Publications

Displaying 201 - 251 of 251
  • Schreuder, R., Burani, C., & Baayen, R. H. (2003). Parsing and semantic opacity. In E. M. Assink, & D. Sandra (Eds.), Reading complex words (pp. 159-189). Dordrecht: Kluwer.
  • Seifart, F. (2003). Encoding shape: Formal means and semantic distinctions. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 57-59). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877660.

    Abstract

    The basic idea behind this task is to find out how languages encode basic shape distinctions such as dimensionality, axial geometry, relative size, etc. More specifically, we want to find out (i) which formal means are used cross linguistically to encode basic shape distinctions, and (ii) which are the semantic distinctions that are made in this domain. In languages with many shape-classifiers, these distinctions are encoded (at least partially) in classifiers. In other languages, positional verbs, descriptive modifiers, such as “flat”, “round”, or nouns such as “cube”, “ball”, etc. might be the preferred means. In this context, we also want to investigate what other “grammatical work” shapeencoding expressions possibly do in a given language, e.g. unitization of mass nouns, or anaphoric uses of shape-encoding classifiers, etc. This task further seeks to determine the role of shape-related parameters which underlie the design of objects in the semantics of the system under investigation.
  • Senft, G. (2003). Wosi Milamala: Weisen von Liebe und Tod auf den Trobriand Inseln. In I. Bobrowski (Ed.), Anabasis: Prace Ofiarowane Professor Krystynie Pisarkowej (pp. 289-295). Kraków: LEXIS.
  • Senft, G. (2003). Zur Bedeutung der Sprache für die Feldforschung. In B. Beer (Ed.), Methoden und Techniken der Feldforschung (pp. 55-70). Berlin: Reimer.
  • Senft, G. (2003). Ethnographic Methods. In W. Deutsch, T. Hermann, & G. Rickheit (Eds.), Psycholinguistik - Ein internationales Handbuch [Psycholinguistics - An International Handbook] (pp. 106-114). Berlin: Walter de Gruyter.
  • Senft, G. (2003). Ethnolinguistik. In B. Beer, & H. Fischer (Eds.), Ethnologie: Einführung und Überblick. 5. Aufl., Neufassung (pp. 255-270). Berlin: Reimer.
  • Senft, G. (1993). Mwasawa - Spiel und Spaß bei den Trobriandern. In W. Schievenhövel, J. Uher, & R. Krell (Eds.), Eibl-Eibesfeldt - Sein Schlüssel zur Verhaltensforschung (pp. 100-109). München: Langen Müller.
  • Senft, B., & Senft, G. (1993). Mwasawa - Spiel und Spass bei den Trobriandern. In W. Schiefenhövel, J. Uher, & R. Krell (Eds.), Im Spiegel der Anderen - Aus dem Lebenswerk des Verhaltenforschers Irenäus Eibl-Eibesfeldt (pp. 100-109). München: Realis.
  • Senft, G. (2003). Reasoning in language. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 28-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877663.

    Abstract

    This project aims to investigate how speakers of various languages in indigenous cultures verbally reason about moral issues. The ways in which a solution for a moral problem is found, phrased and justified will be taken as the basis for researching reasoning processes that manifest themselves verbally in the speakers’ arguments put forward to solve a number of moral problems which will be presented to them in the form of unfinished story plots or scenarios that ask for a solution. The plots chosen attempt to present common problems in human society and human behaviour. They should function to elicit moral discussion and/or moral arguments in groups of consultants of at least three persons.
  • Senft, G. (2019). Rituelle Kommunikation. In F. Liedtke, & A. Tuchen (Eds.), Handbuch Pragmatik (pp. 423-430). Stuttgart: J. B. Metzler. doi:10.1007/978-3-476-04624-6_41.

    Abstract

    Die Sprachwissenschaft hat den Begriff und das Konzept ›Rituelle Kommunikation‹ von der vergleichenden Verhaltensforschung übernommen. Humanethologen unterscheiden eine Reihe von sogenannten ›Ausdrucksbewegungen‹, die in der Mimik, der Gestik, der Personaldistanz (Proxemik) und der Körperhaltung (Kinesik) zum Ausdruck kommen. Viele dieser Ausdrucksbewegungen haben sich zu spezifischen Signalen entwickelt. Ethologen definieren Ritualisierung als Veränderung von Verhaltensweisen im Dienst der Signalbildung. Die zu Signalen ritualisierten Verhaltensweisen sind Rituale. Im Prinzip kann jede Verhaltensweise zu einem Signal werden, entweder im Laufe der Evolution oder durch Konventionen, die in einer bestimmten Gemeinschaft gültig sind, die solche Signale kulturell entwickelt hat und die von ihren Mitgliedern tradiert und gelernt werden.
  • Senft, G. (2023). The system of classifiers in Kilivila - The role of these formatives and their functions. In M. Allassonnière-Tang, & M. Kilarski (Eds.), Nominal Classification in Asia and Oceania. Functional and diachronic perspectives (pp. 10-29). Amsterdam: John Benjamins. doi:10.1075/cilt.362.02sen.

    Abstract

    This paper presents the complex system of classifiers in Kilivila, the language of the Trobriand Islanders of Papua New Guinea. After a brief introduction to the language and its speakers, the classifier system is briefly described with respect to the role of these formatives for the word formation of Kilivila numerals, adjectives, demonstratives and one form of an interrogative pronoun/adverb. Then the functions the classifier system fulfils with respect to concord, temporary classification, the unitizing of nominal expressions, nominalization, indication of plural, anaphoric reference as well as text and discourse coherence are discussed and illustrated. The paper ends with some language specific and cross-linguistic questions for further research.
  • Senghas, A., Ozyurek, A., & Kita, S. (2003). Encoding motion events in an emerging sign language: From Nicaraguan gestures to Nicaraguan signs. In A. E. Baker, B. van den Bogaerde, & O. A. Crasborn (Eds.), Crosslinguistic perspectives in sign language research (pp. 119-130). Hamburg: Signum Press.
  • Seuren, P. A. M. (2003). Verb clusters and branching directionality in German and Dutch. In P. A. M. Seuren, & G. Kempen (Eds.), Verb Constructions in German and Dutch (pp. 247-296). Amsterdam: John Benjamins.
  • Seuren, P. A. M., & Kempen, G. (Eds.). (2003). Verb constructions in German and Dutch. Amsterdam: Benjamins.
  • Seuren, P. A. M. (2023). A refutation of positivism in philosophy of mind: Thinking, reality, and language. London: Routledge.

    Abstract

    This book argues that positivism, though now the dominant paradigm for both the natural and the human sciences, is intrinsically unfit for the latter. In particular, it is unfit for linguistics and cognitive science, where it is ultimately self-destructive, since it fails to account for causality, while the mind, the primary object of research of the human sciences, cannot be understood unless considered to be an autonomous causal force. 

    Author Pieter Albertus Maria Seuren, who died shortly after this manuscript was finished and after a remarkable career, reviews the history of this issue since the seventeenth century. He focuses on Descartes, Leibniz, British Empiricism and Kant, arguing that neither cognition nor language can be adequately accounted for unless the mind is given its full due. This implies that a distinction must be made—following Alexius Meinong, but against Russell and Quine—between actual and virtual reality. The latter is a product of the causally active mind and a necessary ingredient for the setting up of mental models, without which neither cognition nor language can function. Mental models are coherent sets of propositions, and can be wholly or partially true or false. Positivism rules out mental models, blocking any serious semantics and thereby reducing both language and cognition to caricatures of themselves. Seuren presents a causal theory of meaning, linking up language with cognition and solving the old question of what meaning actually amounts to.
  • Seuren, P. A. M. (1983). Auxiliary system in Sranan. In F. Heny, & B. Richards (Eds.), Linguistic categories: Auxiliaries and related puzzles / Vol. two, The scope, order, and distribution of English auxiliary verbs (pp. 219-251). Dordrecht: Reidel.
  • Seuren, P. A. M. (2003). Logic, language and thought. In H. J. Ribeiro (Ed.), Encontro nacional de filosofia analítica. (pp. 259-276). Coimbra, Portugal: Faculdade de Letras.
  • Seuren, P. A. M. (1973). Generative Semantik: Semantische syntax. Düsseldorf: Schwann Verlag.
  • Seuren, P. A. M. (1966). L'italiano per gli olandesi: Cursus Italiaans voor beginners. Haarlem: H. Stam.
  • Seuren, P. A. M. (1973). The comparative. In F. Kiefer, & N. Ruwet (Eds.), Generative grammar in Europe (pp. 528-564). Reidel: Dordrecht.

    Abstract

    No idea is older in the history of linguistics than the thought that there is, somehow hidden underneath the surface of sentences, a form or a structure which provides a semantic analysis and lays bare their logical structure. In Plato’s Cratylus the theory was proposed, deriving from Heraclitus’ theory of explanatory underlying structure in physical nature, that words contain within themselves bits of syntactic structure giving their meanings. The Stoics held the same view and maintained moreover that every sentence has an underlying logical structure, which for them was the Aristotelian subject- predicate form. They even proposed transformational processes to derive the surface from the deep structure. The idea of a semantically analytic logical form underlying the sentences of every language kept reappearing in various guises at various times. Quite recently it re-emerged under the name of generative semantics.
  • Seuren, P. A. M. (1973). Predicate raising and dative in French and Sundry languages. Trier: L.A.U.T. (Linguistic Agency University of Trier).
  • Seuren, P. A. M. (1973). The new approach to the study of language. In B. Douglas (Ed.), Linguistics and the mind (pp. 11-20). Sydney: Sydney University Extension Board.
  • Seuren, P. A. M. (1993). The question of predicate clefting in the Indian Ocean Creoles. In F. Byrne, & D. Winford (Eds.), Focus and grammatical relations in Creole languages (pp. 53-64). Amsterdam: Benjamins.
  • Seuren, P. A. M. (1979). Wat is semantiek? In B. Tervoort (Ed.), Wetenschap en taal: Een nieuwe reeks benaderingen van het verschijnsel taal (pp. 135-162). Muiderberg: Coutinho.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (2003). Computer Analysis: Corpus based language research. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgil (Eds.), Handbook ''Sociolinguistics'' (2nd ed.) (pp. 1250-1260). Berlin: de Gruyter.
  • Skiba, R. (1993). Funktionale Analyse des Spracherwerbs einer polnischen Deutschlernerin. In A. Katny (Ed.), Beiträge zur Sprachwissenschaft, Psycho- und Soziolinguistik: Probleme des Deutschen als Mutter-, Fremd- und Zweitsprache (pp. 201-225). Rzeszów: WSP.
  • Skiba, R. (1993). Modal verbs and their syntactical characteristics in elementary learner varieties. In N. Dittmar, & A. Reich (Eds.), Modality in language acquisition (pp. 247-260). Berlin: Walter de Gruyter.
  • De Smedt, K., & Kempen, G. (1987). Incremental sentence production, self-correction, and coordination. In G. Kempen (Ed.), Natural language generation: New results in artificial intelligence, psychology and linguistics (pp. 365-376). Dordrecht: Nijhoff.
  • Spapé, M., Verdonschot, R. G., & Van Steenbergen, H. (2019). The E-Primer: An introduction to creating psychological experiments in E-Prime® (2nd ed. updated for E-Prime 3). Leiden: Leiden University Press.

    Abstract

    E-Prime® is the leading software suite by Psychology Software Tools for designing and running Psychology lab experiments. The E-Primer is the perfect accompanying guide: It provides all the necessary knowledge to make E-Prime accessible to everyone. You can learn the tools of Psychological science by following the E-Primer through a series of entertaining, step-by-step recipes that recreate classic experiments. The updated E-Primer expands its proven combination of simple explanations, interesting tutorials and fun exercises, and makes even the novice student quickly confident to create their dream experiment.
  • Speed, L. J., O'Meara, C., San Roque, L., & Majid, A. (Eds.). (2019). Perception Metaphors. Amsterdam: Benjamins.

    Abstract

    Metaphor allows us to think and talk about one thing in terms of another, ratcheting up our cognitive and expressive capacity. It gives us concrete terms for abstract phenomena, for example, ideas become things we can grasp or let go of. Perceptual experience—characterised as physical and relatively concrete—should be an ideal source domain in metaphor, and a less likely target. But is this the case across diverse languages? And are some sensory modalities perhaps more concrete than others? This volume presents critical new data on perception metaphors from over 40 languages, including many which are under-studied. Aside from the wealth of data from diverse languages—modern and historical; spoken and signed—a variety of methods (e.g., natural language corpora, experimental) and theoretical approaches are brought together. This collection highlights how perception metaphor can offer both a bedrock of common experience and a source of continuing innovation in human communication
  • Stassen, H., & Levelt, W. J. M. (1979). Systems, automata, and grammars. In J. Michon, E. Eijkman, & L. De Klerk (Eds.), Handbook of psychonomics: Vol. 1 (pp. 187-243). Amsterdam: North Holland.
  • Terrill, A. (2003). A grammar of Lavukaleve. Berlin: Mouton de Gruyter.
  • Thomassen, A. J., & Kempen, G. (1979). Memory. In J. A. Michon, E. Eijkman, & L. Klerk (Eds.), Handbook of psychonomics (pp. 75-137 ). Amsterdam: North-Holland Publishing Company.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Verga, L., Schwartze, M., & Kotz, S. A. (2023). Neurophysiology of language pathologies. In M. Grimaldi, E. Brattico, & Y. Shtyrov (Eds.), Language Electrified: Neuromethods (pp. 753-776). New York, NY: Springer US. doi:10.1007/978-1-0716-3263-5_24.

    Abstract

    Language- and speech-related disorders are among the most frequent consequences of developmental and acquired pathologies. While classical approaches to the study of these disorders typically employed the lesion method to unveil one-to-one correspondence between locations, the extent of the brain damage, and corresponding symptoms, recent advances advocate the use of online methods of investigation. For example, the use of electrophysiology or magnetoencephalography—especially when combined with anatomical measures—allows for in vivo tracking of real-time language and speech events, and thus represents a particularly promising venue for future research targeting rehabilitative interventions. In this chapter, we provide a comprehensive overview of language and speech pathologies arising from cortical and/or subcortical damage, and their corresponding neurophysiological and pathological symptoms. Building upon the reviewed evidence and literature, we aim at providing a description of how the neurophysiology of the language network changes as a result of brain damage. We will conclude by summarizing the evidence presented in this chapter, while suggesting directions for future research.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Wilkins, D. (1993). Route Description Elicitation. In S. C. Levinson (Ed.), Cognition and space kit 1.0 (pp. 15-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513141.

    Abstract

    When we want to describe a path through space, but do not share a common perceptual field with a conversation partner, language has to work doubly hard. This task investigates how people communicate the navigation of space in the absence of shared visual cues, as well as collecting data on motion verbs and the roles of symmetry and landmarks in route description. Two speakers (separated by a curtain or other barrier) are each given a model of a landscape, and one participant describes standard routes through this landscape for the other to match.
  • Wilkins, D., & Hill, D. (1993). Preliminary 'Come' and 'Go' Questionnaire. In S. C. Levinson (Ed.), Cognition and space kit 1.0 (pp. 29-46). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513125.

    Abstract

    The encoding of apparently ‘simple’ movement concepts such as ‘COME’ and ‘GO’ can differ widely across languages (e.g., in regard to specifying direction of motion relative to the speaker). This questionnaire is used to identify the range of use of basic motion verbs in a language, and investigate semantic parameters that are involved in high frequency ‘COME’ and ‘GO’-like terms.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zora, H., Tremblay, A. C., Gussenhoven, C., & Liu, F. (Eds.). (2023). Crosstalk between intonation and lexical tones: Linguistic, cognitive and neuroscience perspectives. Lausanne: Frontiers Media SA. doi:10.3389/978-2-8325-3301-7.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page