Publications

Displaying 201 - 245 of 245
  • Senghas, A., Ozyurek, A., & Kita, S. (2003). Encoding motion events in an emerging sign language: From Nicaraguan gestures to Nicaraguan signs. In A. E. Baker, B. van den Bogaerde, & O. A. Crasborn (Eds.), Crosslinguistic perspectives in sign language research (pp. 119-130). Hamburg: Signum Press.
  • Seuren, P. A. M. (2003). Verb clusters and branching directionality in German and Dutch. In P. A. M. Seuren, & G. Kempen (Eds.), Verb Constructions in German and Dutch (pp. 247-296). Amsterdam: John Benjamins.
  • Seuren, P. A. M. (2003). Logic, language and thought. In H. J. Ribeiro (Ed.), Encontro nacional de filosofia analítica. (pp. 259-276). Coimbra, Portugal: Faculdade de Letras.
  • Seuren, P. A. M. (2015). Prestructuralist and structuralist approaches to syntax. In T. Kiss, & A. Alexiadou (Eds.), Syntax--theory and analysis: An international handbook (pp. 134-157). Berlin: Mouton de Gruyter.
  • Seuren, P. A. M. (2015). Taal is complexer dan je denkt - recursief. In S. Lestrade, P. De Swart, & L. Hogeweg (Eds.), Addenda. Artikelen voor Ad Foolen (pp. 393-400). Nijmegen: Radboud University.
  • Seuren, P. A. M. (1979). Wat is semantiek? In B. Tervoort (Ed.), Wetenschap en taal: Een nieuwe reeks benaderingen van het verschijnsel taal (pp. 135-162). Muiderberg: Coutinho.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Skiba, R. (2003). Computer Analysis: Corpus based language research. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgil (Eds.), Handbook ''Sociolinguistics'' (2nd ed.) (pp. 1250-1260). Berlin: de Gruyter.
  • Smith, A. C. (2015). Modelling multimodal language processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Snijders Blok, L. (2021). Let the genes speak! De novo variants in developmental disorders with speech and language impairment. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • De Sousa, H., Langella, F., & Enfield, N. J. (2015). Temperature terms in Lao, Southern Zhuang, Southern Pinghua and Cantonese. In M. Koptjevskaja-Tamm (Ed.), The linguistics of temperature (pp. 594-638). Amsterdam: Benjamins.
  • Sprenger, S. A. (2003). Fixed expressions and the production of idioms. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.57562.
  • Stassen, H., & Levelt, W. J. M. (1979). Systems, automata, and grammars. In J. Michon, E. Eijkman, & L. De Klerk (Eds.), Handbook of psychonomics: Vol. 1 (pp. 187-243). Amsterdam: North Holland.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Sumer, B. (2015). Acquisition of spatial language by signing and speaking children: A comparison of Turkish Sign Language (TID) and Turkish. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Thomassen, A. J., & Kempen, G. (1979). Memory. In J. A. Michon, E. Eijkman, & L. Klerk (Eds.), Handbook of psychonomics (pp. 75-137 ). Amsterdam: North-Holland Publishing Company.
  • Todorova, L. (2021). Language bias in visually driven decisions: Computational neurophysiological mechanisms. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Trompenaars, T. (2021). Bringing stories to life: Animacy in narrative and processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Trujillo, J. P., Levinson, S. C., & Holler, J. (2021). Visual information in computer-mediated interaction matters: Investigating the association between the availability of gesture and turn transition timing in conversation. In M. Kurosu (Ed.), Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021 (pp. 643-657). Cham: Springer. doi:10.1007/978-3-030-78468-3_44.

    Abstract

    Natural human interaction involves the fast-paced exchange of speaker turns. Crucially, if a next speaker waited with planning their turn until the current speaker was finished, language production models would predict much longer turn transition times than what we observe. Next speakers must therefore prepare their turn in parallel to listening. Visual signals likely play a role in this process, for example by helping the next speaker to process the ongoing utterance and thus prepare an appropriately-timed response.

    To understand how visual signals contribute to the timing of turn-taking, and to move beyond the mostly qualitative studies of gesture in conversation, we examined unconstrained, computer-mediated conversations between 20 pairs of participants while systematically manipulating speaker visibility. Using motion tracking and manual gesture annotation, we assessed 1) how visibility affected the timing of turn transitions, and 2) whether use of co-speech gestures and 3) the communicative kinematic features of these gestures were associated with changes in turn transition timing.

    We found that 1) decreased visibility was associated with less tightly timed turn transitions, and 2) the presence of gestures was associated with more tightly timed turn transitions across visibility conditions. Finally, 3) structural and salient kinematics contributed to gesture’s facilitatory effect on turn transition times.

    Our findings suggest that speaker visibility--and especially the presence and kinematic form of gestures--during conversation contributes to the temporal coordination of conversational turns in computer-mediated settings. Furthermore, our study demonstrates that it is possible to use naturalistic conversation and still obtain controlled results.
  • Tsoukala, C. (2021). Bilingual sentence production and code-switching: Neural network simulations. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Udden, J., & Schoffelen, J.-M. (2015). Mother of all Unification Studies (MOUS). In A. E. Konopka (Ed.), Research Report 2013 | 2014 (pp. 21-22). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2236748.
  • Van Dijk, C. N. (2021). Cross-linguistic influence during real-time sentence processing in bilingual children and adults. PhD Thesis, Raboud University Nijmegen, Nijmegen.
  • van der Burght, C. L. (2021). The central contribution of prosody to sentence processing: Evidence from behavioural and neuroimaging studies. PhD Thesis, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig.
  • Van Paridon, J. (2021). Speaking while listening: Language processing in speech shadowing and translation. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van de Velde, M. (2015). Incrementality and flexibility in sentence production. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Heugten, M., Bergmann, C., & Cristia, A. (2015). The Effects of Talker Voice and Accent on Young Children's Speech Perception. In S. Fuchs, D. Pape, C. Petrone, & P. Perrier (Eds.), Individual Differences in Speech Production and Perception (pp. 57-88). Bern: Peter Lang.

    Abstract

    Within the first few years of life, children acquire many of the building blocks of their native language. This not only involves knowledge about the linguistic structure of spoken language, but also knowledge about the way in which this linguistic structure surfaces in their speech input. In this chapter, we review how infants and toddlers cope with differences between speakers and accents. Within the context of milestones in early speech perception, we examine how voice and accent characteristics are integrated during language processing, looking closely at the advantages and disadvantages of speaker and accent familiarity, surface-level deviation between two utterances, variability in the input, and prior speaker exposure. We conclude that although deviation from the child’s standard can complicate speech perception early in life, young listeners can overcome these additional challenges. This suggests that early spoken language processing is flexible and adaptive to the listening situation at hand.
  • Van Leeuwen, E. J. C. (2015). Social learning dynamics in chimpanzees: Reflections on animal culture. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Verga, L. (2015). Learning together or learning alone: Investigating the role of social interaction in second language word learning. PhD Thesis, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  • Verhoef, E. (2021). Why do we change how we speak? Multivariate genetic analyses of language and related traits across development and disorder. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Weissenborn, J., & Stralka, R. (1984). Das Verstehen von Mißverständnissen. Eine ontogenetische Studie. In Zeitschrift für Literaturwissenschaft und Linguistik (pp. 113-134). Stuttgart: Metzler.
  • Weissenborn, J. (1984). La genèse de la référence spatiale en langue maternelle et en langue seconde: similarités et différences. In G. Extra, & M. Mittner (Eds.), Studies in second language acquisition by adult immigrants (pp. 262-286). Tilburg: Tilburg University.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Willems, R. M. (2015). Cognitive neuroscience of natural language use: Introduction. In Cognitive neuroscience of natural language use (pp. 1-7). Cambridge: Cambridge University Press.
  • Zhou, W. (2015). Assessing birth language memory in young adoptees. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Zwitserlood, I. (2003). Classifying hand configurations in Nederlandse Gebarentaal (Sign Language of the Netherlands). PhD Thesis, LOT, Utrecht. Retrieved from http://igitur-archive.library.uu.nl/dissertations/2003-0717-122837/UUindex.html.

    Abstract

    This study investigates the morphological and morphosyntactic characteristics of hand configurations in signs, particularly in Nederlandse Gebarentaal (NGT). The literature on sign languages in general acknowledges that hand configurations can function as morphemes, more specifically as classifiers , in a subset of signs: verbs expressing the motion, location, and existence of referents (VELMs). These verbs are considered the output of productive sign formation processes. In contrast, other signs in which similar hand configurations appear ( iconic or motivated signs) have been considered to be lexicalized signs, not involving productive processes. This research report shows that meaningful hand configurations have (at least) two very different functions in the grammar of NGT (and presumably in other sign languages, too). First, they are agreement markers on VELMs, and hence are functional elements. Second, they are roots in motivated signs, and thus lexical elements. The latter signs are analysed as root compounds and are formed from various roots by productive processes. The similarities in surface form and differences in morphosyntactic characteristics observed in comparison of VELMs and root compounds are attributed to their different structures and to the sign language interface between grammar and phonetic form
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page