Publications

Displaying 301 - 400 of 1245
  • Floyd, S., Manrique, E., Rossi, G., & Torreira, F. (2016). Timing of visual bodily behavior in repair sequences: Evidence from three languages. Discourse Processes, 53(3), 175-204. doi:10.1080/0163853X.2014.992680.

    Abstract

    This article expands the study of other-initiated repair in conversation—when one party
    signals a problemwith producing or perceiving another’s turn at talk—into the domain
    of visual bodily behavior. It presents one primary cross-linguistic finding about the
    timing of visual bodily behavior in repair sequences: if the party who initiates repair
    accompanies their turn with a “hold”—when relatively dynamic movements are
    temporarily andmeaningfully held static—this positionwill not be disengaged until the
    problem is resolved and the sequence closed. We base this finding on qualitative and
    quantitative analysis of corpora of conversational interaction from three unrelated languages representing two different modalities: Northern Italian, the Cha’palaa language of Ecuador, and Argentine Sign Language. The cross-linguistic similarities
    uncovered by this comparison suggest that visual bodily practices have been
    semiotized for similar interactive functions across different languages and modalities
    due to common pressures in face-to-face interaction.
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • Forkel, S. J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy, D. G. M., Williams, S. C. R., & Catani, M. (2014). Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain, 137, 2027-2039. doi:10.1093/brain/awu113.

    Abstract

    Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke’s to Broca’s region (i.e. long segment), Wernicke’s to Geschwind’s region (i.e. posterior segment) and Broca’s to Geschwind’s region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28–87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = −0.630, t(−3.129), P = 0.011]. For the right hemisphere, age [beta = −0.678, t(–3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.

    Additional information

    supplementary information
  • Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell'Acqua, F., Danek, A., & Catani, M. (2014). The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56, 73-84. doi:10.1016/j.cortex.2012.09.005.

    Abstract

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top–down modulation of early visual processing.

    Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the ‘inferior fronto-occipital fasciculus’ (iFOF) has not been demonstrated. Conversely, a ‘superior fronto-occipital fasciculus’ (sFOF), also referred to as ‘subcallosal bundle’ by some authors, is reported in monkey axonal tracing studies but not in human dissections.

    In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the ‘subcallosal bundle’ in animals (1893).

    Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an ‘occipital extension’ of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract.

    In conclusion, our experimental findings and review of the literature suggest that a ventral pathway in humans, namely the iFOF, mediates a direct communication between occipital and frontal lobes. Whether the iFOF represents a unique human pathway awaits further ad hoc investigations in animals.
  • Francisco, A. A., Groen, M. A., Jesse, A., & McQueen, J. M. (2017). Beyond the usual cognitive suspects: The importance of speechreading and audiovisual temporal sensitivity in reading ability. Learning and Individual Differences, 54, 60-72. doi:10.1016/j.lindif.2017.01.003.

    Abstract

    The aim of this study was to clarify whether audiovisual processing accounted for variance in reading and reading-related abilities, beyond the effect of a set of measures typically associated with individual differences in both reading and audiovisual processing. Testing adults with and without a diagnosis of dyslexia, we showed that—across all participants, and after accounting for variance in cognitive abilities—audiovisual temporal sensitivity contributed uniquely to variance in reading errors. This is consistent with previous studies demonstrating an audiovisual deficit in dyslexia. Additionally, we showed that speechreading (identification of speech based on visual cues from the talking face alone) was a unique contributor to variance in phonological awareness in dyslexic readers only: those who scored higher on speechreading, scored lower on phonological awareness. This suggests a greater reliance on visual speech as a compensatory mechanism when processing auditory speech is problematic. A secondary aim of this study was to better understand the nature of dyslexia. The finding that a sub-group of dyslexic readers scored low on phonological awareness and high on speechreading is consistent with a hybrid perspective of dyslexia: There are multiple possible pathways to reading impairment, which may translate into multiple profiles of dyslexia.
  • Francisco, A. A., Jesse, A., Groen, M. A., & McQueen, J. M. (2017). A general audiovisual temporal processing deficit in adult readers with dyslexia. Journal of Speech, Language, and Hearing Research, 60, 144-158. doi:10.1044/2016_JSLHR-H-15-0375.

    Abstract

    Purpose: Because reading is an audiovisual process, reading impairment may reflect an audiovisual processing deficit. The aim of the present study was to test the existence and scope of such a deficit in adult readers with dyslexia. Method: We tested 39 typical readers and 51 adult readers with dyslexia on their sensitivity to the simultaneity of audiovisual speech and nonspeech stimuli, their time window of audiovisual integration for speech (using incongruent /aCa/ syllables), and their audiovisual perception of phonetic categories. Results: Adult readers with dyslexia showed less sensitivity to audiovisual simultaneity than typical readers for both speech and nonspeech events. We found no differences between readers with dyslexia and typical readers in the temporal window of integration for audiovisual speech or in the audiovisual perception of phonetic categories. Conclusions: The results suggest an audiovisual temporal deficit in dyslexia that is not specific to speech-related events. But the differences found for audiovisual temporal sensitivity did not translate into a deficit in audiovisual speech perception. Hence, there seems to be a hiatus between simultaneity judgment and perception, suggesting a multisensory system that uses different mechanisms across tasks. Alternatively, it is possible that the audiovisual deficit in dyslexia is only observable when explicit judgments about audiovisual simultaneity are required
  • Francks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B. and 22 moreFrancks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B., Nanba, E., Richardson, A. J., Riley, B. P., Martin, N. G., Strittmatter, S. M., Möller, H.-J., Rujescu, D., St Clair, D., Muglia, P., Roos, J. L., Fisher, S. E., Wade-Martins, R., Rouleau, G. A., Stein, J. F., Karayiorgou, M., Geschwind, D. H., Ragoussis, J., Kendler, K. S., Airaksinen, M. S., Oshimura, M., DeLisi, L. E., & Monaco, A. P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129-1139. doi:10.1038/sj.mp.4002053.

    Abstract

    Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.
  • Francks, C. (2009). Understanding the genetics of behavioural and psychiatric traits will only be achieved through a realistic assessment of their complexity. Laterality: Asymmetries of Body, Brain and Cognition, 14(1), 11-16. doi:10.1080/13576500802536439.

    Abstract

    Francks et al. (2007) performed a recent study in which the first putative genetic effect on human handedness was identified (the imprinted locus LRRTM1 on human chromosome 2). In this issue of Laterality, Tim Crow and colleagues present a critique of that study. The present paper presents a personal response to that critique which argues that Francks et al. (2007) published a substantial body of evidence implicating LRRTM1 in handedness and schizophrenia. Progress will now be achieved by others trying to validate, refute, or extend those findings, rather than by further armchair discussion.
  • Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., Hamlin, J. K., Hannon, E. E., Kline, M., Levelt, C., Lew-Williams, C., Nazzi, T., Panneton, R., Rabagliati, H., Soderstrom, M., Sullivan, J., Waxman, S., & Yurovsky, D. (2017). A collaborative approach to infant research: Promoting reproducibility, best practices, and theory-building. Infancy, 22(4), 421-435. doi:10.1111/infa.12182.

    Abstract

    The ideal of scientific progress is that we accumulate measurements and integrate these into theory, but recent discussion of replicability issues has cast doubt on whether psychological research conforms to this model. Developmental research—especially with infant participants—also has discipline-specific replicability challenges, including small samples and limited measurement methods. Inspired by collaborative replication efforts in cognitive and social psychology, we describe a proposal for assessing and promoting replicability in infancy research: large-scale, multi-laboratory replication efforts aiming for a more precise understanding of key developmental phenomena. The ManyBabies project, our instantiation of this proposal, will not only help us estimate how robust and replicable these phenomena are, but also gain new theoretical insights into how they vary across ages, linguistic communities, and measurement methods. This project has the potential for a variety of positive outcomes, including less-biased estimates of theoretically important effects, estimates of variability that can be used for later study planning, and a series of best-practices blueprints for future infancy research.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2007). Coherence-driven resolution of referential ambiguity: A computational model. Memory & Cognition, 35(6), 1307-1322.

    Abstract

    We present a computational model that provides a unified account of inference, coherence, and disambiguation. It simulates how the build-up of coherence in text leads to the knowledge-based resolution of referential ambiguity. Possible interpretations of an ambiguity are represented by centers of gravity in a high-dimensional space. The unresolved ambiguity forms a vector in the same space. This vector is attracted by the centers of gravity, while also being affected by context information and world knowledge. When the vector reaches one of the centers of gravity, the ambiguity is resolved to the corresponding interpretation. The model accounts for reading time and error rate data from experiments on ambiguous pronoun resolution and explains the effects of context informativeness, anaphor type, and processing depth. It shows how implicit causality can have an early effect during reading. A novel prediction is that ambiguities can remain unresolved if there is insufficient disambiguating information.
  • Frank, S. L., & Fitz, H. (2016). Reservoir computing and the Sooner-is-Better bottleneck [Commentary on Christiansen & Slater]. Behavioral and Brain Sciences, 39: e73. doi:10.1017/S0140525X15000783.

    Abstract

    Prior language input is not lost but integrated with the current input. This principle is demonstrated by “reservoir computing”: Untrained recurrent neural networks project input sequences onto a random point in high-dimensional state space. Earlier inputs can be retrieved from this projection, albeit less reliably so as more input is received. The bottleneck is therefore not “Now-or-Never” but “Sooner-is-Better.
  • Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct patterns of brain activity during language comprehension. Language, Cognition and Neuroscience, 32(9), 1192-1203. doi:10.1080/23273798.2017.1323109.

    Abstract

    We investigate the effects of two types of relationship between the words of a sentence or text – predictability and semantic similarity – by reanalysing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data from studies in which participants comprehend naturalistic stimuli. Each content word's predictability given previous words is quantified by a probabilistic language model, and semantic similarity to previous words is quantified by a distributional semantics model. Brain activity time-locked to each word is regressed on the two model-derived measures. Results show that predictability and semantic similarity have near identical N400 effects but are dissociated in the fMRI data, with word predictability related to activity in, among others, the visual word-form area, and semantic similarity related to activity in areas associated with the semantic network. This indicates that both predictability and similarity play a role during natural language comprehension and modulate distinct cortical regions.
  • Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J. and 17 moreFranke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J., Ehrlich, S., Mather, K. A., Turner, J. A., Schwarz, E., Thalamuthu, A., Yao, Y., Ho, Y. Y. W., Martin, N. G., Wright, M. J., Guadalupe, T., Fisher, S. E., Francks, C., Schizophrenia Working Group of the Psychiatric Genomics Consortium, ENIGMA Consortium, O’Donovan, M. C., Thompson, P. M., Neale, B. M., Medland, S. E., & Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 19, 420-431. doi:10.1038/nn.4228.

    Abstract

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders

    Additional information

    Franke_etal_2016_supp1.pdf
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007-2018. doi:10.1121/1.5006899.

    Abstract

    An important part of understanding speech motor control consists of capturing the
    interaction between speech production and speech perception. This study tests a
    prediction of theoretical frameworks that have tried to account for these interactions: if
    speech production targets are specified in auditory terms, individuals with better
    auditory acuity should have more precise speech targets, evidenced by decreased
    within-phoneme variability and increased between-phoneme distance. A study was
    carried out consisting of perception and production tasks in counterbalanced order.
    Auditory acuity was assessed using an adaptive speech discrimination task, while
    production variability was determined using a pseudo-word reading task. Analyses of
    the production data were carried out to quantify average within-phoneme variability as
    well as average between-phoneme contrasts. Results show that individuals not only
    vary in their production and perceptual abilities, but that better discriminators have
    more distinctive vowel production targets (that is, targets with less within-phoneme
    variability and greater between-phoneme distances), confirming the initial hypothesis.
    This association between speech production and perception did not depend on local
    phoneme density in vowel space. This study suggests that better auditory acuity leads
    to more precise speech production targets, which may be a consequence of auditory
    feedback affecting speech production over time.
  • Frega, M., van Gestel, S. H. C., Linda, K., Van der Raadt, J., Keller, J., Van Rhijn, J. R., Schubert, D., Albers, C. A., & Kasri, N. N. (2017). Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. Journal of Visualized Experiments, e45900. doi:10.3791/54900.

    Abstract

    Neurons derived from human induced Pluripotent Stem Cells (hiPSCs) provide a promising new tool for studying neurological disorders. In the past decade, many protocols for differentiating hiPSCs into neurons have been developed. However, these protocols are often slow with high variability, low reproducibility, and low efficiency. In addition, the neurons obtained with these protocols are often immature and lack adequate functional activity both at the single-cell and network levels unless the neurons are cultured for several months. Partially due to these limitations, the functional properties of hiPSC-derived neuronal networks are still not well characterized. Here, we adapt a recently published protocol that describes production of human neurons from hiPSCs by forced expression of the transcription factor neurogenin-212. This protocol is rapid (yielding mature neurons within 3 weeks) and efficient, with nearly 100% conversion efficiency of transduced cells (>95% of DAPI-positive cells are MAP2 positive). Furthermore, the protocol yields a homogeneous population of excitatory neurons that would allow the investigation of cell-type specific contributions to neurological disorders. We modified the original protocol by generating stably transduced hiPSC cells, giving us explicit control over the total number of neurons. These cells are then used to generate hiPSC-derived neuronal networks on micro-electrode arrays. In this way, the spontaneous electrophysiological activity of hiPSC-derived neuronal networks can be measured and characterized, while retaining interexperimental consistency in terms of cell density. The presented protocol is broadly applicable, especially for mechanistic and pharmacological studies on human neuronal networks.

    Additional information

    video component of this article
  • French, C. A., Groszer, M., Preece, C., Coupe, A.-M., Rajewsky, K., & Fisher, S. E. (2007). Generation of mice with a conditional Foxp2 null allele. Genesis, 45(7), 440-446. doi:10.1002/dvg.20305.

    Abstract

    Disruptions of the human FOXP2 gene cause problems with articulation of complex speech sounds, accompanied by impairment in many aspects of language ability. The FOXP2/Foxp2 transcription factor is highly similar in humans and mice, and shows a complex conserved expression pattern, with high levels in neuronal subpopulations of the cortex, striatum, thalamus, and cerebellum. In the present study we generated mice in which loxP sites flank exons 12-14 of Foxp2; these exons encode the DNA-binding motif, a key functional domain. We demonstrate that early global Cre-mediated recombination yields a null allele, as shown by loss of the loxP-flanked exons at the RNA level and an absence of Foxp2 protein. Homozygous null mice display severe motor impairment, cerebellar abnormalities and early postnatal lethality, consistent with other Foxp2 mutants. When crossed to transgenic lines expressing Cre protein in a spatially and/or temporally controlled manner, these conditional mice will provide new insights into the contributions of Foxp2 to distinct neural circuits, and allow dissection of roles during development and in the mature brain.
  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.

    Abstract

    Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
  • Freunberger, D., & Nieuwland, M. S. (2016). Incremental comprehension of spoken quantifier sentences: Evidence from brain potentials. Brain Research, 1646, 475-481. doi:10.1016/j.brainres.2016.06.035.

    Abstract

    Do people incrementally incorporate the meaning of quantifier expressions to understand an unfolding sentence? Most previous studies concluded that quantifiers do not immediately influence how a sentence is understood based on the observation that online N400-effects differed from offline plausibility judgments. Those studies, however, used serial visual presentation (SVP), which involves unnatural reading. In the current ERP-experiment, we presented spoken positive and negative quantifier sentences (“Practically all/practically no postmen prefer delivering mail, when the weather is good/bad during the day”). Different from results obtained in a previously reported SVP-study (Nieuwland, 2016) sentence truth-value N400 effects occurred in positive and negative quantifier sentences alike, reflecting fully incremental quantifier comprehension. This suggests that the prosodic information available during spoken language comprehension supports the generation of online predictions for upcoming words and that, at least for quantifier sentences, comprehension of spoken language may proceed more incrementally than comprehension during SVP reading.
  • Friedlaender, J., Hunley, K., Dunn, M., Terrill, A., Lindström, E., Reesink, G., & Friedlaender, F. (2009). Linguistics more robust than genetics [Letter to the editor]. Science, 324, 464-465. doi:10.1126/science.324_464c.
  • Frost, R. L. A., Monaghan, P., & Tatsumi, T. (2017). Domain-general mechanisms for speech segmentation: The role of duration information in language learning. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 466-476. doi:10.1037/xhp0000325.

    Abstract

    Speech segmentation is supported by multiple sources of information that may either inform language processing specifically, or serve learning more broadly. The Iambic/Trochaic Law (ITL), where increased duration indicates the end of a group and increased emphasis indicates the beginning of a group, has been proposed as a domain-general mechanism that also applies to language. However, language background has been suggested to modulate use of the ITL, meaning that these perceptual grouping preferences may instead be a consequence of language exposure. To distinguish between these accounts, we exposed native-English and native-Japanese listeners to sequences of speech (Experiment 1) and nonspeech stimuli (Experiment 2), and examined segmentation using a 2AFC task. Duration was manipulated over 3 conditions: sequences contained either an initial-item duration increase, or a final-item duration increase, or items of uniform duration. In Experiment 1, language background did not affect the use of duration as a cue for segmenting speech in a structured artificial language. In Experiment 2, the same results were found for grouping structured sequences of visual shapes. The results are consistent with proposals that duration information draws upon a domain-general mechanism that can apply to the special case of language acquisition
  • Frost, R. L. A., & Monaghan, P. (2016). Simultaneous segmentation and generalisation of non-adjacent dependencies from continuous speech. Cognition, 147, 70-74. doi:10.1016/j.cognition.2015.11.010.

    Abstract

    Language learning requires mastering multiple tasks, including segmenting speech to identify words, and learning the syntactic role of these words within sentences. A key question in language acquisition research is the extent to which these tasks are sequential or successive, and consequently whether they may be driven by distinct or similar computations. We explored a classic artificial language learning paradigm, where the language structure is defined in terms of non-adjacent dependencies. We show that participants are able to use the same statistical information at the same time to segment continuous speech to both identify words and to generalise over the structure, when the generalisations were over novel speech that the participants had not previously experienced. We suggest that, in the absence of evidence to the contrary, the most economical explanation for the effects is that speech segmentation and grammatical generalisation are dependent on similar statistical processing mechanisms.
  • Frost, R. L. A., & Monaghan, P. (2017). Sleep-driven computations in speech processing. PLoS One, 12(1): e0169538. doi:10.1371/journal.pone.0169538.

    Abstract

    Acquiring language requires segmenting speech into individual words, and abstracting over those words to discover grammatical structure. However, these tasks can be conflicting—on the one hand requiring memorisation of precise sequences that occur in speech, and on the other requiring a flexible reconstruction of these sequences to determine the grammar. Here, we examine whether speech segmentation and generalisation of grammar can occur simultaneously—with the conflicting requirements for these tasks being over-come by sleep-related consolidation. After exposure to an artificial language comprising words containing non-adjacent dependencies, participants underwent periods of consolidation involving either sleep or wake. Participants who slept before testing demonstrated a sustained boost to word learning and a short-term improvement to grammatical generalisation of the non-adjacencies, with improvements after sleep outweighing gains seen after an equal period of wake. Thus, we propose that sleep may facilitate processing for these conflicting tasks in language acquisition, but with enhanced benefits for speech segmentation.

    Additional information

    Data available
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., & Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports, 4: 5283. doi:10.1038/srep05283.

    Abstract

    Cumulative tool-based culture underwrote our species' evolutionary success and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

    Additional information

    Supplementary Information
  • Furman, R., Kuntay, A., & Ozyurek, A. (2014). Early language-specificity of children's event encoding in speech and gesture: Evidence from caused motion in Turkish. Language, Cognition and Neuroscience, 29, 620-634. doi:10.1080/01690965.2013.824993.

    Abstract

    Previous research on language development shows that children are tuned early on to the language-specific semantic and syntactic encoding of events in their native language. Here we ask whether language-specificity is also evident in children's early representations in gesture accompanying speech. In a longitudinal study, we examined the spontaneous speech and cospeech gestures of eight Turkish-speaking children aged one to three and focused on their caused motion event expressions. In Turkish, unlike in English, the main semantic elements of caused motion such as Action and Path can be encoded in the verb (e.g. sok- ‘put in’) and the arguments of a verb can be easily omitted. We found that Turkish-speaking children's speech indeed displayed these language-specific features and focused on verbs to encode caused motion. More interestingly, we found that their early gestures also manifested specificity. Children used iconic cospeech gestures (from 19 months onwards) as often as pointing gestures and represented semantic elements such as Action with Figure and/or Path that reinforced or supplemented speech in language-specific ways until the age of three. In the light of previous reports on the scarcity of iconic gestures in English-speaking children's early productions, we argue that the language children learn shapes gestures and how they get integrated with speech in the first three years of life.
  • Furman, R., & Ozyurek, A. (2007). Development of interactional discourse markers: Insights from Turkish children's and adults' narratives. Journal of Pragmatics, 39(10), 1742-1757. doi:10.1016/j.pragma.2007.01.008.

    Abstract

    Discourse markers (DMs) are linguistic elements that index different relations and coherence between units of talk (Schiffrin, Deborah, 1987. Discourse Markers. Cambridge University Press, Cambridge). Most research on the development of these forms has focused on conversations rather than narratives and furthermore has not directly compared children's use of DMs to adult usage. This study examines the development of three DMs (şey ‘uuhh’, yani ‘I mean’, işte ‘y’know’) that mark interactional levels of discourse in oral Turkish narratives in 60 Turkish children (3-, 5- and 9-year-olds) and 20 Turkish-speaking adults. The results show that the frequency and functions of DMs change with age. Children learn şey, which mainly marks exchange level structures, earliest. However, yani and işte have multi-functions such as marking both information states and participation frameworks and are consequently learned later. Children also use DMs with different functions than adults. Overall, the results show that learning to use interactional DMs in narratives is complex and goes beyond age 9, especially for multi-functional DMs that index an interplay of discourse coherence at different levels.
  • Ganushchak, L. Y., & Schiller, N. O. (2009). Speaking in one’s second language under time pressure: An ERP study on verbal self-monitoring in German-Dutch bilinguals. Psychophysiology, 46, 410-419. doi:10.1111/j.1469-8986.2008.00774.x.

    Abstract

    This study addresses how verbal self-monitoring and the Error-Related Negativity (ERN) are affected by time pressure
    when a task is performed in a second language as opposed to performance in the native language. German–Dutch
    bilinguals were required to perform a phoneme-monitoring task in Dutch with and without a time pressure manipulation.
    We obtained an ERN following verbal errors that showed an atypical increase in amplitude under time
    pressure. This finding is taken to suggest that under time pressure participants had more interference from their native
    language, which in turn led to a greater response conflict and thus enhancement of the amplitude of the ERN. This
    result demonstrates once more that the ERN is sensitive to psycholinguistic manipulations and suggests that the
    functioning of the verbal self-monitoring systemduring speaking is comparable to other performance monitoring, such
    as action monitoring.
  • Ganushchak, L., Konopka, A. E., & Chen, Y. (2014). What the eyes say about planning of focused referents during sentence formulation: a cross-linguistic investigation. Frontiers in Psychology, 5: 1124. doi:10.3389/fpsyg.2014.01124.

    Abstract

    This study investigated how sentence formulation is influenced by a preceding discourse context. In two eye-tracking experiments, participants described pictures of two-character transitive events in Dutch (Experiment 1) and Chinese (Experiment 2). Focus was manipulated by presenting questions before each picture. In the Neutral condition, participants first heard ‘What is happening here?’ In the Object or Subject Focus conditions, the questions asked about the Object or Subject character (What is the policeman stopping? Who is stopping the truck?). The target response was the same in all conditions (The policeman is stopping the truck). In both experiments, sentence formulation in the Neutral condition showed the expected pattern of speakers fixating the subject character (policeman) before the object character (truck). In contrast, in the focus conditions speakers rapidly directed their gaze preferentially only to the character they needed to encode to answer the question (the new, or focused, character). The timing of gaze shifts to the new character varied by language group (Dutch vs. Chinese): shifts to the new character occurred earlier when information in the question can be repeated in the response with the same syntactic structure (in Chinese but not in Dutch). The results show that discourse affects the timecourse of linguistic formulation in simple sentences and that these effects can be modulated by language-specific linguistic structures such as parallels in the syntax of questions and declarative sentences.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Garrido, L., Eisner, F., McGettigan, C., Stewart, L., Sauter, D., Hanley, J. R., Schweinberger, S. R., Warren, J. D., & Duchaine, B. (2009). Developmental phonagnosia: A selective deficit of vocal identity recognition. Neuropsychologia, 47(1), 123-131. doi:10.1016/j.neuropsychologia.2008.08.003.

    Abstract

    Phonagnosia, the inability to recognize familiar voices, has been studied in brain-damaged patients but no cases due to developmental problems have been reported. Here we describe the case of KH, a 60-year-old active professional woman who reports that she has always experienced severe voice recognition difficulties. Her hearing abilities are normal, and an MRI scan showed no evidence of brain damage in regions associated with voice or auditory perception. To better understand her condition and to assess models of voice and high-level auditory processing, we tested KH on behavioural tasks measuring voice recognition, recognition of vocal emotions, face recognition, speech perception, and processing of environmental sounds and music. KH was impaired on tasks requiring the recognition of famous voices and the learning and recognition of new voices. In contrast, she performed well on nearly all other tasks. Her case is the first report of developmental phonagnosia, and the results suggest that the recognition of a speaker’s vocal identity depends on separable mechanisms from those used to recognize other information from the voice or non-vocal auditory stimuli.
  • Gaskell, M. G., Warker, J., Lindsay, S., Frost, R. L. A., Guest, J., Snowdon, R., & Stackhouse, A. (2014). Sleep Underpins the Plasticity of Language Production. Psychological Science, 25(7), 1457-1465. doi:10.1177/0956797614535937.

    Abstract

    The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep.

    Additional information

    https://osf.io/zqg9y/
  • Gaspard III, J. C., Bauer, G. B., Mann, D. A., Boerner, K., Denum, L., Frances, C., & Reep, R. L. (2017). Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris) A Neuroethology, sensory, neural, and behavioral physiology. Journal of Comparative Physiology, 203, 111-120. doi:10.1007/s00359-016-1142-8.

    Abstract

    Manatees live in shallow, frequently turbid
    waters. The sensory means by which they navigate in these
    conditions are unknown. Poor visual acuity, lack of echo-
    location, and modest chemosensation suggest that other
    modalities play an important role. Rich innervation of sen-
    sory hairs that cover the entire body and enlarged soma-
    tosensory areas of the brain suggest that tactile senses are
    good candidates. Previous tests of detection of underwater
    vibratory stimuli indicated that they use passive movement
    of the hairs to detect particle displacements in the vicinity
    of a micron or less for frequencies from 10 to 150 Hz. In
    the current study, hydrodynamic stimuli were created by
    a sinusoidally oscillating sphere that generated a dipole
    field at frequencies from 5 to 150 Hz. Go/no-go tests of
    manatee postcranial mechanoreception of hydrodynamic
    stimuli indicated excellent sensitivity but about an order of
    magnitude less than the facial region. When the vibrissae
    were trimmed, detection thresholds were elevated, suggest-
    ing that the vibrissae were an important means by which
    detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90%
    correct at all frequencies tested. We hypothesize that mana-
    tees utilize vibrissae as a three-dimensional array to detect
    and localize low-frequency hydrodynamic stimuli
  • Gaub, S., Fisher, S. E., & Ehret, G. (2016). Ultrasonic vocalizations of adult male Foxp2-mutant mice: Behavioral contexts of arousal and emotion. Genes, Brain and Behavior, 15(2), 243-259. doi:10.1111/gbb.12274.

    Abstract

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion, and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectro-temporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits.
  • Gazendam, L., Wartena, C., Malaise, V., Schreiber, G., De Jong, A., & Brugman, H. (2009). Automatic annotation suggestions for audiovisual archives: Evaluation aspects. Interdisciplinary Science Reviews, 34(2/3), 172-188. doi:10.1179/174327909X441090.

    Abstract

    In the context of large and ever growing archives, generating annotation suggestions automatically from textual resources related to the documents to be archived is an interesting option in theory. It could save a lot of work in the time consuming and expensive task of manual annotation and it could help cataloguers attain a higher inter-annotator agreement. However, some questions arise in practice: what is the quality of the automatically produced annotations? How do they compare with manual annotations and with the requirements for annotation that were defined in the archive? If different from the manual annotations, are the automatic annotations wrong? In the CHOICE project, partially hosted at the Netherlands Institute for Sound and Vision, the Dutch public archive for audiovisual broadcasts, we automatically generate annotation suggestions for cataloguers. In this paper, we define three types of evaluation of these annotation suggestions: (1) a classic and strict evaluation measure expressing the overlap between automatically generated keywords and the manual annotations, (2) a loosened evaluation measure for which semantically very similar annotations are also considered as relevant matches, and (3) an in-use evaluation of the usefulness of manual versus automatic annotations in the context of serendipitous browsing. During serendipitous browsing, the annotations (manual or automatic) are used to retrieve and visualize semantically related documents.
  • Geambaşu, A., Ravignani, A., & Levelt, C. C. (2016). Preliminary experiments on human sensitivity to rhythmic structure in a grammar with recursive self-similarity. Frontiers in Neuroscience, 10: 281. doi:10.3389/fnins.2016.00281.

    Abstract

    We present the first rhythm detection experiment using a Lindenmayer grammar, a self-similar recursive grammar shown previously to be learnable by adults using speech stimuli. Results show that learners were unable to correctly accept or reject grammatical and ungrammatical strings at the group level, although five (of 40) participants were able to do so with detailed instructions before the exposure phase.
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Gialluisi, A., Visconti, A., Wilcutt, E. G., Smith, S., Pennington, B., Falchi, M., DeFries, J., Olson, R., Francks, C., & Fisher, S. E. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8: 17. doi:10.1186/s11689-016-9147-8.

    Abstract

    Background

    Reading and language skills have overlapping genetic bases, most of which are still unknown. Part of the missing heritability may be caused by copy number variants (CNVs).
    Methods

    In a dataset of children recruited for a history of reading disability (RD, also known as dyslexia) or attention deficit hyperactivity disorder (ADHD) and their siblings, we investigated the effects of CNVs on reading and language performance. First, we called CNVs with PennCNV using signal intensity data from Illumina OmniExpress arrays (~723,000 probes). Then, we computed the correlation between measures of CNV genomic burden and the first principal component (PC) score derived from several continuous reading and language traits, both before and after adjustment for performance IQ. Finally, we screened the genome, probe-by-probe, for association with the PC scores, through two complementary analyses: we tested a binary CNV state assigned for the location of each probe (i.e., CNV+ or CNV−), and we analyzed continuous probe intensity data using FamCNV.
    Results

    No significant correlation was found between measures of CNV burden and PC scores, and no genome-wide significant associations were detected in probe-by-probe screening. Nominally significant associations were detected (p~10−2–10−3) within CNTN4 (contactin 4) and CTNNA3 (catenin alpha 3). These genes encode cell adhesion molecules with a likely role in neuronal development, and they have been previously implicated in autism and other neurodevelopmental disorders. A further, targeted assessment of candidate CNV regions revealed associations with the PC score (p~0.026–0.045) within CHRNA7 (cholinergic nicotinic receptor alpha 7), which encodes a ligand-gated ion channel and has also been implicated in neurodevelopmental conditions and language impairment. FamCNV analysis detected a region of association (p~10−2–10−4) within a frequent deletion ~6 kb downstream of ZNF737 (zinc finger protein 737, uncharacterized protein), which was also observed in the association analysis using CNV calls.
    Conclusions

    These data suggest that CNVs do not underlie a substantial proportion of variance in reading and language skills. Analysis of additional, larger datasets is warranted to further assess the potential effects that we found and to increase the power to detect CNV effects on reading and language.
  • Gialluisi, A., Pippucci, T., & Romeo, G. (2014). Reply to ten Kate et al. European Journal of Human Genetics, 2, 157-158. doi:10.1038/ejhg.2013.153.
  • Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9-15. doi:10.1016/j.bandl.2016.07.002.

    Abstract

    Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N = 1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.

    Additional information

    mmc1.docx
  • Gibson, M., & Bosker, H. R. (2016). Over vloeiendheid in spraak. Tijdschrift Taal, 7(10), 40-45.
  • Gijssels, T., Staum Casasanto, L., Jasmin, K., Hagoort, P., & Casasanto, D. (2016). Speech accommodation without priming: The case of pitch. Discourse Processes, 53(4), 233-251. doi:10.1080/0163853X.2015.1023965.

    Abstract

    People often accommodate to each other's speech by aligning their linguistic production with their partner's. According to an influential theory, the Interactive Alignment Model (Pickering & Garrod, 2004), alignment is the result of priming. When people perceive an utterance, the corresponding linguistic representations are primed, and become easier to produce. Here we tested this theory by investigating whether pitch (F0) alignment shows two characteristic signatures of priming: dose dependence and persistence. In a virtual reality experiment, we manipulated the pitch of a virtual interlocutor's speech to find out (a.) whether participants accommodated to the agent's F0, (b.) whether the amount of accommodation increased with increasing exposure to the agent's speech, and (c.) whether changes to participants' F0 persisted beyond the conversation. Participants accommodated to the virtual interlocutor, but accommodation did not increase in strength over the conversation, and it disappeared immediately after the conversation ended. Results argue against a priming-based account of F0 accommodation, and indicate that an alternative mechanism is needed to explain alignment along continuous dimensions of language such as speech rate and pitch.
  • Gisselgard, J., Uddén, J., Ingvar, M., & Petersson, K. M. (2007). Disruption of order information by irrelevant items: A serial recognition paradigm. Acta Psychologica, 124(3), 356-369. doi:10.1016/j.actpsy.2006.04.002.

    Abstract

    Irrelevant speech effect (ISE) is defined as a decrement in visually presented digit-list short-term memory performance due to exposure to irrelevant auditory material. Perhaps the most successful theoretical explanation of the effect is the changing state hypothesis. This hypothesis explains the effect in terms of confusion between amodal serial order cues, and represents a view based on the interference caused by the processing of similar order information of the visual and auditory materials. An alternative view suggests that the interference occurs as a consequence of the similarity between the visual and auditory contents of the stimuli. An important argument for the former view is the observation that ISE is almost exclusively observed in tasks that require memory for serial order. However, most short-term memory tasks require that both item and order information be retained in memory. An ideal task to investigate the sensitivity of maintenance of serial order to irrelevant speech would be one that calls upon order information but not item information. One task that is particularly suited to address this issue is serial recognition. In a typical serial recognition task, a list of items is presented and then probed by the same list in which the order of two adjacent items has been transposed. Due to the re-presentation of the encoding string, serial recognition requires primarily the serial order to be maintained while the content of the presented items is deemphasized. In demonstrating a highly significant ISE of changing versus steady-state auditory items in a serial recognition task, the present finding lends support for and extends previous empirical findings suggesting that irrelevant speech has the potential to interfere with the coding of the order of the items to be memorized.
  • Glaser, B., & Holmans, P. (2009). Comparison of methods for combining case-control and family-based association studies. Human Heredity, 68(2), 106-116. doi:10.1159/000212503.

    Abstract

    OBJECTIVES: Combining the analysis of family-based samples with unrelated individuals can enhance the power of genetic association studies. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power, or robustness to confounding factors. We investigated empirically the power of up to six combined methods using simulated samples of trios and unrelated cases/controls (TDTCC), trios and unrelated controls (TDTC), and affected sibpairs with parents and unrelated cases/controls (ASPFCC). METHODS: We simulated multiplicative, dominant and recessive models with varying risk parameters in single samples. Additionally, we studied false-positive rates and investigated, if possible, the coverage of the true genetic effect (TDTCC). RESULTS/CONCLUSIONS: Under the TDTCC design, we identified four approaches with equivalent power and false-positive rates. Combined statistics were more powerful than single-sample statistics or a pooled chi(2)-statistic when risk parameters were similar in single samples. Adding parental information to the CC part of the joint likelihood increased the power of generalised logistic regression under the TDTC but not the TDTCC scenario. Formal testing of differences between risk parameters in subsamples was the most sensitive approach to avoid confounding in combined analysis. Non-parametric analysis based on Monte-Carlo testing showed the highest power for ASPFCC samples.
  • Glaser, B., Nikolov, I., Chubb, D., Hamshere, M. L., Segurado, R., Moskvina, V., & Holmans, P. (2007). Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests. BMC Proceedings, 1(Suppl 1): 54.

    Abstract

    Using parametric and nonparametric techniques, our study investigated the presence of single locus and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2), analyzing 463 independent patients and 855 controls. Specifically, our work examined the correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction effects, and random forest (RF) single and joint importance measures. For this comparison, we selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their importance measures and those by RFs grown on 5000 trees. Both RF importance measures captured most of the LR single-locus and pairwise interaction effects, while joint importance measures also corresponded to full LR models containing main and interaction effects. We furthermore showed that RF measures were particularly sensitive to data imputation. The most consistent pairwise effect on rheumatoid arthritis was found between two markers within MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels. Within a hypothetical two-stage design, pairwise LR analysis of all markers with significant RF single importance would have reduced the number of possible combinations in our small data set by 61%, whereas joint importance measures would have been less efficient for marker pair reduction. This suggests that RF single importance measures, which are able to detect a wide range of interaction effects and are computationally very efficient, might be exploited as pre-screening tool for larger association studies. Follow-up analysis, such as by LR, is required since RFs do not indicate highrisk genotype combinations.
  • De Goede, D., Shapiro, L. P., Wester, F., Swinney, D. A., & Bastiaanse, Y. R. M. (2009). The time course of verb processing in Dutch sentences. Journal of Psycholinguistic Research, 38(3), 181-199. doi:10.1007/s10936-009-9117-3.

    Abstract

    The verb has traditionally been characterized as the central element in a sentence. Nevertheless, the exact role of the verb during the actual ongoing comprehension of a sentence as it unfolds in time remains largely unknown. This paper reports the results of two Cross-Modal Lexical Priming (CMLP) experiments detailing the pattern of verb priming during on-line processing of Dutch sentences. Results are contrasted with data from a third CMLP experiment on priming of nouns in similar sentences. It is demonstrated that the meaning of a matrix verb remains active throughout the entire matrix clause, while this is not the case for the meaning of a subject head noun. Activation of the meaning of the verb only dissipates upon encountering a clear signal as to the start of a new clause.
  • Gonzalez Gomez, N., Hayashi, A., Tsuji, S., Mazuka, R., & Nazzi, T. (2014). The role of the input on the development of the LC bias: A crosslinguistic comparison. Cognition, 132(3), 301-311. doi:10.1016/j.cognition.2014.04.004.

    Abstract

    Previous studies have described the existence of a phonotactic bias called the Labial–Coronal (LC) bias, corresponding to a tendency to produce more words beginning with a labial consonant followed by a coronal consonant (i.e. “bat”) than the opposite CL pattern (i.e. “tap”). This bias has initially been interpreted in terms of articulatory constraints of the human speech production system. However, more recently, it has been suggested that this presumably language-general LC bias in production might be accompanied by LC and CL biases in perception, acquired in infancy on the basis of the properties of the linguistic input. The present study investigates the origins of these perceptual biases, testing infants learning Japanese, a language that has been claimed to possess more CL than LC sequences, and comparing them with infants learning French, a language showing a clear LC bias in its lexicon. First, a corpus analysis of Japanese IDS and ADS revealed the existence of an overall LC bias, except for plosive sequences in ADS, which show a CL bias across counts. Second, speech preference experiments showed a perceptual preference for CL over LC plosive sequences (all recorded by a Japanese speaker) in 13- but not in 7- and 10-month-old Japanese-learning infants (Experiment 1), while revealing the emergence of an LC preference between 7 and 10 months in French-learning infants, using the exact same stimuli. These crosslinguistic behavioral differences, obtained with the same stimuli, thus reflect differences in processing in two populations of infants, which can be linked to differences in the properties of the lexicons of their respective native languages. These findings establish that the emergence of a CL/LC bias is related to exposure to a linguistic input.
  • Goodhew, S. C., & Kidd, E. (2017). Language use statistics and prototypical grapheme colours predict synaesthetes' and non-synaesthetes' word-colour associations. Acta Psychologica, 173, 73-86. doi:10.1016/j.actpsy.2016.12.008.

    Abstract

    Synaesthesia is the neuropsychological phenomenon in which individuals experience unusual sensory associations, such as experiencing particular colours in response to particular words. While it was once thought the particular pairings between stimuli were arbitrary and idiosyncratic to particular synaesthetes, there is now growing evidence for a systematic psycholinguistic basis to the associations. Here we sought to assess the explanatory value of quantifiable lexical association measures (via latent semantic analysis; LSA) in the pairings observed between words and colours in synaesthesia. To test this, we had synaesthetes report the particular colours they experienced in response to given concept words, and found that language association between the concept and colour words provided highly reliable predictors of the reported pairings. These results provide convergent evidence for a psycholinguistic basis to synaesthesia, but in a novel way, showing that exposure to particular patterns of associations in language can predict the formation of particular synaesthetic lexical-colour associations. Consistent with previous research, the prototypical synaesthetic colour for the first letter of the word also played a role in shaping the colour for the whole word, and this effect also interacted with language association, such that the effect of the colour for the first letter was stronger as the association between the concept word and the colour word in language increased. Moreover, when a group of non-synaesthetes were asked what colours they associated with the concept words, they produced very similar reports to the synaesthetes that were predicted by both language association and prototypical synaesthetic colour for the first letter of the word. This points to a shared linguistic experience generating the associations for both groups.
  • Goodhew, S. C., & Kidd, E. (2016). The conceptual cueing database: Rated items for the study of the interaction between language and attention. Behavior Research Methods, 48(3), 1004-1007. doi:10.3758/s13428-015-0625-9.

    Abstract

    Humans appear to rely on spatial mappings to describe and represent concepts. In particular, conceptual cueing refers to the effect whereby after reading or hearing a particular word, the location of observers’ visual attention in space can be systematically shifted in a particular direction. For example, words such as “sun” and “happy” orient attention upwards, whereas words such as “basement” and “bitter” orient attention downwards. This area of research has garnered much interest, particularly within the embodied cognition framework, for its potential to enhance our understanding of the interaction between abstract cognitive processes such as language and basic visual processes such as attention and stimulus processing. To date, however, this area has relied on subjective classification criteria to determine whether words ought to be classified as having a meaning that implies “up” or “down.” The present study, therefore, provides a set of 498 items that have each been systematically rated by over 90 participants, providing refined, continuous measures of the extent to which people associate given words with particular spatial dimensions. The resulting database provides an objective means to aid item-selection for future research in this area.
  • Goodhew, S. C., McGaw, B., & Kidd, E. (2014). Why is the sunny side always up? Explaining the spatial mapping of concepts by language use. Psychonomic Bulletin & Review, 21(5), 1287-1293. doi:10.3758/s13423-014-0593-6.

    Abstract

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people’s attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.
  • Gordon, P. C., & Hoedemaker, R. S. (2016). Effective scheduling of looking and talking during rapid automatized naming. Journal of Experimental Psychology: Human Perception and Performance, 42(5), 742-760. doi:10.1037/xhp0000171.

    Abstract

    Rapid automatized naming (RAN) is strongly related to literacy gains in developing readers, reading disabilities, and reading ability in children and adults. Because successful RAN performance depends on the close coordination of a number of abilities, it is unclear what specific skills drive this RAN-reading relationship. The current study used concurrent recordings of young adult participants' vocalizations and eye movements during the RAN task to assess how individual variation in RAN performance depends on the coordination of visual and vocal processes. Results showed that fast RAN times are facilitated by having the eyes 1 or more items ahead of the current vocalization, as long as the eyes do not get so far ahead of the voice as to require a regressive eye movement to an earlier item. These data suggest that optimizing RAN performance is a problem of scheduling eye movements and vocalization given memory constraints and the efficiency of encoding and articulatory control. Both RAN completion time (conventionally used to indicate RAN performance) and eye-voice relations predicted some aspects of participants' eye movements on a separate sentence reading task. However, eye-voice relations predicted additional features of first-pass reading that were not predicted by RAN completion time. This shows that measurement of eye-voice patterns can identify important aspects of individual variation in reading that are not identified by the standard measure of RAN performance. We argue that RAN performance predicts reading ability because both tasks entail challenges of scheduling cognitive and linguistic processes that operate simultaneously on multiple linguistic inputs

    Files private

    Request files
  • Gori, M., Vercillo, T., Sandini, G., & Burr, D. (2014). Tactile feedback improves auditory spatial localization. Frontiers in Psychology, 5: 1121. doi:10.3389/fpsyg.2014.01121.

    Abstract

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gon etal., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial.The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.
  • Goriot, C., Denessen, E., Bakker, J., & Droop, M. (2016). Benefits of being bilingual? The relationship between pupils’ perceptions of teachers’ appreciation of their home language and executive functioning. International Journal of Bilingualism, 20(6), 700-713. doi:10.1177/1367006915586470.

    Abstract

    Aims: We aimed to investigate whether bilingual pupil’s perceptions of teachers’ appreciation of their home language were of influence on bilingual cognitive advantages.
    Design: We examined whether Dutch bilingual primary school pupils who speak either German or Turkish at home differed in perceptions of their teacher’s appreciation of their HL, and whether these differences could explain differences between the two groups in executive functioning.
    Data and analysis: Executive functioning was measured through computer tasks, and perceived home language appreciation through orally administered questionnaires. The relationship between the two was assessed with regression analyses.
    Findings: German-Dutch pupils perceived there to be more appreciation of their home language from their teacher than Turkish-Dutch pupils. This difference did partly explain differences in executive functioning. Besides, we replicated bilingual advantages in nonverbal working memory and switching, but not in verbal working memory or inhibition.
    Originality and significance: This study demonstrates that bilingual advantages cannot be dissociated from the influence of the sociolinguistic context of the classroom. Thereby, it stresses the importance of culturally responsive teaching.
  • Goriot, C., Denessen, E., Bakker, J., & Droop, M. (2016). Zijn de voordelen van tweetaligheid voor alle tweetalige kinderen even groot? Een exploratief onderzoek naar de leerkrachtwaardering van de thuistaal van leerlingen en de invloed daarvan op de ontwikkeling van hun executieve functies. Pedagogiek, 16(2), 135-154. doi:10.5117/PED2016.2.GORI.

    Abstract

    Benefits of being bilingual? The relationship between pupils’ perceptions of
    teachers’ appreciation of their home language and executive functioning
    We aimed to investigate whether bilingual pupils’ perceptions of their
    teachers’ appreciation of their Home Language (HL) were of influence on
    bilingual cognitive advantages. We examined whether Dutch bilingual primary
    school pupils who speak either German or Turkish at home differed in
    perceptions of their teacher’s appreciation of their HL, and whether these
    differences could explain differences between the two groups in executive
    functioning. Executive functioning was measured through computer tasks,
    and perceived HL appreciation through orally administered questionnaires.
    The relationship between the two was assessed with regression analyses.
    German-Dutch pupils perceived more appreciation of their home language
    from their teacher than Turkish-Dutch pupils did. This difference partly
    explained differences in executive functioning. Besides, we replicated bilingual
    advantages in nonverbal working memory and switching, but not in
    verbal working memory or inhibition. This study demonstrates that bilingual
    advantages cannot be dissociated from the influence of the sociolinguistic
    context of the classroom. Thereby, it stresses the importance of culturally
    responsive teaching.
  • Goudbeek, M., Swingley, D., & Smits, R. (2009). Supervised and unsupervised learning of multidimensional acoustic categories. Journal of Experimental Psychology: Human Perception and Performance, 35, 1913-1933. doi:10.1037/a0015781.

    Abstract

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over I dimension are easy to learn and that learning multidimensional categories is more difficult but tractable under specific task conditions. In 2 experiments, adult participants learned either a unidimensional ora multidimensional category distinction with or without supervision (feedback) during learning. The unidimensional distinctions were readily learned and supervision proved beneficial, especially in maintaining category learning beyond the learning phase. Learning the multidimensional category distinction proved to be much more difficult and supervision was not nearly as beneficial as with unidimensionally defined categories. Maintaining a learned multidimensional category distinction was only possible when the distributional information (hat identified the categories remained present throughout the testing phase. We conclude that listeners are sensitive to both trial-by-trial feedback and the distributional information in the stimuli. Even given limited exposure, listeners learned to use 2 relevant dimensions. albeit with considerable difficulty.
  • De Graaf, T. A., Duecker, F., Stankevich, Y., Ten Oever, S., & Sack, A. T. (2017). Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs. Brain Stimulation, 10(4), 828-835. doi:10.1016/j.brs.2017.04.127.

    Abstract

    Background: Voluntarily opening or closing our eyes results in fundamentally different input patterns and expectancies. Yet it remains unclear how our brains and visual systems adapt to these ocular states.
    Objective/Hypothesis: We here used transcranial magnetic stimulation (TMS) to probe the excitability of the human visual system with eyes open or closed, in the complete absence of visual inputs.
    Methods: Combining Bayesian staircase procedures with computer control of TMS pulse intensity allowed interleaved determination of phosphene thresholds (PT) in both conditions. We measured parieto-occipital EEG baseline activity in several stages to track oscillatory power in the alpha (8-12 Hz) frequency-band, which has previously been shown to be inversely related to phosphene perception.
    Results: Since closing the eyes generally increases alpha power, one might have expected a decrease in excitability (higher PT). While we confirmed a rise in alpha power with eyes closed, visual excitability was actually increased (PT was lower) with eyes closed.
    Conclusions: This suggests that, aside from oscillatory alpha power, additional neuronal mechanisms influence the excitability of early visual cortex. One of these may involve a more internally oriented mode of brain operation, engaged by closing the eyes. In this state, visual cortex may be more susceptible to top-down inputs, to facilitate for example multisensory integration or imagery/working memory, although alternative explanations remain possible. (C) 2017 Elsevier Inc. All rights reserved.

    Additional information

    Supplementary data
  • Grabot, L., Kösem, A., Azizi, L., & Van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audio-visual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145.

    Abstract

    Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information
  • Graham, S. A., Jégouzo, S. A. F., Yan, S., Powlesland, A. S., Brady, J. P., Taylor, M. E., & Drickamer, K. (2009). Prolectin, a glycan-binding receptor on dividing B cells in germinal centers. The Journal of Biological Chemistry, 284, 18537-18544. doi:10.1074/jbc.M109.012807.

    Abstract

    Prolectin, a previously undescribed glycan-binding receptor, has been identified by re-screening of the human genome for genes encoding proteins containing potential C-type carbohydrate-recognition domains. Glycan array analysis revealed that the carbohydrate-recognition domain in the extracellular domain of the receptor binds glycans with terminal α-linked mannose or fucose residues. Prolectin expressed in fibroblasts is found at the cell surface, but unlike many glycan-binding receptors it does not mediate endocytosis of a neoglycoprotein ligand. However, compared with other known glycan-binding receptors, the receptor contains an unusually large intracellular domain that consists of multiple sequence motifs, including phosphorylated tyrosine residues, that allow it to interact with signaling molecules such as Grb2. Immunohistochemistry has been used to demonstrate that prolectin is expressed on a specialized population of proliferating B cells in germinal centers. Thus, this novel receptor has the potential to function in carbohydrate-mediated communication between cells in the germinal center.
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Greenfield, P. M., Slobin, D., Cole, M., Gardner, H., Sylva, K., Levelt, W. J. M., Lucariello, J., Kay, A., Amsterdam, A., & Shore, B. (2017). Remembering Jerome Bruner: A series of tributes to Jerome “Jerry” Bruner, who died in 2016 at the age of 100, reflects the seminal contributions that led him to be known as a co-founder of the cognitive revolution. Observer, 30(2). Retrieved from http://www.psychologicalscience.org/observer/remembering-jerome-bruner.

    Abstract

    Jerome Seymour “Jerry” Bruner was born on October 1, 1915, in New York City. He began his academic career as psychology professor at Harvard University; he ended it as University Professor Emeritus at New York University (NYU) Law School. What happened at both ends and in between is the subject of the richly variegated remembrances that follow. On June 5, 2016, Bruner died in his Greenwich Village loft at age 100. He leaves behind his beloved partner Eleanor Fox, who was also his distinguished colleague at NYU Law School; his son Whitley; his daughter Jenny; and three grandchildren.

    Bruner’s interdisciplinarity and internationalism are seen in the remarkable variety of disciplines and geographical locations represented in the following tributes. The reader will find developmental psychology, anthropology, computer science, psycholinguistics, cognitive psychology, cultural psychology, education, and law represented; geographically speaking, the writers are located in the United States, Canada, the United Kingdom, and the Netherlands. The memories that follow are arranged in roughly chronological order according to when the writers had their first contact with Jerry Bruner.
  • Greenhill, S. J., Wu, C.-H., Hua, X., Dunn, M., Levinson, S. C., & Gray, R. D. (2017). Evolutionary dynamics of language systems. Proceedings of the National Academy of Sciences of the United States of America, 114(42), E8822-E8829. doi:10.1073/pnas.1700388114.

    Abstract

    Understanding how and why language subsystems differ in their evolutionary dynamics is a fundamental question for historical and comparative linguistics. One key dynamic is the rate of language change. While it is commonly thought that the rapid rate of change hampers the reconstruction of deep language relationships beyond 6,000–10,000 y, there are suggestions that grammatical structures might retain more signal over time than other subsystems, such as basic vocabulary. In this study, we use a Dirichlet process mixture model to infer the rates of change in lexical and grammatical data from 81 Austronesian languages. We show that, on average, most grammatical features actually change faster than items of basic vocabulary. The grammatical data show less schismogenesis, higher rates of homoplasy, and more bursts of contact-induced change than the basic vocabulary data. However, there is a core of grammatical and lexical features that are highly stable. These findings suggest that different subsystems of language have differing dynamics and that careful, nuanced models of language change will be needed to extract deeper signal from the noise of parallel evolution, areal readaptation, and contact.
  • Grieco-Calub, T. M., Ward, K. M., & Brehm, L. (2017). Multitasking During Degraded Speech Recognition in School-Age Children. Trends in hearing, 21, 1-14. doi:10.1177/2331216516686786.

    Abstract

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unpro- cessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.
  • Groenman, A. P., Greven, C. U., Van Donkelaar, M. M. J., Schellekens, A., van Hulzen, K. J., Rommelse, N., Hartman, C. A., Hoekstra, P. J., Luman, M., Franke, B., Faraone, S. V., Oosterlaan, J., & Buitelaar, J. K. (2016). Dopamine and serotonin genetic risk scores predicting substance and nicotine use in attention deficit/hyperactivity disorder. Addiction biology, 21(4), 915-923. doi:10.1111/adb.12230.

    Abstract

    Individuals with attention deficit/hyperactivity disorder (ADHD) are at increased risk of developing substance use disorders (SUDs) and nicotine dependence. The co-occurrence of ADHD and SUDs/nicotine dependence may in part be mediated by shared genetic liability. Several neurobiological pathways have been implicated in both ADHD and SUDs, including dopamine and serotonin pathways. We hypothesized that variations in dopamine and serotonin neurotransmission genes were involved in the genetic liability to develop SUDs/nicotine dependence in ADHD. The current study included participants with ADHD (n = 280) who were originally part of the Dutch International Multicenter ADHD Genetics study. Participants were aged 5-15 years and attending outpatient clinics at enrollment in the study. Diagnoses of ADHD, SUDs, nicotine dependence, age of first nicotine and substance use, and alcohol use severity were based on semi-structured interviews and questionnaires. Genetic risk scores were created for both serotonergic and dopaminergic risk genes previously shown to be associated with ADHD and SUDs and/or nicotine dependence. The serotonin genetic risk score significantly predicted alcohol use severity. No significant serotonin x dopamine risk score or effect of stimulant medication was found. The current study adds to the literature by providing insight into genetic underpinnings of the co-morbidity of ADHD and SUDs. While the focus of the literature so far has been mostly on dopamine, our study suggests that serotonin may also play a role in the relationship between these disorders.
  • De Groot, F., Huettig, F., & Olivers, C. N. L. (2016). Revisiting the looking at nothing phenomenon: Visual and semantic biases in memory search. Visual Cognition, 24, 226-245. doi:10.1080/13506285.2016.1221013.

    Abstract

    When visual stimuli remain present during search, people spend more time fixating objects that are semantically or visually related to the target instruction than fixating unrelated objects. Are these semantic and visual biases also observable when participants search within memory? We removed the visual display prior to search while continuously measuring eye movements towards locations previously occupied by objects. The target absent trials contained objects that were either visually or semantically related to the target instruction. When the overall mean proportion of fixation time was considered, we found biases towards the location previously occupied by the target, but failed to find biases towards visually or semantically related objects. However, in two experiments, the pattern of biases towards the target over time provided a reliable predictor for biases towards the visually and semantically related objects. We therefore conclude that visual and semantic representations alone can guide eye movements in memory search, but that orienting biases are weak when the stimuli are no longer present.
  • De Groot, F., Huettig, F., & Olivers, C. N. L. (2016). When meaning matters: The temporal dynamics of semantic influences on visual attention. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 180-196. doi:10.1037/xhp0000102.

    Abstract

    An important question is to what extent visual attention is driven by the semantics of individual objects, rather than by their visual appearance. This study investigates the hypothesis that timing is a crucial factor in the occurrence and strength of semantic influences on visual orienting. To assess the dynamics of such influences, the target instruction was presented either before or after visual stimulus onset, while eye movements were continuously recorded throughout the search. The results show a substantial but delayed bias in orienting towards semantically related objects compared to visually related objects when target instruction is presented before visual stimulus onset. However, this delay can be completely undone by presenting the visual information before the target instruction (Experiment 1). Moreover, the absence or presence of visual competition does not change the temporal dynamics of the semantic bias (Experiment 2). Visual orienting is thus driven by priority settings that dynamically shift between visual and semantic representations, with each of these types of bias operating largely independently. The findings bridge the divide between the visual attention and the psycholinguistic literature.
  • De Groot, F., Koelewijn, T., Huettig, F., & Olivers, C. N. L. (2016). A stimulus set of words and pictures matched for visual and semantic similarity. Journal of Cognitive Psychology, 28(1), 1-15. doi:10.1080/20445911.2015.1101119.

    Abstract

    Researchers in different fields of psychology have been interested in how vision and language interact, and what type of representations are involved in such interactions. We introduce a stimulus set that facilitates such research (available online). The set consists of 100 words each of which is paired with four pictures of objects: One semantically similar object (but visually dissimilar), one visually similar object (but semantically dissimilar), and two unrelated objects. Visual and semantic similarity ratings between corresponding items are provided for every picture for Dutch and for English. In addition, visual and linguistic parameters of each picture are reported. We thus present a stimulus set from which researchers can select, on the basis of various parameters, the items most optimal for their research question.

    Files private

    Request files
  • De Groot, F., Huettig, F., & Olivers, C. N. L. (2017). Language-induced visual and semantic biases in visual search are subject to task requirements. Visual Cognition, 25, 225-240. doi:10.1080/13506285.2017.1324934.

    Abstract

    Visual attention is biased by both visual and semantic representations activated by words. We investigated to what extent language-induced visual and semantic biases are subject to task demands. Participants memorized a spoken word for a verbal recognition task, and performed a visual search task during the retention period. Crucially, while the word had to be remembered in all conditions, it was either relevant for the search (as it also indicated the target) or irrelevant (as it only served the memory test afterwards). On critical trials, displays contained objects that were visually or semantically related to the memorized word. When the word was relevant for the search, eye movement biases towards visually related objects arose earlier and more strongly than biases towards semantically related objects. When the word was irrelevant, there was still evidence for visual and semantic biases, but these biases were substantially weaker, and similar in strength and temporal dynamics, without a visual advantage. We conclude that language-induced attentional biases are subject to task requirements.
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T. and 141 moreGuadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T., Blangero, J., Bokde, A. L., Boedhoe, P. S., Bose, A., Brem, S., Brodaty, H., Bromberg, U., Brooks, S., Büchel, C., Buitelaar, J., Calhoun, V. D., Cannon, D. M., Cattrell, A., Cheng, Y., Conrod, P. J., Conzelmann, A., Corvin, A., Crespo-Facorro, B., Crivello, F., Dannlowski, U., De Zubicaray, G. I., De Zwarte, S. M., Deary, I. J., Desrivières, S., Doan, N. T., Donohoe, G., Dørum, E. S., Ehrlich, S., Espeseth, T., Fernández, G., Flor, H., Fouche, J.-P., Frouin, V., Fukunaga, M., Gallinat, J., Garavan, H., Gill, M., Suarez, A. G., Gowland, P., Grabe, H. J., Grotegerd, D., Gruber, O., Hagenaars, S., Hashimoto, R., Hauser, T. U., Heinz, A., Hibar, D. P., Hoekstra, P. J., Hoogman, M., Howells, F. M., Hu, H., Hulshoff Pol, H. E.., Huyser, C., Ittermann, B., Jahanshad, N., Jönsson, E. G., Jurk, S., Kahn, R. S., Kelly, S., Kraemer, B., Kugel, H., Kwon, J. S., Lemaitre, H., Lesch, K.-P., Lochner, C., Luciano, M., Marquand, A. F., Martin, N. G., Martínez-Zalacaín, I., Martinot, J.-L., Mataix-Cols, D., Mather, K., McDonald, C., McMahon, K. L., Medland, S. E., Menchón, J. M., Morris, D. W., Mothersill, O., Maniega, S. M., Mwangi, B., Nakamae, T., Nakao, T., Narayanaswaamy, J. C., Nees, F., Nordvik, J. E., Onnink, A. M. H., Opel, N., Ophoff, R., Martinot, M.-L.-P., Orfanos, D. P., Pauli, P., Paus, T., Poustka, L., Reddy, J. Y., Renteria, M. E., Roiz-Santiáñez, R., Roos, A., Royle, N. A., Sachdev, P., Sánchez-Juan, P., Schmaal, L., Schumann, G., Shumskaya, E., Smolka, M. N., Soares, J. C., Soriano-Mas, C., Stein, D. J., Strike, L. T., Toro, R., Turner, J. A., Tzourio-Mazoyer, N., Uhlmann, A., Valdés Hernández, M., Van den Heuvel, O. A., Van der Meer, D., Van Haren, N. E.., Veltman, D. J., Venkatasubramanian, G., Vetter, N. C., Vuletic, D., Walitza, S., Walter, H., Walton, E., Wang, Z., Wardlaw, J., Wen, W., Westlye, L. T., Whelan, R., Wittfeld, K., Wolfers, T., Wright, M. J., Xu, J., Xu, X., Yun, J.-Y., Zhao, J., Franke, B., Thompson, P. M., Glahn, D. C., Mazoyer, B., Fisher, S. E., & Francks, C. (2017). Human subcortical asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 11(5), 1497-1514. doi:10.1007/s11682-016-9629-z.

    Abstract

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.

    Additional information

    11682_2016_9629_MOESM1_ESM.pdf
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Guerra, E., & Knoeferle, P. (2014). Spatial distance effects on incremental semantic interpretation of abstract sentences: Evidence from eye tracking. Cognition, 133(3), 535-552. doi:10.1016/j.cognition.2014.07.007.

    Abstract

    A large body of evidence has shown that visual context information can rapidly modulate language comprehension for concrete sentences and when it is mediated by a referential or a lexical-semantic link. What has not yet been examined is whether visual context can also modulate comprehension of abstract sentences incrementally when it is neither referenced by, nor lexically associated with, the sentence. Three eye-tracking reading experiments examined the effects of spatial distance between words (Experiment 1) and objects (Experiment 2 and 3) on participants’ reading times for sentences that convey similarity or difference between two abstract nouns (e.g., ‘Peace and war are certainly different...’). Before reading the sentence, participants inspected a visual context with two playing cards that moved either far apart or close together. In Experiment 1, the cards turned and showed the first two nouns of the sentence (e.g., ‘peace’, ‘war’). In Experiments 2 and 3, they turned but remained blank. Participants’ reading times at the adjective (Experiment 1: first-pass reading time; Experiment 2: total times) and at the second noun phrase (Experiment 3: first-pass times) were faster for sentences that expressed similarity when the preceding words/objects were close together (vs. far apart) and for sentences that expressed dissimilarity when the preceding words/objects were far apart (vs. close together). Thus, spatial distance between words or entirely unrelated objects can rapidly and incrementally modulate the semantic interpretation of abstract sentences.

    Additional information

    mmc1.doc
  • Guest, O., & Rougier, N. P. (2016). "What is computational reproducibility?" and "Diversity in reproducibility". IEEE CIS Newsletter on Cognitive and Developmental Systems, 13(2), 4 and 12.
  • Guest, O., & Love, B. C. (2017). What the success of brain imaging implies about the neural code. eLife, 6: e21397. doi:10.7554/eLife.21397.

    Abstract

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.
  • Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
  • Gullberg, M., & Kita, S. (2009). Attention to speech-accompanying gestures: Eye movements and information uptake. Journal of Nonverbal Behavior, 33(4), 251-277. doi:10.1007/s10919-009-0073-2.

    Abstract

    There is growing evidence that addressees in interaction integrate the semantic information conveyed by speakers’ gestures. Little is known, however, about whether and how addressees’ attention to gestures and the integration of gestural information can be modulated. This study examines the influence of a social factor (speakers’ gaze to their own gestures), and two physical factors (the gesture’s location in gesture space and gestural holds) on addressees’ overt visual attention to gestures (direct fixations of gestures) and their uptake of gestural information. It also examines the relationship between gaze and uptake. The results indicate that addressees’ overt visual attention to gestures is affected both by speakers’ gaze and holds but for different reasons, whereas location in space plays no role. Addressees’ uptake of gesture information is only influenced by speakers’ gaze. There is little evidence of a direct relationship between addressees’ direct fixations of gestures and their uptake.
  • Gullberg, M. (2009). Gestures and the development of semantic representations in first and second language acquisition. Acquisition et Interaction en Langue Etrangère..Languages, Interaction, and Acquisition (former AILE), 1, 117-139.

    Abstract

    This paper argues that speech-associated gestures can usefully inform studies exploring development of meaning in first and second language acquisition. The example domain is caused motion or placement meaning (putting a cup on a table) where acquisition problems have been observed and where adult native gesture use reflects crosslinguistically different placement verb semantics. Against this background, the paper summarises three studies examining the development of semantic representations in Dutch children acquiring Dutch, and adult learners’ acquiring Dutch and French placement verbs. Overall, gestures change systematically with semantic development both in children and adults and (1) reveal what semantic elements are included in current semantic representations, whether target-like or not, and (2) highlight developmental shifts in those representations. There is little evidence that gestures chiefly act as a support channel. Instead, the data support the theoretical notion that speech and gesture form an integrated system, opening new possibilities for studying the processes of acquisition.
  • Gullberg, M. (2009). Reconstructing verb meaning in a second language: How English speakers of L2 Dutch talk and gesture about placement. Annual Review of Cognitive Linguistics, 7, 221-245. doi:10.1075/arcl.7.09gul.

    Abstract

    This study examines to what extent English speakers of L2 Dutch reconstruct the meanings of placement verbs when moving from a general L1 verb of caused motion (put) to two specific caused posture verbs (zetten/leggen ‘set/lay’) in the L2 and whether the existence of low-frequency cognate forms in the L1 (set/lay) alleviates the reconstruction problem. Evidence from speech and gesture indicates that English speakers have difficulties with the specific verbs in L2 Dutch, initially looking for means to express general caused motion in L1-like fashion through over-generalisation. The gesture data further show that targetlike forms are often used to convey L1-like meaning. However, the differentiated use of zetten for vertical placement and dummy verbs (gaan ‘go’ and doen ‘do’) and intransitive posture verbs (zitten/staan/liggen ‘sit, stand, lie’) for horizontal placement, and a positive correlation between appropriate verb use and target-like gesturing suggest a beginning sensitivity to the semantic parameters of the L2 verbs and possible reconstruction.
  • Gumperz, J. J., & Levinson, S. C. (1991). Rethinking linguistic relativity. Current Anthropology, 32(5), 613-623. Retrieved from http://www.jstor.org/stable/2743696.
  • Hagoort, P. (1994). Afasie als een tekort aan tijd voor spreken en verstaan. De Psycholoog, 4, 153-154.
  • Hagoort, P. (2017). Don't forget neurobiology: An experimental approach to linguistic representation. Commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e292. doi:10.1017/S0140525X17000401.

    Abstract

    Acceptability judgments are no longer acceptable as the holy grail for testing the nature of linguistic representations. Experimental and quantitative methods should be used to test theoretical claims in psycholinguistics. These methods should include not only behavior, but also the more recent possibilities to probe the neural codes for language-relevant representation
  • Hagoort, P., & Van Berkum, J. J. A. (2007). Beyond the sentence given. Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 362, 801-811.

    Abstract

    A central and influential idea among researchers of language is that our language faculty is organized according to Fregean compositionality, which states that the meaning of an utterance is a function of the meaning of its parts and of the syntactic rules by which these parts are combined. Since the domain of syntactic rules is the sentence, the implication of this idea is that language interpretation takes place in a two-step fashion. First, the meaning of a sentence is computed. In a second step, the sentence meaning is integrated with information from prior discourse, world knowledge, information about the speaker and semantic information from extra-linguistic domains such as co-speech gestures or the visual world. Here, we present results from recordings of event-related brain potentials that are inconsistent with this classical two-step model of language interpretation. Our data support a one-step model in which knowledge about the context and the world, concomitant information from other modalities, and the speaker are brought to bear immediately, by the same fast-acting brain system that combines the meanings of individual words into a message-level representation. Underlying the one-step model is the immediacy assumption, according to which all available information will immediately be used to co-determine the interpretation of the speaker's message. Functional magnetic resonance imaging data that we collected indicate that Broca's area plays an important role in semantic unification. Language comprehension involves the rapid incorporation of information in a 'single unification space', coming from a broader range of cognitive domains than presupposed in the standard two-step model of interpretation.
  • Hagoort, P. (1994). Het brein op een kier: Over hersenen gesproken. Psychologie, 13, 42-46.
  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.

    Abstract

    Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication.
  • Hagoort, P. (2017). The core and beyond in the language-ready brain. Neuroscience and Biobehavioral Reviews, 81, 194-204. doi:10.1016/j.neubiorev.2017.01.048.

    Abstract

    In this paper a general cognitive architecture of spoken language processing is specified. This is followed by an account of how this cognitive architecture is instantiated in the human brain. Both the spatial aspects of the networks for language are discussed, as well as the temporal dynamics and the underlying neurophysiology. A distinction is proposed between networks for coding/decoding linguistic information and additional networks for getting from coded meaning to speaker meaning, i.e. for making the inferences that enable the listener to understand the intentions of the speaker
  • Hagoort, P., & Levelt, W. J. M. (2009). The speaking brain. Science, 326(5951), 372-373. doi:10.1126/science.1181675.

    Abstract

    How does intention to speak become the action of speaking? It involves the generation of a preverbal message that is tailored to the requirements of a particular language, and through a series of steps, the message is transformed into a linear sequence of speech sounds (1, 2). These steps include retrieving different kinds of information from memory (semantic, syntactic, and phonological), and combining them into larger structures, a process called unification. Despite general agreement about the steps that connect intention to articulation, there is no consensus about their temporal profile or the role of feedback from later steps (3, 4). In addition, since the discovery by the French physician Pierre Paul Broca (in 1865) of the role of the left inferior frontal cortex in speaking, relatively little progress has been made in understanding the neural infrastructure that supports speech production (5). One reason is that the characteristics of natural language are uniquely human, and thus the neurobiology of language lacks an adequate animal model. But on page 445 of this issue, Sahin et al. (6) demonstrate, by recording neuronal activity in the human brain, that different kinds of linguistic information are indeed sequentially processed within Broca's area.
  • Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.

    Abstract

    A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.
  • Hald, L. A., Steenbeek-Planting, E. G., & Hagoort, P. (2007). The interaction of discourse context and world knowledge in online sentence comprehension: Evidence from the N400. Brain Research, 1146, 210-218. doi:10.1016/j.brainres.2007.02.054.

    Abstract

    In an ERP experiment we investigated how the recruitment and integration of world knowledge information relate to the integration of information within a current discourse context. Participants were presented with short discourse contexts which were followed by a sentence that contained a critical word that was correct or incorrect based on general world knowledge and the supporting discourse context, or was more or less acceptable based on the combination of general world knowledge and the specific local discourse context. Relative to the critical word in the correct world knowledge sentences following a neutral discourse, all other critical words elicited an N400 effect that began at about 300 ms after word onset. However, the magnitude of the N400 effect varied in a way that suggests an interaction between world knowledge and discourse context. The results indicate that both world knowledge and discourse context have an effect on sentence interpretation, but neither overrides the other.
  • Haller, S., Klarhoefer, M., Schwarzbach, J., Radue, E. W., & Indefrey, P. (2007). Spatial and temporal analysis of fMRI data on word and sentence reading. European Journal of Neuroscience, 26(7), 2074-2084. doi:10.1111/j.1460-9568.2007.05816.x.

    Abstract

    Written language comprehension at the word and the sentence level was analysed by the combination of spatial and temporal analysis of functional magnetic resonance imaging (fMRI). Spatial analysis was performed via general linear modelling (GLM). Concerning the temporal analysis, local differences in neurovascular coupling may confound a direct comparison of blood oxygenation level-dependent (BOLD) response estimates between regions. To avoid this problem, we parametrically varied linguistic task demands and compared only task-induced within-region BOLD response differences across areas. We reasoned that, in a hierarchical processing system, increasing task demands at lower processing levels induce delayed onset of higher-level processes in corresponding areas. The flow of activation is thus reflected in the size of task-induced delay increases. We estimated BOLD response delay and duration for each voxel and each participant by fitting a model function to the event-related average BOLD response. The GLM showed increasing activations with increasing linguistic demands dominantly in the left inferior frontal gyrus (IFG) and the left superior temporal gyrus (STG). The combination of spatial and temporal analysis allowed a functional differentiation of IFG subregions involved in written language comprehension. Ventral IFG region (BA 47) and STG subserve earlier processing stages than two dorsal IFG regions (BA 44 and 45). This is in accordance with the assumed early lexical semantic and late syntactic processing of these regions and illustrates the complementary information provided by spatial and temporal fMRI data analysis of the same data set.
  • Hammarstroem, H., & Güldemann, T. (2014). Quantifying geographical determinants of large-scale distributions of linguistic features. Language Dynamics and Change, 4, 87-115. doi:10.1163/22105832-00401002.

    Abstract

    In the recent past the work on large-scale linguistic distributions across the globe has intensified considerably. Work on macro-areal relationships in Africa (Güldemann, 2010) suggests that the shape of convergence areas may be determined by climatic factors and geophysical features such as mountains, water bodies, coastlines, etc. Worldwide data is now available for geophysical features as well as linguistic features, including numeral systems and basic constituent order. We explore the possibility that the shape of areal aggregations of individual features in these two linguistic domains correlates with Köppen-Geiger climate zones. Furthermore, we test the hypothesis that the shape of such areal feature aggregations is determined by the contour of adjacent geophysical features like mountain ranges or coastlines. In these first basic tests, we do not find clear evidence that either Köppen-Geiger climate zones or the contours of geophysical features are major predictors for the linguistic data at hand

    Files private

    Request files
  • Hammarstroem, H., & Donohue, M. (2014). Some principles on the use of macro-areas in typological comparison. Language Dynamics and Change, 4, 167-187. doi:10.1163/22105832-00401001.

    Abstract

    While the notion of the ‘area’ or ‘Sprachbund’ has a long history in linguistics, with geographically-defined regions frequently cited as a useful means to explain typological distributions, the problem of delimiting areas has not been well addressed. Lists of general-purpose, largely independent ‘macro-areas’ (typically continent size) have been proposed as a step to rule out contact as an explanation for various large-scale linguistic phenomena. This squib points out some problems in some of the currently widely-used predetermined areas, those found in the World Atlas of Language Structures (Haspelmath et al., 2005). Instead, we propose a principled division of the world’s landmasses into six macro-areas that arguably have better geographical independence properties
  • Hammarström, H. (2016). Commentary: There is no demonstrable effect of desiccation [Commentary on "Language evolution and climate: The case of desiccation and tone'']. Journal of Language Evolution, 1, 65-69. doi:10.1093/jole/lzv015.
  • Hammarström, H. (2014). [Review of the book A grammar of the great Andamanese language: An ethnolinguistic study by Anvita Abbi]. Journal of South Asian Languages and Linguistics, 1, 111-116. doi:10.1515/jsall-2014-0007.
  • Hammarström, H. (2016). Linguistic diversity and language evolution. Journal of Language Evolution, 1, 19-29. doi:10.1093/jole/lzw002.

    Abstract

    What would your ideas about language evolution be if there was only one language left on earth? Fortunately, our investigation need not be that impoverished. In the present article, we survey the state of knowledge regarding the kinds of language found among humans, the language inventory, population sizes, time depth, grammatical variation, and other relevant issues that a theory of language evolution should minimally take into account
  • Hamshere, M. L., Segurado, R., Moskvina, V., Nikolov, I., Glaser, B., & Holmans, P. A. (2007). Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proceedings, 1 (Suppl 1), S100.

    Abstract

    Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p <} 0.001) and rheumatoid factor (RF) IgM (p {< 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates.
  • Hao, X., Huang, Y., Song, Y., Kong, X., & Liu, J. (2017). Experience with the Cardinal Coordinate System Contributes to the Precision of Cognitive Maps. Frontiers in Psychology, 8: 1166. doi:10.3389/fpsyg.2017.01166.

    Abstract

    The coordinate system has been proposed as a fundamental and cross-culturally used spatial representation, through which people code location and direction information in the environment. Here we provided direct evidence demonstrating that daily experience with the cardinal coordinate system (i.e., east, west, north, and south) contributed to the representation of cognitive maps. Behaviorally, we found that individuals who relied more on the cardinal coordinate system for daily navigation made smaller errors in an indoor pointing task, suggesting that the cardinal coordinate system is an important element of cognitive maps. Neurally, the extent to which individuals relied on the cardinal coordinate system was positively correlated with the gray matter volume of the entorhinal cortex, suggesting that the entorhinal cortex may serve as the neuroanatomical basis of coordinate-based navigation (the entorhinal coordinate area, ECA). Further analyses on the resting-state functional connectivity revealed that the intrinsic interaction between the ECA and two hippocampal sub-regions, the subiculum and cornu ammonis, might be linked with the representation precision of cognitive maps. In sum, our study reveals an association between daily experience with the cardinal coordinate system and cognitive maps, and suggests that the ECA works in collaboration with hippocampal sub-regions to represent cognitive maps.
  • Hao, X., Huang, Y., Li, X., Song, Y., Kong, X., Wang, X., Yang, Z., Zhen, Z., & Liu, J. (2016). Structural and functional neural correlates of spatial navigation: A combined voxel‐based morphometry and functional connectivity study. Brain and Behavior, 6(12): e00572. doi:10.1002/brb3.572.

    Abstract

    Introduction: Navigation is a fundamental and multidimensional cognitive function that individuals rely on to move around the environment. In this study, we investigated the neural basis of human spatial navigation ability. Methods: A large cohort of participants (N > 200) was examined on their navigation ability behaviorally and structural and functional magnetic resonance imaging (MRI) were then used to explore the corresponding neural basis of spatial navigation. Results: The gray matter volume (GMV) of the bilateral parahippocampus (PHG), retrosplenial complex (RSC), entorhinal cortex (EC), hippocampus (HPC), and thalamus (THAL) was correlated with the participants’ self-reported navigational ability in general, and their sense of direction in particular. Further fMRI studies showed that the PHG, RSC, and EC selectively responded to visually presented scenes, whereas the HPC and THAL showed no selectivity, suggesting a functional division of labor among these regions in spatial navigation. The resting-state functional connectivity analysis further revealed a hierarchical neural network for navigation constituted by these regions, which can be further categorized into three relatively independent components (i.e., scene recognition component, cognitive map component, and the component of heading direction for locomotion, respectively). Conclusions: Our study combined multi-modality imaging data to illustrate that multiple brain regions may work collaboratively to extract, integrate, store, and orientate spatial information to guide navigation behaviors.

    Additional information

    brb3572-sup-0001-FigS1-S4.docx
  • Harmon, Z., & Kapatsinski, V. (2017). Putting old tools to novel uses: The role of form accessibility in semantic extension. Cognitive Psychology, 98, 22-44. doi:10.1016/j.cogpsych.2017.08.002.

    Abstract

    An increase in frequency of a form has been argued to result in semantic extension (Bybee, 2003; Zipf, 1949). Yet, research on the acquisition of lexical semantics suggests that a form that frequently co-occurs with a meaning gets restricted to that meaning (Xu & Tenenbaum, 2007). The current work reconciles these positions by showing that – through its effect on form accessibility – frequency causes semantic extension in production, while at the same time causing entrenchment in comprehension. Repeatedly experiencing a form paired with a specific meaning makes one more likely to re-use the form to express related meanings, while also increasing one’s confidence that the form is never used to express those meanings. Recurrent pathways of semantic change are argued to result from a tug of war between the production-side pressure to reuse easily accessible forms and the comprehension-side confidence that one has seen all possible uses of a frequent form.
  • Hartung, F., Hagoort, P., & Willems, R. M. (2017). Readers select a comprehension mode independent of pronoun: Evidence from fMRI during narrative comprehension. Brain and Language, 170, 29-38. doi:10.1016/j.bandl.2017.03.007.

    Abstract

    Perspective is a crucial feature for communicating about events. Yet it is unclear how linguistically encoded perspective relates to cognitive perspective taking. Here, we tested the effect of perspective taking with short literary stories. Participants listened to stories with 1st or 3rd person pronouns referring to the protagonist, while undergoing fMRI. When comparing action events with 1st and 3rd person pronouns, we found no evidence for a neural dissociation depending on the pronoun. A split sample approach based on the self-reported experience of perspective taking revealed 3 comprehension preferences. One group showed a strong 1st person preference, another a strong 3rd person preference, while a third group engaged in 1st and 3rd person perspective taking simultaneously. Comparing brain activations of the groups revealed different neural networks. Our results suggest that comprehension is perspective dependent, but not on the perspective suggested by the text, but on the reader’s (situational) preference
  • Hartung, F., Burke, M., Hagoort, P., & Willems, R. M. (2016). Taking perspective: Personal pronouns affect experiential aspects of literary reading. PLoS One, 11(5): e0154732. doi:10.1371/journal.pone.0154732.

    Abstract

    Personal pronouns have been shown to influence cognitive perspective taking during comprehension. Studies using single sentences found that 3rd person pronouns facilitate the construction of a mental model from an observer’s perspective, whereas 2nd person pronouns support an actor’s perspective. The direction of the effect for 1st person pronouns seems to depend on the situational context. In the present study, we investigated how personal pronouns influence discourse comprehension when people read fiction stories and if this has consequences for affective components like emotion during reading or appreciation of the story. We wanted to find out if personal pronouns affect immersion and arousal, as well as appreciation of fiction. In a natural reading paradigm, we measured electrodermal activity and story immersion, while participants read literary stories with 1st and 3rd person pronouns referring to the protagonist. In addition, participants rated and ranked the stories for appreciation. Our results show that stories with 1st person pronouns lead to higher immersion. Two factors—transportation into the story world and mental imagery during reading—in particular showed higher scores for 1st person as compared to 3rd person pronoun stories. In contrast, arousal as measured by electrodermal activity seemed tentatively higher for 3rd person pronoun stories. The two measures of appreciation were not affected by the pronoun manipulation. Our findings underscore the importance of perspective for language processing, and additionally show which aspects of the narrative experience are influenced by a change in perspective.
  • Hartung, F., Withers, P., Hagoort, P., & Willems, R. M. (2017). When fiction is just as real as fact: No differences in reading behavior between stories believed to be based on true or fictional events. Frontiers in Psychology, 8: 1618. doi:10.3389/fpsyg.2017.01618.

    Abstract

    Experiments have shown that compared to fictional texts, readers read factual texts faster and have better memory for described situations. Reading fictional texts on the other hand seems to improve memory for exact wordings and expressions. Most of these studies used a ‘newspaper’ versus ‘literature’ comparison. In the present study, we investigated the effect of reader’s expectation to whether information is true or fictional with a subtler manipulation by labelling short stories as either based on true or fictional events. In addition, we tested whether narrative perspective or individual preference in perspective taking affects reading true or fictional stories differently. In an online experiment, participants (final N=1742) read one story which was introduced as based on true events or as fictional (factor fictionality). The story could be narrated in either 1st or 3rd person perspective (factor perspective). We measured immersion in and appreciation of the story, perspective taking, as well as memory for events. We found no evidence that knowing a story is fictional or based on true events influences reading behavior or experiential aspects of reading. We suggest that it is not whether a story is true or fictional, but rather expectations towards certain reading situations (e.g. reading newspaper or literature) which affect behavior by activating appropriate reading goals. Results further confirm that narrative perspective partially influences perspective taking and experiential aspects of reading
  • Haun, D. B. M., Rekers, Y., & Tomasello, M. (2014). Children conform the behavior of peers; Other great apes stick with what they know. Psychological Science, 25, 2160-2167. doi:10.1177/0956797614553235.

    Abstract

    All primates learn things from conspecifics socially, but it is not clear whether they conform to the behavior of these conspecifics—if conformity is defined as overriding individually acquired behavioral tendencies in order to copy peers’ behavior. In the current study, chimpanzees, orangutans, and 2-year-old human children individually acquired a problem-solving strategy. They then watched several conspecific peers demonstrate an alternative strategy. The children switched to this new, socially demonstrated strategy in roughly half of all instances, whereas the other two great-ape species almost never adjusted their behavior to the majority’s. In a follow-up study, children switched much more when the peer demonstrators were still present than when they were absent, which suggests that their conformity arose at least in part from social motivations. These results demonstrate an important difference between the social learning of humans and great apes, a difference that might help to account for differences in human and nonhuman cultures

    Additional information

    Haun_Rekers_Tomasello_2014_supp.pdf

Share this page