Publications

Displaying 1 - 22 of 22
  • Araújo, S., Faísca, L., Bramão, I., Petersson, K. M., & Reis, A. (2014). Lexical and phonological processes in dyslexic readers: Evidences from a visual lexical decision task. Dyslexia, 20, 38-53. doi:10.1002/dys.1461.

    Abstract

    The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure—albeit poorly—most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon
  • Basnakova, J., Weber, K., Petersson, K. M., Van Berkum, J. J. A., & Hagoort, P. (2014). Beyond the language given: The neural correlates of inferring speaker meaning. Cerebral Cortex, 24(10), 2572-2578. doi:10.1093/cercor/bht112.

    Abstract

    Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message.
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • Pacheco, A., Araújo, S., Faísca, L., de Castro, S. L., Petersson, K. M., & Reis, A. (2014). Dyslexia's heterogeneity: Cognitive profiling of Portuguese children with dyslexia. Reading and Writing, 27(9), 1529-1545. doi:10.1007/s11145-014-9504-5.

    Abstract

    Recent studies have emphasized that developmental dyslexia is a multiple-deficit disorder, in contrast to the traditional single-deficit view. In this context, cognitive profiling of children with dyslexia may be a relevant contribution to this unresolved discussion. The aim of this study was to profile 36 Portuguese children with dyslexia from the 2nd to 5th grade. Hierarchical cluster analysis was used to group participants according to their phonological awareness, rapid automatized naming, verbal short-term memory, vocabulary, and nonverbal intelligence abilities. The results suggested a two-cluster solution: a group with poorer performance on phoneme deletion and rapid automatized naming compared with the remaining variables (Cluster 1) and a group characterized by underperforming on the variables most related to phonological processing (phoneme deletion and digit span), but not on rapid automatized naming (Cluster 2). Overall, the results seem more consistent with a hybrid perspective, such as that proposed by Pennington and colleagues (2012), for understanding the heterogeneity of dyslexia. The importance of characterizing the profiles of individuals with dyslexia becomes clear within the context of constructing remediation programs that are specifically targeted and are more effective in terms of intervention outcome.

    Additional information

    11145_2014_9504_MOESM1_ESM.doc
  • Silva, S., Branco, P., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). Musical phrase boundaries, wrap-up and the closure positive shift. Brain Research, 1585, 99-107. doi:10.1016/j.brainres.2014.08.025.

    Abstract

    We investigated global integration (wrap-up) processes at the boundaries of musical phrases by comparing the effects of well and non-well formed phrases on event-related potentials time-locked to two boundary points: the onset and the offset of the boundary pause. The Closure Positive Shift, which is elicited at the boundary offset, was not modulated by the quality of phrase structure (well vs. non-well formed). In contrast, the boundary onset potentials showed different patterns for well and non-well formed phrases. Our results contribute to specify the functional meaning of the Closure Positive Shift in music, shed light on the large-scale structural integration of musical input, and raise new hypotheses concerning shared resources between music and language.
  • Silva, S., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). You know when: Event-related potentials and theta/beat power indicate boundary prediction in music. Journal of Integrative Neuroscience, 13(1), 19-34. doi:10.1142/S0219635214500022.

    Abstract

    Neuroscientific and musicological approaches to music cognition indicate that listeners familiarized in the Western tonal tradition expect a musical phrase boundary at predictable time intervals. However, phrase boundary prediction processes in music remain untested. We analyzed event-related potentials (ERPs) and event-related induced power changes at the onset and offset of a boundary pause. We made comparisons with modified melodies, where the pause was omitted and filled by tones. The offset of the pause elicited a closure positive shift (CPS), indexing phrase boundary detection. The onset of the filling tones elicited significant increases in theta and beta powers. In addition, the P2 component was larger when the filling tones started than when they ended. The responses to boundary omission suggest that listeners expected to hear a boundary pause. Therefore, boundary prediction seems to coexist with boundary detection in music segmentation.
  • Van Leeuwen, T. M., Petersson, K. M., Langner, O., Rijpkema, M., & Hagoort, P. (2014). Color specificity in the human V4 complex: An fMRI repetition suppression study. In T. D. Papageorgiou, G. I. Cristopoulous, & S. M. Smirnakis (Eds.), Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications (pp. 275-295). Rijeka, Croatia: Intech. doi:10.5772/58278.
  • Van Leeuwen, T. M., Lamers, M. J. A., Petersson, K. M., Gussenhoven, C., Poser, B., & Hagoort, P. (2014). Phonological markers of information structure: An fMRI study. Neuropsychologia, 58(1), 64-74. doi:10.1016/j.neuropsychologia.2014.03.017.

    Abstract

    In this fMRI study we investigate the neural correlates of information structure integration during sentence comprehension in Dutch. We looked into how prosodic cues (pitch accents) that signal the information status of constituents to the listener (new information) are combined with other types of information during the unification process. The difficulty of unifying the prosodic cues into overall sentence meaning was manipulated by constructing sentences in which the pitch accent did (focus-accent agreement), and sentences in which the pitch accent did not (focus-accent disagreement) match the expectations for focus constituents of the sentence. In case of a mismatch, the load on unification processes increases. Our results show two anatomically distinct effects of focus-accent disagreement, one located in the posterior left inferior frontal gyrus (LIFG, BA6/44), and one in the more anterior-ventral LIFG (BA 47/45). Our results confirm that information structure is taken into account during unification, and imply an important role for the LIFG in unification processes, in line with previous fMRI studies.

    Additional information

    mmc1.doc
  • Andics, A., McQueen, J. M., & Petersson, K. M. (2013). Mean-based neural coding of voices. NeuroImage, 79, 351-360. doi:10.1016/j.neuroimage.2013.05.002.

    Abstract

    The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it has been proposed that voice recognition is supported by prototype-centered voice representations, the involvement of these category-selective cortical regions in the neural coding of such "mean voices" has not previously been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic) dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent (i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages, each characterized by neural mechanisms that reference the central tendencies of voice categories.
  • Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.

    Abstract

    In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.

    Additional information

    Kirstensen_Cer_Cor_Suppl_Mat.doc
  • Nieuwenhuis, I. L., Folia, V., Forkstam, C., Jensen, O., & Petersson, K. M. (2013). Sleep promotes the extraction of grammatical rules. PLoS One, 8(6): e65046. doi:10.1371/journal.pone.0065046.

    Abstract

    Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep) or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1) the holistic abstraction of the underlying grammar rules and (2) the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired.
  • Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.

    Abstract

    Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.

    Additional information

    Segaert_Supplementary_data_2013.docx
  • Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.

    Abstract

    Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects.
  • Whitmarsh, S., Udden, J., Barendregt, H., & Petersson, K. M. (2013). Mindfulness reduces habitual responding based on implicit knowledge: Evidence from artificial grammar learning. Consciousness and Cognition, (3), 833-845. doi:10.1016/j.concog.2013.05.007.

    Abstract

    Participants were unknowingly exposed to complex regularities in a working memory task. The existence of implicit knowledge was subsequently inferred from a preference for stimuli with similar grammatical regularities. Several affective traits have been shown to influence
    AGL performance positively, many of which are related to a tendency for automatic responding. We therefore tested whether the mindfulness trait predicted a reduction of grammatically congruent preferences, and used emotional primes to explore the influence of affect. Mindfulness was shown to correlate negatively with grammatically congruent responses. Negative primes were shown to result in faster and more negative evaluations.
    We conclude that grammatically congruent preference ratings rely on habitual responses, and that our findings provide empirical evidence for the non-reactive disposition of the mindfulness trait.
  • Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145, 132-150. doi:10.1196/annals.1416.012.

    Abstract

    Several studies have reported an association between dyslexia and implicit learning deficits. It has been suggested that the weakness in implicit learning observed in dyslexic individuals may be related to sequential processing and implicit sequence learning. In the present article, we review the current literature on implicit learning and dyslexia. We describe a novel, forced-choice structural "mere exposure" artificial grammar learning paradigm and characterize this paradigm in normal readers in relation to the standard grammaticality classification paradigm. We argue that preference classification is a more optimal measure of the outcome of implicit acquisition since in the preference version participants are kept completely unaware of the underlying generative mechanism, while in the grammaticality version, the subjects have, at least in principle, been informed about the existence of an underlying complex set of rules at the point of classification (but not during acquisition). On the basis of the "mere exposure effect," we tested the prediction that the development of preference will correlate with the grammaticality status of the classification items. In addition, we examined the effects of grammaticality (grammatical/nongrammatical) and associative chunk strength (ACS; high/low) on the classification tasks (preference/grammaticality). Using a balanced ACS design in which the factors of grammaticality (grammatical/nongrammatical) and ACS (high/low) were independently controlled in a 2 × 2 factorial design, we confirmed our predictions. We discuss the suitability of this task for further investigation of the implicit learning characteristics in dyslexia.
  • Forkstam, C., Elwér, A., Ingvar, M., & Petersson, K. M. (2008). Instruction effects in implicit artificial grammar learning: A preference for grammaticality. Brain Research, 1221, 80-92. doi:10.1016/j.brainres.2008.05.005.

    Abstract

    Human implicit learning can be investigated with implicit artificial grammar learning, a paradigm that has been proposed as a simple model for aspects of natural language acquisition. In the present study we compared the typical yes–no grammaticality classification, with yes–no preference classification. In the case of preference instruction no reference to the underlying generative mechanism (i.e., grammar) is needed and the subjects are therefore completely uninformed about an underlying structure in the acquisition material. In experiment 1, subjects engaged in a short-term memory task using only grammatical strings without performance feedback for 5 days. As a result of the 5 acquisition days, classification performance was independent of instruction type and both the preference and the grammaticality group acquired relevant knowledge of the underlying generative mechanism to a similar degree. Changing the grammatical stings to random strings in the acquisition material (experiment 2) resulted in classification being driven by local substring familiarity. Contrasting repeated vs. non-repeated preference classification (experiment 3) showed that the effect of local substring familiarity decreases with repeated classification. This was not the case for repeated grammaticality classifications. We conclude that classification performance is largely independent of instruction type and that forced-choice preference classification is equivalent to the typical grammaticality classification.
  • Petersson, K. M. (2008). On cognition, structured sequence processing, and adaptive dynamical systems. American Institute of Physics Conference Proceedings, 1060(1), 195-200.

    Abstract

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.
  • De Rover, M., Petersson, K. M., Van der Werf, S. P., Cools, A. R., Berger, H. J., & Fernández, G. (2008). Neural correlates of strategic memory retrieval: Differentiating between spatial-associative and temporal-associative strategies. Human Brain Mapping, 29, 1068-1079. doi:10.1002/hbm.20445.

    Abstract

    Remembering complex, multidimensional information typically requires strategic memory retrieval, during which information is structured, for instance by spatial- or temporal associations. Although brain regions involved in strategic memory retrieval in general have been identified, differences in retrieval operations related to distinct retrieval strategies are not well-understood. Thus, our aim was to identify brain regions whose activity is differentially involved in spatial-associative and temporal-associative retrieval. First, we showed that our behavioral paradigm probing memory for a set of object-location associations promoted the use of a spatial-associative structure following an encoding condition that provided multiple associations to neighboring objects (spatial-associative condition) and the use of a temporal- associative structure following another study condition that provided predominantly temporal associations between sequentially presented items (temporal-associative condition). Next, we used an adapted version of this paradigm for functional MRI, where we contrasted brain activity related to the recall of object-location associations that were either encoded in the spatial- or the temporal-associative condition. In addition to brain regions generally involved in recall, we found that activity in higher-order visual regions, including the fusiform gyrus, the lingual gyrus, and the cuneus, was relatively enhanced when subjects used a spatial-associative structure for retrieval. In contrast, activity in the globus pallidus and the thalamus was relatively enhanced when subjects used a temporal-associative structure for retrieval. In conclusion, we provide evidence for differential involvement of these brain regions related to different types of strategic memory retrieval and the neural structures described play a role in either spatial-associative or temporal-associative memory retrieval.
  • Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242-251. doi:10.1016/j.ijpsycho.2007.05.017.

    Abstract

    We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2–9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity.
  • Tendolkar, I., Arnold, J., Petersson, K. M., Weis, S., Brockhaus-Dumke, A., Van Eijndhoven, P., Buitelaar, J., & Fernandez, G. (2008). Contributions of the medial temporal lobe to declarative memory retrieval: Manipulating the amount of contextual retrieval. Learning and Memory, 15(9), 611-617. doi:10.1101/lm.916708.

    Abstract

    We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures mediating either contextual or noncontextual retrieval. A linearly weighted analysis elucidated which MTL substructures show a gradually increasing neural activity, depending on the amount of contextual information retrieved. A hippocampal engagement was found during both levels of source memory but not during item memory retrieval. The anterior MTL including the perirhinal cortex was only engaged during item memory retrieval by an activity decrease. Only the posterior parahippocampal cortex showed an activation increasing with the amount of contextual information retrieved. If one assumes a roughly linear relationship between the blood-oxygenation level-dependent (BOLD) signal and the associated cognitive process, our results suggest that the posterior parahippocampal cortex is involved in contextual retrieval on the basis of memory strength while the hippocampus processes representations of item-context binding. The anterior MTL including perirhinal cortex seems to be particularly engaged in familiarity-based item recognition. If one assumes departure from linearity, however, our results can also be explained by one-dimensional modulation of memory strength.
  • Uddén, J., Folia, V., Forkstam, C., Ingvar, M., Fernández, G., Overeem, S., Van Elswijk, G., Hagoort, P., & Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 69-78. doi:10.1016/j.brainres.2008.05.070.

    Abstract

    The human capacity to implicitly acquire knowledge of structured sequences has recently been investigated in artificial grammar learning using functional magnetic resonance imaging. It was found that the left inferior frontal cortex (IFC; Brodmann's area (BA) 44/45) was related to classification performance. The objective of this study was to investigate whether the IFC (BA 44/45) is causally related to classification of artificial syntactic structures by means of an off-line repetitive transcranial magnetic stimulation (rTMS) paradigm. We manipulated the stimulus material in a 2 × 2 factorial design with grammaticality status and local substring familiarity as factors. The participants showed a reliable effect of grammaticality on classification of novel items after 5days of exposure to grammatical exemplars without performance feedback in an implicit acquisition task. The results show that rTMS of BA 44/45 improves syntactic classification performance by increasing the rejection rate of non-grammatical items and by shortening reaction times of correct rejections specifically after left-sided stimulation. A similar pattern of results is observed in FMRI experiments on artificial syntactic classification. These results suggest that activity in the inferior frontal region is causally related to artificial syntax processing.
  • Van Wingen, G. A., Van Broekhoven, F., Verkes, R. J., Petersson, K. M., Bäckström, T., Buitelaar, J. K., & Fernández, G. (2008). Progesterone selectively increases amygdala reactivity in women. Molecular Psychiatry, 13, 325-333. doi:doi:10.1038/sj.mp.4002030.

    Abstract

    The acute neural effects of progesterone are mediated by its neuroactive metabolites allopregnanolone and pregnanolone. These neurosteroids potentiate the inhibitory actions of c-aminobutyric acid (GABA). Progesterone is known to produce anxiolytic effects in animals, but recent animal studies suggest that pregnanolone increases anxiety after a period of low allopregnanolone concentration. This effect is potentially mediated by the amygdala and related to the negative mood symptoms in humans that are observed during increased allopregnanolone levels. Therefore, we investigated with functional magnetic resonance imaging (MRI) whether a single progesterone administration to healthy young women in their follicular phase modulates the amygdala response to salient, biologically relevant stimuli. The progesterone administration increased the plasma concentrations of progesterone and allopregnanolone to levels that are reached during the luteal phase and early pregnancy. The imaging results show that progesterone selectively increased amygdala reactivity. Furthermore, functional connectivity analyses indicate that progesterone modulated functional coupling of the amygdala with distant brain regions. These results reveal a neural mechanism by which progesterone may mediate adverse effects on anxiety and mood.

Share this page