Publications

Displaying 1 - 25 of 25
  • Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145, 132-150. doi:10.1196/annals.1416.012.

    Abstract

    Several studies have reported an association between dyslexia and implicit learning deficits. It has been suggested that the weakness in implicit learning observed in dyslexic individuals may be related to sequential processing and implicit sequence learning. In the present article, we review the current literature on implicit learning and dyslexia. We describe a novel, forced-choice structural "mere exposure" artificial grammar learning paradigm and characterize this paradigm in normal readers in relation to the standard grammaticality classification paradigm. We argue that preference classification is a more optimal measure of the outcome of implicit acquisition since in the preference version participants are kept completely unaware of the underlying generative mechanism, while in the grammaticality version, the subjects have, at least in principle, been informed about the existence of an underlying complex set of rules at the point of classification (but not during acquisition). On the basis of the "mere exposure effect," we tested the prediction that the development of preference will correlate with the grammaticality status of the classification items. In addition, we examined the effects of grammaticality (grammatical/nongrammatical) and associative chunk strength (ACS; high/low) on the classification tasks (preference/grammaticality). Using a balanced ACS design in which the factors of grammaticality (grammatical/nongrammatical) and ACS (high/low) were independently controlled in a 2 × 2 factorial design, we confirmed our predictions. We discuss the suitability of this task for further investigation of the implicit learning characteristics in dyslexia.
  • Forkstam, C., Elwér, A., Ingvar, M., & Petersson, K. M. (2008). Instruction effects in implicit artificial grammar learning: A preference for grammaticality. Brain Research, 1221, 80-92. doi:10.1016/j.brainres.2008.05.005.

    Abstract

    Human implicit learning can be investigated with implicit artificial grammar learning, a paradigm that has been proposed as a simple model for aspects of natural language acquisition. In the present study we compared the typical yes–no grammaticality classification, with yes–no preference classification. In the case of preference instruction no reference to the underlying generative mechanism (i.e., grammar) is needed and the subjects are therefore completely uninformed about an underlying structure in the acquisition material. In experiment 1, subjects engaged in a short-term memory task using only grammatical strings without performance feedback for 5 days. As a result of the 5 acquisition days, classification performance was independent of instruction type and both the preference and the grammaticality group acquired relevant knowledge of the underlying generative mechanism to a similar degree. Changing the grammatical stings to random strings in the acquisition material (experiment 2) resulted in classification being driven by local substring familiarity. Contrasting repeated vs. non-repeated preference classification (experiment 3) showed that the effect of local substring familiarity decreases with repeated classification. This was not the case for repeated grammaticality classifications. We conclude that classification performance is largely independent of instruction type and that forced-choice preference classification is equivalent to the typical grammaticality classification.
  • Petersson, K. M. (2008). On cognition, structured sequence processing, and adaptive dynamical systems. American Institute of Physics Conference Proceedings, 1060(1), 195-200.

    Abstract

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.
  • De Rover, M., Petersson, K. M., Van der Werf, S. P., Cools, A. R., Berger, H. J., & Fernández, G. (2008). Neural correlates of strategic memory retrieval: Differentiating between spatial-associative and temporal-associative strategies. Human Brain Mapping, 29, 1068-1079. doi:10.1002/hbm.20445.

    Abstract

    Remembering complex, multidimensional information typically requires strategic memory retrieval, during which information is structured, for instance by spatial- or temporal associations. Although brain regions involved in strategic memory retrieval in general have been identified, differences in retrieval operations related to distinct retrieval strategies are not well-understood. Thus, our aim was to identify brain regions whose activity is differentially involved in spatial-associative and temporal-associative retrieval. First, we showed that our behavioral paradigm probing memory for a set of object-location associations promoted the use of a spatial-associative structure following an encoding condition that provided multiple associations to neighboring objects (spatial-associative condition) and the use of a temporal- associative structure following another study condition that provided predominantly temporal associations between sequentially presented items (temporal-associative condition). Next, we used an adapted version of this paradigm for functional MRI, where we contrasted brain activity related to the recall of object-location associations that were either encoded in the spatial- or the temporal-associative condition. In addition to brain regions generally involved in recall, we found that activity in higher-order visual regions, including the fusiform gyrus, the lingual gyrus, and the cuneus, was relatively enhanced when subjects used a spatial-associative structure for retrieval. In contrast, activity in the globus pallidus and the thalamus was relatively enhanced when subjects used a temporal-associative structure for retrieval. In conclusion, we provide evidence for differential involvement of these brain regions related to different types of strategic memory retrieval and the neural structures described play a role in either spatial-associative or temporal-associative memory retrieval.
  • Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242-251. doi:10.1016/j.ijpsycho.2007.05.017.

    Abstract

    We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2–9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity.
  • Tendolkar, I., Arnold, J., Petersson, K. M., Weis, S., Brockhaus-Dumke, A., Van Eijndhoven, P., Buitelaar, J., & Fernandez, G. (2008). Contributions of the medial temporal lobe to declarative memory retrieval: Manipulating the amount of contextual retrieval. Learning and Memory, 15(9), 611-617. doi:10.1101/lm.916708.

    Abstract

    We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures mediating either contextual or noncontextual retrieval. A linearly weighted analysis elucidated which MTL substructures show a gradually increasing neural activity, depending on the amount of contextual information retrieved. A hippocampal engagement was found during both levels of source memory but not during item memory retrieval. The anterior MTL including the perirhinal cortex was only engaged during item memory retrieval by an activity decrease. Only the posterior parahippocampal cortex showed an activation increasing with the amount of contextual information retrieved. If one assumes a roughly linear relationship between the blood-oxygenation level-dependent (BOLD) signal and the associated cognitive process, our results suggest that the posterior parahippocampal cortex is involved in contextual retrieval on the basis of memory strength while the hippocampus processes representations of item-context binding. The anterior MTL including perirhinal cortex seems to be particularly engaged in familiarity-based item recognition. If one assumes departure from linearity, however, our results can also be explained by one-dimensional modulation of memory strength.
  • Uddén, J., Folia, V., Forkstam, C., Ingvar, M., Fernández, G., Overeem, S., Van Elswijk, G., Hagoort, P., & Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 69-78. doi:10.1016/j.brainres.2008.05.070.

    Abstract

    The human capacity to implicitly acquire knowledge of structured sequences has recently been investigated in artificial grammar learning using functional magnetic resonance imaging. It was found that the left inferior frontal cortex (IFC; Brodmann's area (BA) 44/45) was related to classification performance. The objective of this study was to investigate whether the IFC (BA 44/45) is causally related to classification of artificial syntactic structures by means of an off-line repetitive transcranial magnetic stimulation (rTMS) paradigm. We manipulated the stimulus material in a 2 × 2 factorial design with grammaticality status and local substring familiarity as factors. The participants showed a reliable effect of grammaticality on classification of novel items after 5days of exposure to grammatical exemplars without performance feedback in an implicit acquisition task. The results show that rTMS of BA 44/45 improves syntactic classification performance by increasing the rejection rate of non-grammatical items and by shortening reaction times of correct rejections specifically after left-sided stimulation. A similar pattern of results is observed in FMRI experiments on artificial syntactic classification. These results suggest that activity in the inferior frontal region is causally related to artificial syntax processing.
  • Van Wingen, G. A., Van Broekhoven, F., Verkes, R. J., Petersson, K. M., Bäckström, T., Buitelaar, J. K., & Fernández, G. (2008). Progesterone selectively increases amygdala reactivity in women. Molecular Psychiatry, 13, 325-333. doi:doi:10.1038/sj.mp.4002030.

    Abstract

    The acute neural effects of progesterone are mediated by its neuroactive metabolites allopregnanolone and pregnanolone. These neurosteroids potentiate the inhibitory actions of c-aminobutyric acid (GABA). Progesterone is known to produce anxiolytic effects in animals, but recent animal studies suggest that pregnanolone increases anxiety after a period of low allopregnanolone concentration. This effect is potentially mediated by the amygdala and related to the negative mood symptoms in humans that are observed during increased allopregnanolone levels. Therefore, we investigated with functional magnetic resonance imaging (MRI) whether a single progesterone administration to healthy young women in their follicular phase modulates the amygdala response to salient, biologically relevant stimuli. The progesterone administration increased the plasma concentrations of progesterone and allopregnanolone to levels that are reached during the luteal phase and early pregnancy. The imaging results show that progesterone selectively increased amygdala reactivity. Furthermore, functional connectivity analyses indicate that progesterone modulated functional coupling of the amygdala with distant brain regions. These results reveal a neural mechanism by which progesterone may mediate adverse effects on anxiety and mood.
  • Carlsson, K., Petersson, K. M., Lundqvist, D., Karlsson, A., Ingvar, M., & Öhman, A. (2004). Fear and the amygdala: manipulation of awareness generates differential cerebral responses to phobic and fear-relevant (but nonfeared) stimuli. Emotion, 4(4), 340-353. doi:10.1037/1528-3542.4.4.340.

    Abstract

    Rapid response to danger holds an evolutionary advantage. In this positron emission tomography study, phobics were exposed to masked visual stimuli with timings that either allowed awareness or not of either phobic, fear-relevant (e.g., spiders to snake phobics), or neutral images. When the timing did not permit awareness, the amygdala responded to both phobic and fear-relevant stimuli. With time for more elaborate processing, phobic stimuli resulted in an addition of an affective processing network to the amygdala activity, whereas no activity was found in response to fear-relevant stimuli. Also, right prefrontal areas appeared deactivated, comparing aware phobic and fear-relevant conditions. Thus, a shift from top-down control to an affectively driven system optimized for speed was observed in phobic relative to fear-relevant aware processing.
  • Gisselgard, J., Petersson, K. M., & Ingvar, M. (2004). The irrelevant speech effect and working memory load. NeuroImage, 22, 1107-1116. doi:10.1016/j.neuroimage.2004.02.031.

    Abstract

    Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation
  • Gonzalez da Silva, C., Petersson, K. M., Faísca, L., Ingvar, M., & Reis, A. (2004). The effects of literacy and education on the quantitative and qualitative aspects of semantic verbal fluency. Journal of Clinical and Experimental Neuropsychology, 26(2), 266-277. doi:10.1076/jcen.26.2.266.28089.

    Abstract

    Semantic verbal fluency tasks are commonly used in neuropsychological assessment. Investigations of the influence of level of literacy have not yielded consistent results in the literature. This prompted us to investigate the ecological relevance of task specifics, in particular, the choice of semantic criteria used. Two groups of literate and illiterate subjects were compared on two verbal fluency tasks using different semantic criteria. The performance on a food criterion (supermarket fluency task), considered more ecologically relevant for the two literacy groups, and an animal criterion (animal fluency task) were compared. The data were analysed using both quantitative and qualitative measures. The quantitative analysis indicated that the two literacy groups performed equally well on the supermarket fluency task. In contrast, results differed significantly during the animal fluency task. The qualitative analyses indicated differences between groups related to the strategies used, especially with respect to the animal fluency task. The overall results suggest that there is not a substantial difference between literate and illiterate subjects related to the fundamental workings of semantic memory. However, there is indication that the content of semantic memory reflects differences in shared cultural background - in other words, formal education –, as indicated by the significant interaction between level of literacy and semantic criterion.
  • Hagoort, P., Hald, L. A., Bastiaansen, M. C. M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304(5669), 438-441. doi:10.1126/science.1095455.

    Abstract

    Although the sentences that we hear or read have meaning, this does not necessarily mean that they are also true. Relatively little is known about the critical brain structures for, and the relative time course of, establishing the meaning and truth of linguistic expressions. We present electroencephalogram data that show the rapid parallel integration of both semantic and world
    knowledge during the interpretation of a sentence. Data from functional magnetic resonance imaging revealed that the left inferior prefrontal cortex is involved in the integration of both meaning and world knowledge. Finally, oscillatory brain responses indicate that the brain keeps a record of what makes a sentence hard to interpret.
  • Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernández, G. (2004). Age differences in neural correlates of route encoding and route recognition. Neuroimage, 22, 1503-1514. doi:10.1016/j.neuroimage.2004.04.007.

    Abstract

    Spatial memory deficits are core features of aging-related changes in cognitive abilities. The neural correlates of these deficits are largely unknown. In the present study, we investigated the neural underpinnings of age-related differences in spatial memory by functional MRI using a navigational memory task with route encoding and route recognition conditions. We investigated 20 healthy young (18 - 29 years old) and 20 healthy old adults (53 - 78 years old) in a random effects analysis. Old subjects showed slightly poorer performance than young subjects. Compared to the control condition, route encoding and route recognition showed activation of the dorsal and ventral visual processing streams and the frontal eye fields in both groups of subjects. Compared to old adults, young subjects showed during route encoding stronger activations in the dorsal and the ventral visual processing stream (supramarginal gyrus and posterior fusiform/parahippocampal areas). In addition, young subjects showed weaker anterior parahippocampal activity during route recognition compared to the old group. In contrast, old compared to young subjects showed less suppressed activity in the left perisylvian region and the anterior cingulate cortex during route encoding. Our findings suggest that agerelated navigational memory deficits might be caused by less effective route encoding based on reduced posterior fusiform/parahippocampal and parietal functionality combined with diminished inhibition of perisylvian and anterior cingulate cortices correlated with less effective suppression of task-irrelevant information. In contrast, age differences in neural correlates of route recognition seem to be rather subtle. Old subjects might show a diminished familiarity signal during route recognition in the anterior parahippocampal region.
  • Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca’s region. Cognitive Science, 28(3), 383-407. doi:10.1207/s15516709cog2803_4.

    Abstract

    In the present study, using event-related functional magnetic resonance imaging, we investigated a group of participants on a grammaticality classification task after they had been exposed to well-formed consonant strings generated from an artificial regular grammar.We used an implicit acquisition paradigm in which the participants were exposed to positive examples. The objective of this studywas to investigate whether brain regions related to language processing overlap with the brain regions activated by the grammaticality classification task used in the present study. Recent meta-analyses of functional neuroimaging studies indicate that syntactic processing is related to the left inferior frontal gyrus (Brodmann's areas 44 and 45) or Broca's region. In the present study, we observed that artificial grammaticality violations activated Broca's region in all participants. This observation lends some support to the suggestions that artificial grammar learning represents a model for investigating aspects of language learning in infants.
  • Petersson, K. M. (2004). The human brain, language, and implicit learning. Impuls, Tidsskrift for psykologi (Norwegian Journal of Psychology), 58(3), 62-72.
  • Petrovic, P., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Brainstem involvement in the initial response to pain. NeuroImage, 22, 995-1005. doi:10.1016/j.neuroimage.2004.01.046.

    Abstract

    The autonomic responses to acute pain exposure usually habituate rapidly while the subjective ratings of pain remain high for more extended periods of time. Thus, systems involved in the autonomic response to painful stimulation, for example the hypothalamus and the brainstem, would be expected to attenuate the response to pain during prolonged stimulation. This suggestion is in line with the hypothesis that the brainstem is specifically involved in the initial response to pain. To probe this hypothesis, we performed a positron emission tomography (PET) study where we scanned subjects during the first and second minute of a prolonged tonic painful cold stimulation (cold pressor test) and nonpainful cold stimulation. Galvanic skin response (GSR) was recorded during the PET scanning as an index of autonomic sympathetic response. In the main effect of pain, we observed increased activity in the thalamus bilaterally, in the contralateral insula and in the contralateral anterior cingulate cortex but no significant increases in activity in the primary or secondary somatosensory cortex. The autonomic response (GSR) decreased with stimulus duration. Concomitant with the autonomic response, increased activity was observed in brainstem and hypothalamus areas during the initial vs. the late stimulation. This effect was significantly stronger for the painful than for the cold stimulation. Activity in the brainstem showed pain-specific covariation with areas involved in pain processing, indicating an interaction between the brainstem and cortical pain networks. The findings indicate that areas in the brainstem are involved in the initial response to noxious stimulation, which is also characterized by an increased sympathetic response.
  • Petrovic, P., Carlsson, K., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Context-dependent deactivation of the amygdala during pain. Journal of Cognitive Neuroscience, 16, 1289-1301.

    Abstract

    The amygdala has been implicated in fundamental functions for the survival of the organism, such as fear and pain. In accord with this, several studies have shown increased amygdala activity during fear conditioning and the processing of fear-relevant material in human subjects. In contrast, functional neuroimaging studies of pain have shown a decreased amygdala activity. It has previously been proposed that the observed deactivations of the amygdala in these studies indicate a cognitive strategy to adapt to a distressful but in the experimental setting unavoidable painful event. In this positron emission tomography study, we show that a simple contextual manipulation, immediately preceding a painful stimulation, that increases the anticipated duration of the painful event leads to a decrease in amygdala activity and modulates the autonomic response during the noxious stimulation. On a behavioral level, 7 of the 10 subjects reported that they used coping strategies more intensely in this context. We suggest that the altered activity in the amygdala may be part of a mechanism to attenuate pain-related stress responses in a context that is perceived as being more aversive. The study also showed an increased activity in the rostral part of anterior cingulate cortex in the same context in which the amygdala activity decreased, further supporting the idea that this part of the cingulate cortex is involved in the modulation of emotional and pain networks
  • Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P. H., & Fernández, G. (2004). Interaction between the Human Hippocampus and the Caudate Nucleus during Route Recognition. Neuron, 43, 427-435. doi:10.1016/j.neuron.2004.07.009.

    Abstract

    Navigation through familiar environments can rely upon distinct neural representations that are related to different memory systems with either the hippo-campus or the caudate nucleus at their core. However,it is a fundamental question whether and how these systems interact during route recognition. To address this issue, we combined a functional neuroimaging approach with a naturally occurring, well-controlled humanmodel of caudate nucleus dysfunction (i.e., pre-clinical and early-stage Huntington’s disease). Our results reveal a noncompetitive interaction so that the hippocampus compensates for gradual caudate nucleus dysfunction with a gradual activity increase,maintaining normal behavior. Furthermore, we revealed an interaction between medial temporal and caudate activity in healthy subjects, which was adaptively modified in Huntington patients to allow compensatory hippocampal processing. Thus, the two memory systems contribute in a noncompetitive, co operative manner to route recognition, which enables Polthe hippocampus to compensate seamlessly for the functional degradation of the caudate nucleus
  • Fransson, P., Merboldt, K.-D., Ingvar, M., Petersson, K. M., & Frahm, J. (2001). Functional MRI with reduced susceptibility artifact: High-resolution mapping of episodic memory encoding. Neuroreport, 12, 1415-1420.

    Abstract

    Visual episodic memory encoding was investigated using echoplanar magnetic resonance imaging at 2.0 x 2.0 mm2 resolution and 1.0 mm section thickness, which allows for functional mapping of hippocampal, parahippocampal, and ventral occipital regions with reduced magnetic susceptibility artifact. The memory task was based on 54 image pairs each consisting of a complex visual scene and the face of one of six different photographers. A second group of subjects viewed the same set of images without memory instruction as well as a reversing checkerboard. Apart from visual activation in occipital cortical areas, episodic memory encoding revealed consistent activation in the parahippocampal gyrus but not in the hippocampus proper. This ®nding was most prominently evidenced in sagittal maps covering the right hippocampal formation. Mean activated volumes were 432±293 µl and 259±179 µl for intentional memory encoding and non-instructed viewing, respectively. In contrast, the checkerboard paradigm elicited pure visual activation without parahippocampal involvement.
  • Ledberg, A., Fransson, P., Larsson, J., & Petersson, K. M. (2001). A 4D approach to the analysis of functional brain images: Application to fMRI data. Human Brain Mapping, 13, 185-198. doi:10.1002/hbm.1032.

    Abstract

    This paper presents a new approach to functional magnetic resonance imaging (FMRI) data analysis. The main difference lies in the view of what comprises an observation. Here we treat the data from one scanning session (comprising t volumes, say) as one observation. This is contrary to the conventional way of looking at the data where each session is treated as t different observations. Thus instead of viewing the v voxels comprising the 3D volume of the brain as the variables, we suggest the usage of the vt hypervoxels comprising the 4D volume of the brain-over-session as the variables. A linear model is fitted to the 4D volumes originating from different sessions. Parameter estimation and hypothesis testing in this model can be performed with standard techniques. The hypothesis testing generates 4D statistical images (SIs) to which any relevant test statistic can be applied. In this paper we describe two test statistics, one voxel based and one cluster based, that can be used to test a range of hypotheses. There are several benefits in treating the data from each session as one observation, two of which are: (i) the temporal characteristics of the signal can be investigated without an explicit model for the blood oxygenation level dependent (BOLD) contrast response function, and (ii) the observations (sessions) can be assumed to be independent and hence inference on the 4D SI can be made by nonparametric or Monte Carlo methods. The suggested 4D approach is applied to FMRI data and is shown to accurately detect the expected signal
  • Nyberg, L., Petersson, K. M., Nilsson, L.-G., Sandblom, J., Åberg, C., & Ingvar, M. (2001). Reactivation of motor brain areas during explicit memory for actions. Neuroimage, 14, 521-528. doi:10.1006/nimg.2001.0801.

    Abstract

    Recent functional brain imaging studies have shown that sensory-specific brain regions that are activated during perception/encoding of sensory-specific information are reactivated during memory retrieval of the same information. Here we used PET to examine whether verbal retrieval of action phrases is associated with reactivation of motor brain regions if the actions were overtly or covertly performed during encoding. Compared to a verbal condition, encoding by means of overt as well as covert activity was associated with differential activity in regions in contralateral somatosensory and motor cortex. Several of these regions were reactivated during retrieval. Common to both the overt and covert conditions was reactivation of regions in left ventral motor cortex and left inferior parietal cortex. A direct comparison of the overt and covert activity conditions showed that activation and reactivation of left dorsal parietal cortex and right cerebellum was specific to the overt condition. These results support the reactivation hypothesis by showing that verbal-explicit memory of actions involves areas that are engaged during overt and covert motor activity.
  • Petersson, K. M., Reis, A., & Ingvar, M. (2001). Cognitive processing in literate and illiterate subjects: A review of some recent behavioral and functional neuroimaging data. Scandinavian Journal of Psychology, 42, 251-267. doi:10.1111/1467-9450.00235.

    Abstract

    The study of illiterate subjects, which for specific socio-cultural reasons did not have the opportunity to acquire basic reading and writing skills, represents one approach to study the interaction between neurobiological and cultural factors in cognitive development and the functional organization of the human brain. In addition the naturally occurring illiteracy may serve as a model for studying the influence of alphabetic orthography on auditory-verbal language. In this paper we have reviewed some recent behavioral and functional neuroimaging data indicating that learning an alphabetic written language modulates the auditory-verbal language system in a non-trivial way and provided support for the hypothesis that the functional architecture of the brain is modulated by literacy. We have also indicated that the effects of literacy and formal schooling is not limited to language related skills but appears to affect also other cognitive domains. In particular, we indicate that formal schooling influences 2D but not 3D visual naming skills. We have also pointed to the importance of using ecologically relevant tasks when comparing literate and illiterate subjects. We also demonstrate the applicability of a network approach in elucidating differences in the functional organization of the brain between groups. The strength of such an approach is the ability to study patterns of interactions between functionally specialized brain regions and the possibility to compare such patterns of brain interactions between groups or functional states. This complements the more commonly used activation approach to functional neuroimaging data, which characterize functionally specialized regions, and provides important data characterizing the functional interactions between these regions.
  • Petersson, K. M., Sandblom, J., Gisselgard, J., & Ingvar, M. (2001). Learning related modulation of functional retrieval networks in man. Scandinavian Journal of Psychology, 42, 197-216. doi:10.1111/1467-9450.00231.
  • Reis, A., Petersson, K. M., Castro-Caldas, A., & Ingvar, M. (2001). Formal schooling influences two- but not three-dimensional naming skills. Brain and Cognition, 47, 397-411. doi:doi:10.1006/brcg.2001.1316.

    Abstract

    The modulatory influence of literacy on the cognitive system of the human brain has been indicated in behavioral, neuroanatomic, and functional neuroimaging studies. In this study we explored the functional consequences of formal education and the acquisition of an alphabetic written language on two- and three-dimensional visual naming. The results show that illiterate subjects perform significantly worse on immediate naming of two-dimensional representations of common everyday objects compared to literate subjects, both in terms of accuracy and reaction times. In contrast, there was no significant difference when the subjects named the corresponding real objects. The results suggest that formal education and learning to read and to write modulate the cognitive process involved in processing two- but not three-dimensional representations of common everyday objects. Both the results of the reaction time and the error pattern analyses can be interpreted as indicating that the major influence of literacy affects the visual system or the interaction between the visual and the language systems. We suggest that the visual system in a wide sense and/or the interface between the visual and the language system are differently formatted in literate and illiterate subjects. In other words, we hypothesize that the pattern of interactions in the functional–anatomical networks subserving visual naming, that is, the interactions within and between the visual and language processing networks, differ in literate and illiterate subjects
  • Sandberg, A., Lansner, A., & Petersson, K. M. (2001). Selective enhancement of recall through plasticity modulation in an autoassociative memory. Neurocomputing, 38(40), 867-873. doi:10.1016/S0925-2312(01)00363-0.

    Abstract

    The strength of a memory trace is modulated by a variety of factors such as arousal, attention, context, type of processing during encoding, salience and novelty of the experience. Some of these factors can be modeled as a variable plasticity level in the memory system, controlled by arousal or relevance-estimating systems. We demonstrate that a Bayesian confidence propagation neural network with learning time constant modulated in this way exhibits enhanced recall of an item tagged as salient. Proactive and retroactive inhibition of other items is also demonstrated as well as an inverted U-shape response to overall plasticity

Share this page