Displaying 1 - 27 of 27
-
Araújo, S., Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2012). Electrophysiological correlates of impaired reading in dyslexic pre-adolescent children. Brain and Cognition, 79, 79-88. doi:10.1016/j.bandc.2012.02.010.
Abstract
In this study, event related potentials (ERPs) were used to investigate the extent to which dyslexics (aged 9–13 years) differ from normally reading controls in early ERPs, which reflect prelexical orthographic processing, and in late ERPs, which reflect implicit phonological processing. The participants performed an implicit reading task, which was manipulated in terms of letter-specific processing, orthographic familiarity, and phonological structure. Comparing consonant- and symbol sequences, the results showed significant differences in the P1 and N1 waveforms in the control but not in the dyslexic group. The reduced P1 and N1 effects in pre-adolescent children with dyslexia suggest a lack of visual specialization for letter-processing. The P1 and N1 components were not sensitive to the familiar vs. less familiar orthographic sequence contrast. The amplitude of the later N320 component was larger for phonologically legal (pseudowords) compared to illegal (consonant sequences) items in both controls and dyslexics. However, the topographic differences showed that the controls were more left-lateralized than the dyslexics. We suggest that the development of the mechanisms that support literacy skills in dyslexics is both delayed and follows a non-normal developmental path. This contributes to the hemispheric differences observed and might reflect a compensatory mechanism in dyslexics. -
Bramão, I., Francisco, A., Inácio, F., Faísca, L., Reis, A., & Petersson, K. M. (2012). Electrophysiological evidence for colour effects on the naming of colour diagnostic and noncolour diagnostic objects. Visual Cognition, 20, 1164-1185. doi:10.1080/13506285.2012.739215.
Abstract
In this study, we investigated the level of visual processing at which surface colour information improves the naming of colour diagnostic and noncolour diagnostic objects. Continuous electroencephalograms were recorded while participants performed a visual object naming task in which coloured and black-and-white versions of both types of objects were presented. The black-and-white and the colour presentations were compared in two groups of event-related potentials (ERPs): (1) The P1 and N1 components, indexing early visual processing; and (2) the N300 and N400 components, which index late visual processing. A colour effect was observed in the P1 and N1 components, for both colour and noncolour diagnostic objects. In addition, for colour diagnostic objects, a colour effect was observed in the N400 component. These results suggest that colour information is important for the naming of colour and noncolour diagnostic objects at different levels of visual processing. It thus appears that the visual system uses colour information, during naming of both object types, at early visual stages; however, for the colour diagnostic objects naming, colour information is also recruited during the late visual processing stages. -
Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2012). The contribution of color to object recognition. In I. Kypraios (
Ed. ), Advances in object recognition systems (pp. 73-88). Rijeka, Croatia: InTech. Retrieved from http://www.intechopen.com/books/advances-in-object-recognition-systems/the-contribution-of-color-in-object-recognition.Abstract
The cognitive processes involved in object recognition remain a mystery to the cognitive
sciences. We know that the visual system recognizes objects via multiple features, including
shape, color, texture, and motion characteristics. However, the way these features are
combined to recognize objects is still an open question. The purpose of this contribution is to
review the research about the specific role of color information in object recognition. Given
that the human brain incorporates specialized mechanisms to handle color perception in the
visual environment, it is a fair question to ask what functional role color might play in
everyday vision. -
Bramão, I., Faísca, L., Forkstam, C., Inácio, F., Araújo, S., Petersson, K. M., & Reis, A. (2012). The interaction between surface color and color knowledge: Behavioral and electrophysiological evidence. Brain and Cognition, 78, 28-37. doi:10.1016/j.bandc.2011.10.004.
Abstract
In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks – a surface and a knowledge verification task – using high color diagnostic objects; both typical and atypical color versions of the same object were presented. Continuous electroencephalogram was recorded from 26 subjects. A cluster randomization procedure was used to explore the differences between typical and atypical color objects in each task. In the color knowledge task, we found two significant clusters that were consistent with the N350 and late positive complex (LPC) effects. Atypical color objects elicited more negative ERPs compared to typical color objects. The color effect found in the N350 time window suggests that surface color is an important cue that facilitates the selection of a stored object representation from long-term memory. Moreover, the observed LPC effect suggests that surface color activates associated semantic knowledge about the object, including color knowledge representations. We did not find any significant differences between typical and atypical color objects in the surface color verification task, which indicates that there is little contribution of color knowledge to resolve the surface color verification. Our main results suggest that surface color is an important visual cue that triggers color knowledge, thereby facilitating object identification. -
Menenti, L., Petersson, K. M., & Hagoort, P. (2012). From reference to sense: How the brain encodes meaning for speaking. Frontiers in Psychology, 2, 384. doi:10.3389/fpsyg.2011.00384.
Abstract
In speaking, semantic encoding is the conversion of a non-verbal mental representation (the reference) into a semantic structure suitable for expression (the sense). In this fMRI study on sentence production we investigate how the speaking brain accomplishes this transition from non-verbal to verbal representations. In an overt picture description task, we manipulated repetition of sense (the semantic structure of the sentence) and reference (the described situation) separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these two components of semantic encoding. We also performed a control experiment with the same stimuli and design but without any linguistic task to identify areas involved in perception of the stimuli per se. The bilateral inferior parietal lobes were selectively sensitive to repetition of reference, while left inferior frontal gyrus showed selective suppression to repetition of sense. Strikingly, a widespread network of areas associated with language processing (left middle frontal gyrus, bilateral superior parietal lobes and bilateral posterior temporal gyri) all showed repetition suppression to both sense and reference processing. These areas are probably involved in mapping reference onto sense, the crucial step in semantic encoding. These results enable us to track the transition from non-verbal to verbal representations in our brains. -
Petersson, K. M., & Hagoort, P. (2012). The neurobiology of syntax: Beyond string-sets [Review article]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 1971-1883. doi:10.1098/rstb.2012.0101.
Abstract
The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty. -
Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120, 83-95. doi:10.1016/j.bandl.2010.08.003.
Abstract
In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple right-linear unification grammar in an implicit artificial grammar learning paradigm in 32 healthy Dutch university students (natural language FMRI data were already acquired for these participants). We predicted that artificial syntax processing would engage the left inferior frontal region (BA 44/45) and that this activation would overlap with syntax-related variability observed in the natural language experiment. The main findings of this study show that the left inferior frontal region centered on BA 44/45 is active during artificial syntax processing of well-formed (grammatical) sequence independent of local subsequence familiarity. The same region is engaged to a greater extent when a syntactic violation is present and structural unification becomes difficult or impossible. The effects related to artificial syntax in the left inferior frontal region (BA 44/45) were essentially identical when we masked these with activity related to natural syntax in the same subjects. Finally, the medial temporal lobe was deactivated during this operation, consistent with the view that implicit processing does not rely on declarative memory mechanisms that engage the medial temporal lobe. In the context of recent FMRI findings, we raise the question whether Broca’s region (or subregions) is specifically related to syntactic movement operations or the processing of hierarchically nested non-adjacent dependencies in the discussion section. We conclude that this is not the case. Instead, we argue that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner, independent of whether there are any processing requirements related to syntactic movement or hierarchically nested structures. In addition, we argue that the Chomsky hierarchy is not directly relevant for neurobiological systems. -
Scheeringa, R., Petersson, K. M., Kleinschmidt, A., Jensen, O., & Bastiaansen, M. C. M. (2012). EEG alpha power modulation of fMRI resting state connectivity. Brain Connectivity, 2, 254-264. doi:10.1089/brain.2012.0088.
Abstract
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include fMRI-based functional and/or effective connectivity, and EEG/MEG-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based BOLD connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between visual cortex and the rest of the brain. The results show that when alpha power increases BOLD connectivity between primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with anterior/medial thalamus decreases and ventral-medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. Decreased connectivity within the visual system may indicate enhanced functional inhibition during higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between visual cortex and other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long range neural connectivity changes. -
Segaert, K., Menenti, L., Weber, K., Petersson, K. M., & Hagoort, P. (2012). Shared syntax in language production and language comprehension — An fMRI study. Cerebral Cortex, 22, 1662-1670. doi:10.1093/cercor/bhr249.
Abstract
During speaking and listening syntactic processing is a crucial step. It involves specifying syntactic relations between words in a sentence. If the production and comprehension modality share the neuronal substrate for syntactic processing then processing syntax in one modality should lead to adaptation effects in the other modality. In the present functional magnetic resonance imaging experiment, participants either overtly produced or heard descriptions of pictures. We looked for brain regions showing adaptation effects to the repetition of syntactic structures. In order to ensure that not just the same brain regions but also the same neuronal populations within these regions are involved in syntactic processing in speaking and listening, we compared syntactic adaptation effects within processing modalities (syntactic production-to-production and comprehension-to-comprehension priming) with syntactic adaptation effects between processing modalities (syntactic comprehension-to-production and production-to-comprehension priming). We found syntactic adaptation effects in left inferior frontal gyrus (Brodmann's area [BA] 45), left middle temporal gyrus (BA 21), and bilateral supplementary motor area (BA 6) which were equally strong within and between processing modalities. Thus, syntactic repetition facilitates syntactic processing in the brain within and across processing modalities to the same extent. We conclude that that the same neurobiological system seems to subserve syntactic processing in speaking and listening. -
Silva, C., Faísca, L., Ingvar, M., Petersson, K. M., & Reis, A. (2012). Literacy: Exploring working memory systems. Journal of Clinical and Experimental Neuropsychology, 34(4), 369-377. doi:10.1080/13803395.2011.645017.
Abstract
Previous research showed an important association between reading and writing skills (literacy) and the phonological loop. However, the effects of literacy on other working memory components remain unclear. In this study, we investigated performance of illiterate subjects and their matched literate controls on verbal and nonverbal working memory tasks. Results revealed that the phonological loop is significantly influenced by literacy, while the visuospatial sketchpad appears to be less affected or not at all. Results also suggest that the central executive might be influenced by literacy, possibly as an expression of cognitive reserve.Files private
Request files -
Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2012). Implicit acquisition of grammars with crossed and nested non-adjacent dependencies: Investigating the push-down stack model. Cognitive Science, 36, 1078-1101. doi:10.1111/j.1551-6709.2012.01235.x.
Abstract
A recent hypothesis in empirical brain research on language is that the fundamental difference between animal and human communication systems is captured by the distinction between finite-state and more complex phrase-structure grammars, such as context-free and context-sensitive grammars. However, the relevance of this distinction for the study of language as a neurobiological system has been questioned and it has been suggested that a more relevant and partly analogous distinction is that between non-adjacent and adjacent dependencies. Online memory resources are central to the processing of non-adjacent dependencies as information has to be maintained across intervening material. One proposal is that an external memory device in the form of a limited push-down stack is used to process non-adjacent dependencies. We tested this hypothesis in an artificial grammar learning paradigm where subjects acquired non-adjacent dependencies implicitly. Generally, we found no qualitative differences between the acquisition of non-adjacent dependencies and adjacent dependencies. This suggests that although the acquisition of non-adjacent dependencies requires more exposure to the acquisition material, it utilizes the same mechanisms used for acquiring adjacent dependencies. We challenge the push-down stack model further by testing its processing predictions for nested and crossed multiple non-adjacent dependencies. The push-down stack model is partly supported by the results, and we suggest that stack-like properties are some among many natural properties characterizing the underlying neurophysiological mechanisms that implement the online memory resources used in language and structured sequence processing. -
De Vries, M. H., Petersson, K. M., Geukes, S., Zwitserlood, P., & Christiansen, M. H. (2012). Processing multiple non-adjacent dependencies: Evidence from sequence learning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2065-2076. doi:10.1098/rstb.2011.0414.
Abstract
Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A1A2A3B3B2B1) and crossed dependencies (A1A2A3B1B2B3), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A1A2A3B3_B1), reminiscent of the ‘missing-verb effect’ observed in English and French, but not with crossed structures (A1A2A3B1_B3). Prior linguistic experience did not play a major role: native speakers of German and Dutch—which permit nested and crossed dependencies, respectively—showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i.e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning. -
Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145, 132-150. doi:10.1196/annals.1416.012.
Abstract
Several studies have reported an association between dyslexia and implicit learning deficits. It has been suggested that the weakness in implicit learning observed in dyslexic individuals may be related to sequential processing and implicit sequence learning. In the present article, we review the current literature on implicit learning and dyslexia. We describe a novel, forced-choice structural "mere exposure" artificial grammar learning paradigm and characterize this paradigm in normal readers in relation to the standard grammaticality classification paradigm. We argue that preference classification is a more optimal measure of the outcome of implicit acquisition since in the preference version participants are kept completely unaware of the underlying generative mechanism, while in the grammaticality version, the subjects have, at least in principle, been informed about the existence of an underlying complex set of rules at the point of classification (but not during acquisition). On the basis of the "mere exposure effect," we tested the prediction that the development of preference will correlate with the grammaticality status of the classification items. In addition, we examined the effects of grammaticality (grammatical/nongrammatical) and associative chunk strength (ACS; high/low) on the classification tasks (preference/grammaticality). Using a balanced ACS design in which the factors of grammaticality (grammatical/nongrammatical) and ACS (high/low) were independently controlled in a 2 × 2 factorial design, we confirmed our predictions. We discuss the suitability of this task for further investigation of the implicit learning characteristics in dyslexia. -
Forkstam, C., Elwér, A., Ingvar, M., & Petersson, K. M. (2008). Instruction effects in implicit artificial grammar learning: A preference for grammaticality. Brain Research, 1221, 80-92. doi:10.1016/j.brainres.2008.05.005.
Abstract
Human implicit learning can be investigated with implicit artificial grammar learning, a paradigm that has been proposed as a simple model for aspects of natural language acquisition. In the present study we compared the typical yes–no grammaticality classification, with yes–no preference classification. In the case of preference instruction no reference to the underlying generative mechanism (i.e., grammar) is needed and the subjects are therefore completely uninformed about an underlying structure in the acquisition material. In experiment 1, subjects engaged in a short-term memory task using only grammatical strings without performance feedback for 5 days. As a result of the 5 acquisition days, classification performance was independent of instruction type and both the preference and the grammaticality group acquired relevant knowledge of the underlying generative mechanism to a similar degree. Changing the grammatical stings to random strings in the acquisition material (experiment 2) resulted in classification being driven by local substring familiarity. Contrasting repeated vs. non-repeated preference classification (experiment 3) showed that the effect of local substring familiarity decreases with repeated classification. This was not the case for repeated grammaticality classifications. We conclude that classification performance is largely independent of instruction type and that forced-choice preference classification is equivalent to the typical grammaticality classification. -
Petersson, K. M. (2008). On cognition, structured sequence processing, and adaptive dynamical systems. American Institute of Physics Conference Proceedings, 1060(1), 195-200.
Abstract
Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out. -
De Rover, M., Petersson, K. M., Van der Werf, S. P., Cools, A. R., Berger, H. J., & Fernández, G. (2008). Neural correlates of strategic memory retrieval: Differentiating between spatial-associative and temporal-associative strategies. Human Brain Mapping, 29, 1068-1079. doi:10.1002/hbm.20445.
Abstract
Remembering complex, multidimensional information typically requires strategic memory retrieval, during which information is structured, for instance by spatial- or temporal associations. Although brain regions involved in strategic memory retrieval in general have been identified, differences in retrieval operations related to distinct retrieval strategies are not well-understood. Thus, our aim was to identify brain regions whose activity is differentially involved in spatial-associative and temporal-associative retrieval. First, we showed that our behavioral paradigm probing memory for a set of object-location associations promoted the use of a spatial-associative structure following an encoding condition that provided multiple associations to neighboring objects (spatial-associative condition) and the use of a temporal- associative structure following another study condition that provided predominantly temporal associations between sequentially presented items (temporal-associative condition). Next, we used an adapted version of this paradigm for functional MRI, where we contrasted brain activity related to the recall of object-location associations that were either encoded in the spatial- or the temporal-associative condition. In addition to brain regions generally involved in recall, we found that activity in higher-order visual regions, including the fusiform gyrus, the lingual gyrus, and the cuneus, was relatively enhanced when subjects used a spatial-associative structure for retrieval. In contrast, activity in the globus pallidus and the thalamus was relatively enhanced when subjects used a temporal-associative structure for retrieval. In conclusion, we provide evidence for differential involvement of these brain regions related to different types of strategic memory retrieval and the neural structures described play a role in either spatial-associative or temporal-associative memory retrieval. -
Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242-251. doi:10.1016/j.ijpsycho.2007.05.017.
Abstract
We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2–9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity. -
Tendolkar, I., Arnold, J., Petersson, K. M., Weis, S., Brockhaus-Dumke, A., Van Eijndhoven, P., Buitelaar, J., & Fernandez, G. (2008). Contributions of the medial temporal lobe to declarative memory retrieval: Manipulating the amount of contextual retrieval. Learning and Memory, 15(9), 611-617. doi:10.1101/lm.916708.
Abstract
We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures mediating either contextual or noncontextual retrieval. A linearly weighted analysis elucidated which MTL substructures show a gradually increasing neural activity, depending on the amount of contextual information retrieved. A hippocampal engagement was found during both levels of source memory but not during item memory retrieval. The anterior MTL including the perirhinal cortex was only engaged during item memory retrieval by an activity decrease. Only the posterior parahippocampal cortex showed an activation increasing with the amount of contextual information retrieved. If one assumes a roughly linear relationship between the blood-oxygenation level-dependent (BOLD) signal and the associated cognitive process, our results suggest that the posterior parahippocampal cortex is involved in contextual retrieval on the basis of memory strength while the hippocampus processes representations of item-context binding. The anterior MTL including perirhinal cortex seems to be particularly engaged in familiarity-based item recognition. If one assumes departure from linearity, however, our results can also be explained by one-dimensional modulation of memory strength. -
Uddén, J., Folia, V., Forkstam, C., Ingvar, M., Fernández, G., Overeem, S., Van Elswijk, G., Hagoort, P., & Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 69-78. doi:10.1016/j.brainres.2008.05.070.
Abstract
The human capacity to implicitly acquire knowledge of structured sequences has recently been investigated in artificial grammar learning using functional magnetic resonance imaging. It was found that the left inferior frontal cortex (IFC; Brodmann's area (BA) 44/45) was related to classification performance. The objective of this study was to investigate whether the IFC (BA 44/45) is causally related to classification of artificial syntactic structures by means of an off-line repetitive transcranial magnetic stimulation (rTMS) paradigm. We manipulated the stimulus material in a 2 × 2 factorial design with grammaticality status and local substring familiarity as factors. The participants showed a reliable effect of grammaticality on classification of novel items after 5days of exposure to grammatical exemplars without performance feedback in an implicit acquisition task. The results show that rTMS of BA 44/45 improves syntactic classification performance by increasing the rejection rate of non-grammatical items and by shortening reaction times of correct rejections specifically after left-sided stimulation. A similar pattern of results is observed in FMRI experiments on artificial syntactic classification. These results suggest that activity in the inferior frontal region is causally related to artificial syntax processing. -
Van Wingen, G. A., Van Broekhoven, F., Verkes, R. J., Petersson, K. M., Bäckström, T., Buitelaar, J. K., & Fernández, G. (2008). Progesterone selectively increases amygdala reactivity in women. Molecular Psychiatry, 13, 325-333. doi:doi:10.1038/sj.mp.4002030.
Abstract
The acute neural effects of progesterone are mediated by its neuroactive metabolites allopregnanolone and pregnanolone. These neurosteroids potentiate the inhibitory actions of c-aminobutyric acid (GABA). Progesterone is known to produce anxiolytic effects in animals, but recent animal studies suggest that pregnanolone increases anxiety after a period of low allopregnanolone concentration. This effect is potentially mediated by the amygdala and related to the negative mood symptoms in humans that are observed during increased allopregnanolone levels. Therefore, we investigated with functional magnetic resonance imaging (MRI) whether a single progesterone administration to healthy young women in their follicular phase modulates the amygdala response to salient, biologically relevant stimuli. The progesterone administration increased the plasma concentrations of progesterone and allopregnanolone to levels that are reached during the luteal phase and early pregnancy. The imaging results show that progesterone selectively increased amygdala reactivity. Furthermore, functional connectivity analyses indicate that progesterone modulated functional coupling of the amygdala with distant brain regions. These results reveal a neural mechanism by which progesterone may mediate adverse effects on anxiety and mood. -
Fransson, P., Merboldt, K.-D., Petersson, K. M., Ingvar, M., & Frahm, J. (2002). On the effects of spatial filtering — A comparative fMRI study of episodic memory encoding at high and low resolution. NeuroImage, 16(4), 977-984. doi:10.1006/nimg.2002.1079.
Abstract
Theeffects of spatial filtering in functional magnetic resonance imaging were investigated by reevaluating the data of a previous study of episodic memory encoding at 2 × 2 × 4-mm3 resolution with use of a SPM99 analysis involving a Gaussian kernel of 8-mm full width at half maximum. In addition, a multisubject analysis of activated regions was performed by normalizing the functional images to an approximate Talairach brain atlas. In individual subjects, spatial filtering merged activations in anatomically separated brain regions. Moreover, small foci of activated pixels which originated from veins became blurred and hence indistinguishable from parenchymal responses. The multisubject analysis resulted in activation of the hippocampus proper, a finding which could not be confirmed by the activation maps obtained at high resolution. It is concluded that the validity of multisubject fMRI analyses can be considerably improved by first analyzing individual data sets at optimum resolution to assess the effects of spatial filtering and minimize the risk of signal contamination by macroscopically visible vessels. -
Nyberg, L., Forkstam, C., Petersson, K. M., Cabeza, R., & Ingvar, M. (2002). Brain imaging of human memory systems: Between-systems similarities and within-system differences. Cognitive Brain Research, 13(2), 281-292. doi:10.1016/S0926-6410(02)00052-6.
Abstract
There is much evidence for the existence of multiple memory systems. However, it has been argued that tasks assumed to reflect different memory systems share basic processing components and are mediated by overlapping neural systems. Here we used multivariate analysis of PET-data to analyze similarities and differences in brain activity for multiple tests of working memory, semantic memory, and episodic memory. The results from two experiments revealed between-systems differences, but also between-systems similarities and within-system differences. Specifically, support was obtained for a task-general working-memory network that may underlie active maintenance. Premotor and parietal regions were salient components of this network. A common network was also identified for two episodic tasks, cued recall and recognition, but not for a test of autobiographical memory. This network involved regions in right inferior and polar frontal cortex, and lateral and medial parietal cortex. Several of these regions were also engaged during the working-memory tasks, indicating shared processing for episodic and working memory. Fact retrieval and synonym generation were associated with increased activity in left inferior frontal and middle temporal regions and right cerebellum. This network was also associated with the autobiographical task, but not with living/non-living classification, and may reflect elaborate retrieval of semantic information. Implications of the present results for the classification of memory tasks with respect to systems and/or processes are discussed. -
Petersson, K. M. (2002). Brain physiology. In R. Behn, & C. Veranda (
Eds. ), Proceedings of The 4th Southern European School of the European Physical Society - Physics in Medicine (pp. 37-38). Montreux: ESF. -
Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia - Imaging a shared neuronal network. Science, 295(5560), 1737-1740. doi:10.1126/science.1067176.
Abstract
It has been suggested that placebo analgesia involves both higher order cognitive networks and endogenous opioid systems. The rostral anterior cingulate cortex (rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar role for these structures in placebo analgesia. Using positron emission tomography, we confirmed that both opioid and placebo analgesia are associated with increased activity in the rACC. We also observed a covariation between the activity in the rACC and the brainstem during both opioid and placebo analgesia, but not during the pain-only condition. These findings indicate a related neural mechanism in placebo and opioid analgesia. -
Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia - Imaging a shared neuronal network. Science, 295(5560), 1737-1740. doi:10.1126/science.1067176.
Abstract
It has been suggested that placebo analgesia involves both higher order cognitive networks and endogenous opioid systems. The rostral anterior cingulate cortex (rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar role for these structures in placebo analgesia. Using positron emission tomography, we confirmed that both opioid and placebo analgesia are associated with increased activity in the rACC. We also observed a covariation between the activity in the rACC and the brainstem during both opioid and placebo analgesia, but not during the pain-only condition. These findings indicate a related neural mechanism in placebo and opioid analgesia. -
Petrovic, P., Petersson, K. M., Hansson, P., & Ingvar, M. (2002). A regression analysis study of the primary somatosensory cortex during pain. NeuroImage, 16(4), 1142-1150. doi:10.1006/nimg.2002.1069.
Abstract
Several functional imaging studies of pain, using a number of different experimental paradigms and a variety of reference states, have failed to detect activations in the somatosensory cortices, while other imaging studies of pain have reported significant activations in these regions. The role of the somatosensory areas in pain processing has therefore been debated. In the present study the left hand was immersed in painfully cold water (standard cold pressor test) and in nonpainfully cold water during 2 min, and PET-scans were obtained either during the first or the second minute of stimulation. We observed no significant increase of activity in the somatosensory regions when the painful conditions were directly compared with the control conditions. In order to better understand the role of the primary somatosensory cortex (S1) in pain processing we used a regression analysis to study the relation between a ROI (region of interest) in the somatotopic S1-area for the stimulated hand and other regions known to be involved in pain processing. We hypothesized that although no increased activity was observed in the S1 during pain, this region would change its covariation pattern during noxious input as compared to the control stimulation if it is involved in or affected by the processing of pain. In the nonpainful cold conditions widespread regions of the ipsilateral and contralateral somatosensory cortex showed a positive covariation with the activity in the S1-ROI. However, during the first and second minute of pain this regression was significantly attenuated. During the second minute of painful stimulation there was a significant positive covariation between the activity in the S1-ROI and the other regions that are known to be involved in pain processing. Importantly, this relation was significantly stronger for the insula and the orbitofrontal cortex bilaterally when compared to the nonpainful state. The results indicate that the S1-cortex may be engaged in or affected by the processing of pain although no differential activity is observed when pain is compared with the reference condition. -
Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2002). A Bayesian attractor network with incremental learning. Network: Computation in Neural Systems, 13(2), 179-194. doi:10.1088/0954-898X/13/2/302.
Abstract
A realtime online learning system with capacity limits needs to gradually forget old information in order to avoid catastrophic forgetting. This can be achieved by allowing new information to overwrite old, as in a so-called palimpsest memory. This paper describes an incremental learning rule based on the Bayesian confidence propagation neural network that has palimpsest properties when employed in an attractor neural network. The network does not suffer from catastrophic forgetting, has a capacity dependent on the learning time constant and exhibits faster convergence for newer patterns.
Share this page