklungsstörung und durch Zweit-sprach-lerner. Zeitschrift für Literaturwissenschaft und Linguistik, 140, 40-61.
  • Dimroth, C., & Watorek, M. (2005). Additive scope particles in advanced learner and native speaker discourse. In Hendriks, & Henriëtte (Eds.), The structure of learner varieties (pp. 461-488). Berlin: Mouton de Gruyter.
  • Dimroth, C. (1998). Indiquer la portée en allemand L2: Une étude longitudinale de l'acquisition des particules de portée. AILE (Acquisition et Interaction en Langue étrangère), 11, 11-34.
  • Dirksmeyer, T. (2005). Why do languages die? Approaching taxonomies, (re-)ordering causes. In J. Wohlgemuth, & T. Dirksmeyer (Eds.), Bedrohte Vielfalt. Aspekte des Sprach(en)tods – Aspects of language death (pp. 53-68). Berlin: Weißensee.

    Abstract

    Under what circumstances do languages die? Why has their “mortality rate” increased dramatically in the recent past? What “causes of death” can be identified for historical cases, to what extent are these generalizable, and how can they be captured in an explanatory theory? In pursuing these questions, it becomes apparent that in typical cases of language death various causes tend to interact in multiple ways. Speakers’ attitudes towards their language play a critical role in all of this. Existing categorial taxonomies do not succeed in modeling the complex relationships between these factors. Therefore, an alternative, dimensional approach is called for to more adequately address (and counter) the causes of language death in a given scenario.
  • Drozd, K., & Van de Weijer, J. (Eds.). (1997). Max Planck Institute for Psycholinguistics: Annual report 1997. Nijmegen: Max Planck Institute for Psycholinguistics.
  • Drozd, K. F. (1998). No as a determiner in child English: A summary of categorical evidence. In A. Sorace, C. Heycock, & R. Shillcock (Eds.), Proceedings of the Gala '97 Conference on Language Acquisition (pp. 34-39). Edinburgh, UK: Edinburgh University Press,.

    Abstract

    This paper summarizes the results of a descriptive syntactic category analysis of child English no which reveals that young children use and represent no as a determiner and negatives like no pen as NPs, contra standard analyses.
  • Drude, S. (2005). A contribuição alemã à Lingüística e Antropologia dos índios do Brasil, especialmente da Amazônia. In J. J. A. Alves (Ed.), Múltiplas Faces da Históriadas Ciência na Amazônia (pp. 175-196). Belém: EDUFPA.
  • Drude, S. (1997). Wörterbücher, integrativ interpretiert, am Beispiel des Guaraní. Magister Thesis, Freie Universität Berlin.
  • Dunn, M., Terrill, A., Reesink, G., Foley, R. A., & Levinson, S. C. (2005). Structural phylogenetics and the reconstruction of ancient language history. Science, 309(5743), 2072-2075. doi:10.1126/science.1114615.
  • Edlinger, G., Bastiaansen, M. C. M., Brunia, C., Neuper, C., & Pfurtscheller, G. (1999). Cortical oscillatory activity assessed by combined EEG and MEG recordings and high resolution ERD methods. Biomedizinische Technik, 44(2), 131-134.
  • Ehrich, V., & Levelt, W. J. M. (Eds.). (1982). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.3 1982. Nijmegen: MPI for Psycholinguistics.
  • Eibl-Eibesfeldt, I., Senft, B., & Senft, G. (1998). Trobriander (Ost-Neuguinea, Trobriand Inseln, Kaile'una) Fadenspiele 'ninikula'. In Ethnologie - Humanethologische Begleitpublikationen von I. Eibl-Eibesfeldt und Mitarbeitern. Sammelband I, 1985-1987. Göttingen: Institut für den Wissenschaftlichen Film.
  • Eisenbeiss, S., McGregor, B., & Schmidt, C. M. (1999). Story book stimulus for the elicitation of external possessor constructions and dative constructions ('the circle of dirt'). In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 140-144). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002750.

    Abstract

    How involved in an event is a person that possesses one of the event participants? Some languages can treat such “external possessors” as very closely involved, even marking them on the verb along with core roles such as subject and object. Other languages only allow possessors to be expressed as non-core participants. This task explores possibilities for the encoding of possessors and other related roles such as beneficiaries. The materials consist of a sequence of thirty drawings designed to elicit target construction types.

    Additional information

    1999_Story_book_booklet.pdf
  • Eisner, F., & McQueen, J. M. (2005). The specificity of perceptual learning in speech processing. Perception & Psychophysics, 67(2), 224-238.

    Abstract

    We conducted four experiments to investigate the specificity of perceptual adjustments made to unusual speech sounds. Dutch listeners heard a female talker produce an ambiguous fricative [?] (between [f] and [s]) in [f]- or [s]-biased lexical contexts. Listeners with [f]-biased exposure (e.g., [witlo?]; from witlof, “chicory”; witlos is meaningless) subsequently categorized more sounds on an [εf]–[εs] continuum as [f] than did listeners with [s]-biased exposure. This occurred when the continuum was based on the exposure talker's speech (Experiment 1), and when the same test fricatives appeared after vowels spoken by novel female and male talkers (Experiments 1 and 2). When the continuum was made entirely from a novel talker's speech, there was no exposure effect (Experiment 3) unless fricatives from that talker had been spliced into the exposure talker's speech during exposure (Experiment 4). We conclude that perceptual learning about idiosyncratic speech is applied at a segmental level and is, under these exposure conditions, talker specific.
  • Enfield, N. J. (2005). The body as a cognitive artifact in kinship representations: Hand gesture diagrams by speakers of Lao. Current Anthropology, 46(1), 51-81.

    Abstract

    Central to cultural, social, and conceptual life are cognitive arti-facts, the perceptible structures which populate our world and mediate our navigation of it, complementing, enhancing, and altering available affordances for the problem-solving challenges of everyday life. Much work in this domain has concentrated on technological artifacts, especially manual tools and devices and the conceptual and communicative tools of literacy and diagrams. Recent research on hand gestures and other bodily movements which occur during speech shows that the human body serves a number of the functions of "cognitive technologies," affording the special cognitive advantages claimed to be associated exclusively with enduring (e.g., printed or drawn) diagrammatic representations. The issue is explored with reference to extensive data from video-recorded interviews with speakers of Lao in Vientiane, Laos, which show integration of verbal descriptions with complex spatial representations akin to diagrams. The study has implications both for research on cognitive artifacts (namely, that the body is a visuospatial representational resource not to be overlooked) and for research on ethnogenealogical knowledge (namely, that hand gestures reveal speakers' conceptualizations of kinship structure which are of a different nature to and not necessarily retrievable from the accompanying linguistic code).
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2005). Areal linguistics and mainland Southeast Asia. Annual Review of Anthropology, 34, 181-206. doi:10.1146/annurev.anthro.34.081804.120406.
  • Enfield, N. J. (2005). [Comment on the book Explorations in the deictic field]. Current Anthropology, 46(2), 212-212.
  • Enfield, N. J. (2005). [Review of the book Laughter in interaction by Philip Glenn]. Linguistics, 43(6), 1195-1197. doi:10.1515/ling.2005.43.6.1191.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (1999). Lao as a national language. In G. Evans (Ed.), Laos: Culture and society (pp. 258-290). Chiang Mai: Silkworm Books.
  • Enfield, N. J. (1999). On the indispensability of semantics: Defining the ‘vacuous’. Rask: internationalt tidsskrift for sprog og kommunikation, 9/10, 285-304.
  • Enfield, N. J. (1997). Review of 'Give: a cognitive linguistic study', by John Newman. Australian Journal of Linguistics, 17(1), 89-92. doi:10.1080/07268609708599546.
  • Enfield, N. J. (1997). Review of 'Plastic glasses and church fathers: semantic extension from the ethnoscience tradition', by David Kronenfeld. Anthropological Linguistics, 39(3), 459-464. Retrieved from http://www.jstor.org/stable/30028999.
  • Enfield, N. J. (2005). Review of the book [The Handbook of Historical Linguistics, edited by Brian D. Joseph and Richard D. Janda]. Linguistics, 43(6), 1191-1197. doi:10.1515/ling.2005.43.6.1191.
  • Ernestus, M., Mak, W. M., & Baayen, R. H. (2005). Waar 't kofschip strandt. Levende Talen Magazine, 92, 9-11.

Share this page