Displaying 1 - 22 of 22
-
Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.
Abstract
Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence. -
Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect - Many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333-350. doi:10.1080/23273798.2017.1348528.
Abstract
The cause of developmental dyslexia is still unknown despite decades of intense research. Many causal explanations have been proposed, based on the range of impairments displayed by affected individuals. Here we draw attention to the fact that many of these impairments are also shown by illiterate individuals who have not received any or very little reading instruction. We suggest that this fact may not be coincidental and that the performance differences of both illiterates and individuals with dyslexia compared to literate controls are, to a substantial extent, secondary consequences of either reduced or suboptimal reading experience or a combination of both. The search for the primary causes of reading impairments will make progress if the consequences of quantitative and qualitative differences in reading experience are better taken into account and not mistaken for the causes of reading disorders. We close by providing four recommendations for future research. -
Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-14. doi:10.1007/s11881-018-0158-x.
Abstract
This study investigates the implicit sequence learning abilities of dyslexic children using an artificial grammar learning task with an extended exposure period. Twenty children with developmental dyslexia participated in the study and were matched with two control groups—one matched for age and other for reading skills. During 3 days, all participants performed an acquisition task, where they were exposed to colored geometrical forms sequences with an underlying grammatical structure. On the last day, after the acquisition task, participants were tested in a grammaticality classification task. Implicit sequence learning was present in dyslexic children, as well as in both control groups, and no differences between groups were observed. These results suggest that implicit learning deficits per se cannot explain the characteristic reading difficulties of the dyslexics. -
Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.
Abstract
Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences. -
Araújo, S., Inácio, F., Francisco, A., Faísca, L., Petersson, K. M., & Reis, A. (2011). Component processes subserving rapid automatized naming in dyslexic and non-dyslexic readers. Dyslexia, 17, 242-255. doi:10.1002/dys.433.
Abstract
The current study investigated which time components of rapid automatized naming (RAN) predict group differences between dyslexic and non-dyslexic readers (matched for age and reading level), and how these components relate to different reading measures. Subjects performed two RAN tasks (letters and objects), and data were analyzed through a response time analysis. Our results demonstrated that impaired RAN performance in dyslexic readers mainly stem from enhanced inter-item pause times and not from difficulties at the level of post-access motor production (expressed as articulation rates). Moreover, inter-item pause times account for a significant proportion of variance in reading ability in addition to the effect of phonological awareness in the dyslexic group. This suggests that non-phonological factors may lie at the root of the association between RAN inter-item pauses and reading ability. In normal readers, RAN performance was associated with reading ability only at early ages (i.e. in the reading-matched controls), and again it was the RAN inter-item pause times that explain the association. -
Araújo, S., Faísca, L., Bramão, I., Inácio, F., Petersson, K. M., & Reis, A. (2011). Object naming in dyslexic children: More than a phonological deficit. The Journal of General Psychology, 138, 215-228. doi:10.1080/00221309.2011.582525.
Abstract
In the present study, the authors investigate how some visual factors related to early stages of visual-object naming modulate naming performance in dyslexia. The performance of dyslexic children was compared with 2 control groups—normal readers matched for age and normal readers matched for reading level—while performing a discrete naming task in which color and dimensionality of the visually presented objects were manipulated. The results showed that 2-dimensional naming performance improved for color representations in control readers but not in dyslexics. In contrast to control readers, dyslexics were also insensitive to the stimulus's dimensionality. These findings are unlikely to be explained by a phonological processing problem related to phonological access or retrieval but suggest that dyslexics have a lower capacity for coding and decoding visual surface features of 2-dimensional representations or problems with the integration of visual information stored in long-term memory. -
Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2011). What does rapid naming tell us about dyslexia? Avances en Psicología Latinoamericana, 29, 199-213.
Abstract
This article summarizes some of the important findings from research evaluating the relationship between poor rapid naming and impaired reading performance. Substantial evidence shows that dyslexic readers have problems with rapid naming of visual items. Early research assumed that this was a consequence of phonological processing deficits, but recent findings suggest that non-phonological processes may lie at the root of the association between slow naming speed and poor reading. The hypothesis that rapid naming reflects an independent core deficit in dyslexia is supported by the main findings: (1) some dyslexics are characterized by rapid naming difficulties but intact phonological skills; (2) evidence for an independent association between rapid naming and reading competence in the dyslexic readers, when the effect of phonological skills was controlled; (3) rapid naming and phonological processing measures are not reliably correlated. Recent research also reveals greater predictive power of rapid naming, in particular the inter-item pause time, for high-frequency word reading compared to pseudoword reading in developmental dyslexia. Altogether, the results are more consistent with the view that a phonological component alone cannot account for the rapid naming performance in dyslexia. Rather, rapid naming problems may emerge from the inefficiencies in visual-orthographic processing as well as in phonological processing. -
Bramão, B., Reis, A., Petersson, K. M., & Faísca, L. (2011). The role of color in object recognition: A review and meta-analysis. Acta Psychologica, 138, 244-253. doi:10.1016/j.actpsy.2011.06.010.
Abstract
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d = 0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d = 0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d = 0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d = 0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition.Files private
Request files -
Bramão, I., Inácio, F., Faísca, L., Reis, A., & Petersson, K. M. (2011). The influence of color information on the recognition of color diagnostic and noncolor diagnostic objects. The Journal of General Psychology, 138(1), 49-65. doi:10.1080/00221309.2010.533718.
Abstract
In the present study, the authors explore in detail the level of visual object recognition at which perceptual color information improves the recognition of color diagnostic and noncolor diagnostic objects. To address this issue, 3 object recognition tasks, with different cognitive demands, were designed: (a) an object verification task; (b) a category verification task; and (c) a name verification task. They found that perceptual color information improved color diagnostic object recognition mainly in tasks for which access to the semantic knowledge about the object was necessary to perform the task; that is, in category and name verification. In contrast, the authors found that perceptual color information facilitates noncolor diagnostic object recognition when access to the object’s structural description from long-term memory was necessary—that is, object verification. In summary, the present study shows that the role of perceptual color information in object recognition is dependent on color diagnosticity -
Folia, V., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2011). Implicit artificial syntax processing: Genes, preference, and bounded recursion. Biolinguistics, 5(1/2), 105-132.
Abstract
The first objective of this study was to compare the brain network engaged by preference classification and the standard grammaticality classification after implicit artificial syntax acquisition by re-analyzing previously reported event-related fMRI data. The results show that preference and grammaticality classification engage virtually identical brain networks, including Broca’s region, consistent with previous behavioral findings. Moreover, the results showed that the effects related to artificial syntax in Broca’s region were essentially the same when masked with variability related to natural syntax processing in the same participants. The second objective was to explore CNTNAP2-related effects in implicit artificial syntax learning by analyzing behavioral and event-related fMRI data from a subsample. The CNTNAP2 gene has been linked to specific language impairment and is controlled by the FOXP2 transcription factor. CNTNAP2 is expressed in language related brain networks in the developing human brain and the FOXP2–CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language. Finally, we discuss the implication of taking natural language to be a neurobiological system in terms of bounded recursion and suggest that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner. -
Petersson, K. M., Forkstam, C., Inácio, F., Bramão, I., Araújo, S., Souza, A. C., Silva, S., & Castro, S. L. (2011). Artificial language learning. In A. Trevisan, & V. Wannmacher Pereira (
Eds. ), Alfabeltização e cognição (pp. 71-90). Porto Alegre, Brasil: Edipucrs.Abstract
Neste artigo fazemos uma revisão breve de investigações actuais com técnicas comportamentais e de neuroimagem funcional sobre a aprendizagem de uma linguagem artificial em crianças e adultos. Na secção final, discutimos uma possível associação entre dislexia e aprendizagem implícita. Resultados recentes sugerem que a presença de um défice ao nível da aprendizagem implícita pode contribuir para as dificuldades de leitura e escrita observadas em indivíduos disléxicos. -
Reis, A., Faísca, L., & Petersson, K. M. (2011). Literacia: Modelo para o estudo dos efeitos de uma aprendizagem específica na cognição e nas suas bases cerebrais. In A. Trevisan, J. J. Mouriño Mosquera, & V. Wannmacher Pereira (
Eds. ), Alfabeltização e cognição (pp. 23-36). Porto Alegro, Brasil: Edipucrs.Abstract
A aquisição de competências de leitura e de escrita pode ser vista como um processo formal de transmissão cultural, onde interagem factores neurobiológicos e culturais. O treino sistemático exigido pela aprendizagem da leitura e da escrita poderá produzir mudanças quantitativas e qualitativas tanto a nível cognitivo como ao nível da organização do cérebro. Estudar sujeitos iletrados e letrados representa, assim, uma oportunidade para investigar efeitos de uma aprendizagem específica no desenvolvimento cognitivo e suas bases cerebrais. Neste trabalho, revemos um conjunto de investigações comportamentais e com métodos de imagem cerebral que indicam que a literacia tem um impacto nas nossas funções cognitivas e na organização cerebral. Mais especificamente, discutiremos diferenças entre letrados e iletrados para domínios cognitivos verbais e não-verbais, sugestivas de que a arquitectura cognitiva é formatada, em parte, pela aprendizagem da leitura e da escrita. Os dados de neuroimagem funcionais e estruturais são também indicadores que a aquisição de uma ortografia alfabética interfere nos processos de organização e lateralização das funções cognitivas. -
Scheeringa, R., Fries, P., Petersson, K. M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2011). Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron, 69, 572-583. doi:10.1016/j.neuron.2010.11.044.
Abstract
Work on animals indicates that BOLD is preferentially sensitive to local field potentials, and that it correlates most strongly with gamma band neuronal synchronization. Here we investigate how the BOLD signal in humans performing a cognitive task is related to neuronal synchronization across different frequency bands. We simultaneously recorded EEG and BOLD while subjects engaged in a visual attention task known to induce sustained changes in neuronal synchronization across a wide range of frequencies. Trial-by-trial BOLD luctuations correlated positively with trial-by-trial fluctuations in high-EEG gamma power (60–80 Hz) and negatively with alpha and beta power. Gamma power on the one hand, and alpha and beta power on the other hand, independently contributed to explaining BOLD variance. These results indicate that the BOLD-gamma coupling observed in animals can be extrapolated to humans performing a task and that neuronal dynamics underlying high- and low-frequency synchronization contribute independently to the BOLD signal.Additional information
mmc1.pdf -
Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Teunisse, J.-P., & Hagoort, P. (2011). Neural correlates of language comprehension in autism spectrum disorders: When language conflicts with world knowledge. Neuropsychologia, 49, 1095-1104. doi:10.1016/j.neuropsychologia.2011.01.018.
Abstract
In individuals with ASD, difficulties with language comprehension are most evident when higher-level semantic-pragmatic language processing is required, for instance when context has to be used to interpret the meaning of an utterance. Until now, it is unclear at what level of processing and for what type of context these difficulties in language comprehension occur. Therefore, in the current fMRI study, we investigated the neural correlates of the integration of contextual information during auditory language comprehension in 24 adults with ASD and 24 matched control participants. Different levels of context processing were manipulated by using spoken sentences that were correct or contained either a semantic or world knowledge anomaly. Our findings demonstrated significant differences between the groups in inferior frontal cortex that were only present for sentences with a world knowledge anomaly. Relative to the ASD group, the control group showed significantly increased activation in left inferior frontal gyrus (LIFG) for sentences with a world knowledge anomaly compared to correct sentences. This effect possibly indicates reduced integrative capacities of the ASD group. Furthermore, world knowledge anomalies elicited significantly stronger activation in right inferior frontal gyrus (RIFG) in the control group compared to the ASD group. This additional RIFG activation probably reflects revision of the situation model after new, conflicting information. The lack of recruitment of RIFG is possibly related to difficulties with exception handling in the ASD group.Files private
Request files -
De Vries, M., Christiansen, M. H., & Petersson, K. M. (2011). Learning recursion: Multiple nested and crossed dependencies. Biolinguistics, 5(1/2), 010-035.
Abstract
Language acquisition in both natural and artificial language learning settings crucially depends on extracting information from sequence input. A shared sequence learning mechanism is thus assumed to underlie both natural and artificial language learning. A growing body of empirical evidence is consistent with this hypothesis. By means of artificial language learning experiments, we may therefore gain more insight in this shared mechanism. In this paper, we review empirical evidence from artificial language learning and computational modelling studies, as well as natural language data, and suggest that there are two key factors that help determine processing complexity in sequence learning, and thus in natural language processing. We propose that the specific ordering of non-adjacent dependencies (i.e., nested or crossed), as well as the number of non-adjacent dependencies to be resolved simultaneously (i.e., two or three) are important factors in gaining more insight into the boundaries of human sequence learning; and thus, also in natural language processing. The implications for theories of linguistic competence are discussed. -
Fransson, P., Merboldt, K.-D., Ingvar, M., Petersson, K. M., & Frahm, J. (2001). Functional MRI with reduced susceptibility artifact: High-resolution mapping of episodic memory encoding. Neuroreport, 12, 1415-1420.
Abstract
Visual episodic memory encoding was investigated using echoplanar magnetic resonance imaging at 2.0 x 2.0 mm2 resolution and 1.0 mm section thickness, which allows for functional mapping of hippocampal, parahippocampal, and ventral occipital regions with reduced magnetic susceptibility artifact. The memory task was based on 54 image pairs each consisting of a complex visual scene and the face of one of six different photographers. A second group of subjects viewed the same set of images without memory instruction as well as a reversing checkerboard. Apart from visual activation in occipital cortical areas, episodic memory encoding revealed consistent activation in the parahippocampal gyrus but not in the hippocampus proper. This ®nding was most prominently evidenced in sagittal maps covering the right hippocampal formation. Mean activated volumes were 432±293 µl and 259±179 µl for intentional memory encoding and non-instructed viewing, respectively. In contrast, the checkerboard paradigm elicited pure visual activation without parahippocampal involvement. -
Ledberg, A., Fransson, P., Larsson, J., & Petersson, K. M. (2001). A 4D approach to the analysis of functional brain images: Application to fMRI data. Human Brain Mapping, 13, 185-198. doi:10.1002/hbm.1032.
Abstract
This paper presents a new approach to functional magnetic resonance imaging (FMRI) data analysis. The main difference lies in the view of what comprises an observation. Here we treat the data from one scanning session (comprising t volumes, say) as one observation. This is contrary to the conventional way of looking at the data where each session is treated as t different observations. Thus instead of viewing the v voxels comprising the 3D volume of the brain as the variables, we suggest the usage of the vt hypervoxels comprising the 4D volume of the brain-over-session as the variables. A linear model is fitted to the 4D volumes originating from different sessions. Parameter estimation and hypothesis testing in this model can be performed with standard techniques. The hypothesis testing generates 4D statistical images (SIs) to which any relevant test statistic can be applied. In this paper we describe two test statistics, one voxel based and one cluster based, that can be used to test a range of hypotheses. There are several benefits in treating the data from each session as one observation, two of which are: (i) the temporal characteristics of the signal can be investigated without an explicit model for the blood oxygenation level dependent (BOLD) contrast response function, and (ii) the observations (sessions) can be assumed to be independent and hence inference on the 4D SI can be made by nonparametric or Monte Carlo methods. The suggested 4D approach is applied to FMRI data and is shown to accurately detect the expected signal -
Nyberg, L., Petersson, K. M., Nilsson, L.-G., Sandblom, J., Åberg, C., & Ingvar, M. (2001). Reactivation of motor brain areas during explicit memory for actions. Neuroimage, 14, 521-528. doi:10.1006/nimg.2001.0801.
Abstract
Recent functional brain imaging studies have shown that sensory-specific brain regions that are activated during perception/encoding of sensory-specific information are reactivated during memory retrieval of the same information. Here we used PET to examine whether verbal retrieval of action phrases is associated with reactivation of motor brain regions if the actions were overtly or covertly performed during encoding. Compared to a verbal condition, encoding by means of overt as well as covert activity was associated with differential activity in regions in contralateral somatosensory and motor cortex. Several of these regions were reactivated during retrieval. Common to both the overt and covert conditions was reactivation of regions in left ventral motor cortex and left inferior parietal cortex. A direct comparison of the overt and covert activity conditions showed that activation and reactivation of left dorsal parietal cortex and right cerebellum was specific to the overt condition. These results support the reactivation hypothesis by showing that verbal-explicit memory of actions involves areas that are engaged during overt and covert motor activity. -
Petersson, K. M., Reis, A., & Ingvar, M. (2001). Cognitive processing in literate and illiterate subjects: A review of some recent behavioral and functional neuroimaging data. Scandinavian Journal of Psychology, 42, 251-267. doi:10.1111/1467-9450.00235.
Abstract
The study of illiterate subjects, which for specific socio-cultural reasons did not have the opportunity to acquire basic reading and writing skills, represents one approach to study the interaction between neurobiological and cultural factors in cognitive development and the functional organization of the human brain. In addition the naturally occurring illiteracy may serve as a model for studying the influence of alphabetic orthography on auditory-verbal language. In this paper we have reviewed some recent behavioral and functional neuroimaging data indicating that learning an alphabetic written language modulates the auditory-verbal language system in a non-trivial way and provided support for the hypothesis that the functional architecture of the brain is modulated by literacy. We have also indicated that the effects of literacy and formal schooling is not limited to language related skills but appears to affect also other cognitive domains. In particular, we indicate that formal schooling influences 2D but not 3D visual naming skills. We have also pointed to the importance of using ecologically relevant tasks when comparing literate and illiterate subjects. We also demonstrate the applicability of a network approach in elucidating differences in the functional organization of the brain between groups. The strength of such an approach is the ability to study patterns of interactions between functionally specialized brain regions and the possibility to compare such patterns of brain interactions between groups or functional states. This complements the more commonly used activation approach to functional neuroimaging data, which characterize functionally specialized regions, and provides important data characterizing the functional interactions between these regions. -
Petersson, K. M., Sandblom, J., Gisselgard, J., & Ingvar, M. (2001). Learning related modulation of functional retrieval networks in man. Scandinavian Journal of Psychology, 42, 197-216. doi:10.1111/1467-9450.00231.
-
Reis, A., Petersson, K. M., Castro-Caldas, A., & Ingvar, M. (2001). Formal schooling influences two- but not three-dimensional naming skills. Brain and Cognition, 47, 397-411. doi:doi:10.1006/brcg.2001.1316.
Abstract
The modulatory influence of literacy on the cognitive system of the human brain has been indicated in behavioral, neuroanatomic, and functional neuroimaging studies. In this study we explored the functional consequences of formal education and the acquisition of an alphabetic written language on two- and three-dimensional visual naming. The results show that illiterate subjects perform significantly worse on immediate naming of two-dimensional representations of common everyday objects compared to literate subjects, both in terms of accuracy and reaction times. In contrast, there was no significant difference when the subjects named the corresponding real objects. The results suggest that formal education and learning to read and to write modulate the cognitive process involved in processing two- but not three-dimensional representations of common everyday objects. Both the results of the reaction time and the error pattern analyses can be interpreted as indicating that the major influence of literacy affects the visual system or the interaction between the visual and the language systems. We suggest that the visual system in a wide sense and/or the interface between the visual and the language system are differently formatted in literate and illiterate subjects. In other words, we hypothesize that the pattern of interactions in the functional–anatomical networks subserving visual naming, that is, the interactions within and between the visual and language processing networks, differ in literate and illiterate subjects -
Sandberg, A., Lansner, A., & Petersson, K. M. (2001). Selective enhancement of recall through plasticity modulation in an autoassociative memory. Neurocomputing, 38(40), 867-873. doi:10.1016/S0925-2312(01)00363-0.
Abstract
The strength of a memory trace is modulated by a variety of factors such as arousal, attention, context, type of processing during encoding, salience and novelty of the experience. Some of these factors can be modeled as a variable plasticity level in the memory system, controlled by arousal or relevance-estimating systems. We demonstrate that a Bayesian confidence propagation neural network with learning time constant modulated in this way exhibits enhanced recall of an item tagged as salient. Proactive and retroactive inhibition of other items is also demonstrated as well as an inverted U-shape response to overall plasticity
Share this page