Publications

Displaying 1 - 8 of 8
  • Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.

    Abstract

    Language processing involves the ability to store and integrate pieces of
    information in working memory over short periods of time. According to
    the dominant view, information is maintained through sustained, elevated
    neural activity. Other work has argued that short-term synaptic facilitation
    can serve as a substrate of memory. Here, we propose an account where
    memory is supported by intrinsic plasticity that downregulates neuronal
    firing rates. Single neuron responses are dependent on experience and we
    show through simulations that these adaptive changes in excitability pro-
    vide memory on timescales ranging from milliseconds to seconds. On this
    account, spiking activity writes information into coupled dynamic variables
    that control adaptation and move at slower timescales than the membrane
    potential. From these variables, information is continuously read back into
    the active membrane state for processing. This neuronal memory mech-
    anism does not rely on persistent activity, excitatory feedback, or synap-
    tic plasticity for storage. Instead, information is maintained in adaptive
    conductances that reduce firing rates and can be accessed directly with-
    out cued retrieval. Memory span is systematically related to both the time
    constant of adaptation and baseline levels of neuronal excitability. Inter-
    ference effects within memory arise when adaptation is long-lasting. We
    demonstrate that this mechanism is sensitive to context and serial order
    which makes it suitable for temporal integration in sequence processing
    within the language domain. We also show that it enables the binding of
    linguistic features over time within dynamic memory registers. This work
    provides a step towards a computational neurobiology of language.
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Dynamic changes in the functional anatomy of the human brain during recall of abstract designs related to practice. Neuropsychologia, 37, 567-587.

    Abstract

    In the present PET study we explore some functional aspects of the interaction between attentional/control processes and learning/memory processes. The network of brain regions supporting recall of abstract designs were studied in a less practiced and in a well practiced state. The results indicate that automaticity, i.e., a decreased dependence on attentional and working memory resources, develops as a consequence of practice. This corresponds to the practice related decreases of activity in the prefrontal, anterior cingulate, and posterior parietal regions. In addition, the activity of the medial temporal regions decreased as a function of practice. This indicates an inverse relation between the strength of encoding and the activation of the MTL during retrieval. Furthermore, the pattern of practice related increases in the auditory, posterior insular-opercular extending into perisylvian supra marginal region, and the right mid occipito-temporal region, may reflect a lower degree of inhibitory attentional modulation of task irrelevant processing and more fully developed representations of the abstract designs, respectively. We also suggest that free recall is dependent on bilateral prefrontal processing, in particular non-automatic free recall. The present results cofirm previous functional neuroimaging studies of memory retrieval indicating that recall is subserved by a network of interacting brain regions. Furthermore, the results indicate that some components of the neural network subserving free recall may have a dynamic role and that there is a functional restructuring of the information processing networks during the learning process.
  • Petersson, K. M., Reis, A., Castro-Caldas, A., & Ingvar, M. (1999). Effective auditory-verbal encoding activates the left prefrontal and the medial temporal lobes: A generalization to illiterate subjects. NeuroImage, 10, 45-54. doi:10.1006/nimg.1999.0446.

    Abstract

    Recent event-related FMRI studies indicate that the prefrontal (PFC) and the medial temporal lobe (MTL) regions are more active during effective encoding than during ineffective encoding. The within-subject design and the use of well-educated young college students in these studies makes it important to replicate these results in other study populations. In this PET study, we used an auditory word-pair association cued-recall paradigm and investigated a group of healthy upper middle-aged/older illiterate women. We observed a positive correlation between cued-recall success and the regional cerebral blood flow of the left inferior PFC (BA 47) and the MTLs. Specifically, we used the cuedrecall success as a covariate in a general linear model and the results confirmed that the left inferior PFC and the MTLare more active during effective encoding than during ineffective encoding. These effects were observed during encoding of both semantically and phonologically related word pairs, indicating that these effects are robust in the studied population, that is, reproducible within group. These results generalize the results of Brewer et al. (1998, Science 281, 1185– 1187) and Wagner et al. (1998, Science 281, 1188–1191) to an upper middle aged/older illiterate population. In addition, the present study indicates that effective relational encoding correlates positively with the activity of the anterior medial temporal lobe regions.
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Learning-related effects and functional neuroimaging. Human Brain Mapping, 7, 234-243. doi:10.1002/(SICI)1097-0193(1999)7:4<234:AID-HBM2>3.0.CO;2-O.

    Abstract

    A fundamental problem in the study of learning is that learning-related changes may be confounded by nonspecific time effects. There are several strategies for handling this problem. This problem may be of greater significance in functional magnetic resonance imaging (fMRI) compared to positron emission tomography (PET). Using the general linear model, we describe, compare, and discuss two approaches for separating learning-related from nonspecific time effects. The first approach makes assumptions on the general behavior of nonspecific effects and explicitly models these effects, i.e., nonspecific time effects are incorporated as a linear or nonlinear confounding covariate in the statistical model. The second strategy makes no a priori assumption concerning the form of nonspecific time effects, but implicitly controls for nonspecific effects using an interaction approach, i.e., learning effects are assessed with an interaction contrast. The two approaches depend on specific assumptions and have specific limitations. With certain experimental designs, both approaches may be used and the results compared, lending particular support to effects that are independent of the method used. A third and perhaps better approach that sometimes may be practically unfeasible is to use a completely temporally balanced experimental design. The choice of approach may be of particular importance when learning related effects are studied with fMRI.
  • Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999). Statistical limitations in functional neuroimaging I: Non-inferential methods and statistical models. Philosofical Transactions of the Royal Soeciety B, 354, 1239-1260.
  • Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999). Statistical limitations in functional neuroimaging II: Signal detection and statistical inference. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354, 1261-1282.
  • Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., & Hansson, P. (1999). A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain, 83, 459-470.

    Abstract

    The objective of this study was to investigate the central processing of dynamic mechanical allodynia in patients with mononeuropathy. Regional cerebral bloodflow, as an indicator of neuronal activity, was measured with positron emission tomography. Paired comparisons were made between three different states; rest, allodynia during brushing the painful skin area, and brushing of the homologous contralateral area. Bilateral activations were observed in the primary somatosensory cortex (S1) and the secondary somatosensory cortex (S2) during allodynia compared to rest. The S1 activation contralateral to the site of the stimulus was more expressed during allodynia than during innocuous touch. Significant activations of the contralateral posterior parietal cortex, the periaqueductal gray (PAG), the thalamus bilaterally and motor areas were also observed in the allodynic state compared to both non-allodynic states. In the anterior cingulate cortex (ACC) there was only a suggested activation when the allodynic state was compared with the non-allodynic states. In order to account for the individual variability in the intensity of allodynia and ongoing spontaneous pain, rCBF was regressed on the individually reported pain intensity, and significant covariations were observed in the ACC and the right anterior insula. Significantly decreased regional blood flow was observed bilaterally in the medial and lateral temporal lobe as well as in the occipital and posterior cingulate cortices when the allodynic state was compared to the non-painful conditions. This finding is consistent with previous studies suggesting attentional modulation and a central coping strategy for known and expected painful stimuli. Involvement of the medial pain system has previously been reported in patients with mononeuropathy during ongoing spontaneous pain. This study reveals a bilateral activation of the lateral pain system as well as involvement of the medial pain system during dynamic mechanical allodynia in patients with mononeuropathy.
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1997). A dynamic role of the medial temporal lobe during retrieval of declarative memory in man. NeuroImage, 6, 1-11.

    Abstract

    Understanding the role of the medial temporal lobe (MTL) in learning and memory is an important problem in cognitive neuroscience. Memory and learning processes that depend on the function of the MTL and related diencephalic structures (e.g., the anterior and mediodorsal thalamic nuclei) are defined as declarative. We have studied the MTL activity as indicated by regional cerebral blood flow with positron emission tomography and statistical parametric mapping during recall of abstract designs in a less practiced memory state as well as in a well-practiced (well-encoded) memory state. The results showed an increased activity of the MTL bilaterally (including parahippocampal gyrus extending into hippocampus proper, as well as anterior lingual and anterior fusiform gyri) during retrieval in the less practiced memory state compared to the well-practiced memory state, indicating a dynamic role of the MTL in retrieval during the learning processes. The results also showed that the activation of the MTL decreases as the subjects learn to draw abstract designs from memory, indicating a changing role of the MTL during recall in the earlier stages of acquisition compared to the well-encoded declarative memory state.

Share this page